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Abstract. Performance boosts in face recognition have been facilitated by the
formation of facial databases, with collection protocols customized to address
challenges such as light variability, expressions, pose, sensor/modality differ-
ences, and, more recently, uncontrolled acquisition conditions. In this paper, we
present database UHDB11, to facilitate 3D-2D face recognition evaluations, where
the gallery has been acquired using 3D sensors (3D mesh and texture) and the
probes using 2D sensors (images). The database consists of samples from 23 in-
dividuals, in the form of 2D high-resolution images spanning six illumination
conditions and 12 head-pose variations, and 3D facial mesh and texture. It ad-
dresses limitations regarding resolution, variability and type of 3D/2D data and
has demonstrated to be statistically more challenging, diverse and information
rich than existing cohorts of 10 times larger number of subjects. We propose a
set of 3D-2D experimental configurations, with frontal 3D galleries and pose-
illumination varying probes and provide baseline performance for identification
and verification (available at http://cbl.uh.edu/URxD/datasets).

Keywords: face recognition, face databases, 3D-2D facial data, illumination,
face pose, verification, identification, computer vision

1 Introduction

Databases for face recognition focus either on the shortcomings of conventional 2D
images (e.g., acquisition conditions, inter-person variability) or on the benefits of using
alternative sensors and modalities (e.g., 3D scans and facial models). In addition, both
modalities are traditionally employed in multimodal, 2D+3D systems [4] where shape
and texture features are combined to compute face similarity. Databases that contain
both types of data (i.e., 2D and 3D), apart from the 2D texture of a 3D face [11], were
designed in order to primarily explore the merits of 3D-3D versus 2D-2D or multi-view
2D-2D recognition when both gallery (or target) and probe (or query) sets originate
from the same modality.

A different paradigm for face recognition, proposed to combine the detail captured
by 3D data with the practical applicability of a 2D recognition system, is a 3D-2D,
cross-modal framework, where the probe and gallery sets are acquired from different
sensors. One of the conjectures posed and tested by the Face Recognition Grand Chal-
lenge [11] involved the effectiveness of high-resolution 2D images versus 3D scans for
recognition. By combining the two in an asymmetric, cross-sensor framework, efficient,
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Fig. 1. 3D-2D face recognition using 3D samples for the gallery and 2D probes. Color represents
similarity values in [0,1].

discriminative and practical systems and methods can arise for face verification or face
identification (Fig. 1).

By inter-changing the type of data for the enrollment and recognition sessions, dif-
ferent practical scenarios can be formulated. A 3D-2D framework, where the need for
3D acquisition hardware is restricted to enrollment only, can facilitate the acquisition,
storage and distribution of highly-descriptive databases of 3D models. On a 2D-3D
framework, the abundance of existing face databases, composed primarily of 2D data,
can provide reference enrollment sets for matching 3D facial scans. 3D-2D (or 2D-
3D) face recognition is distinct from asymmetric recognition, where shape features are
matched against texture features (heterogeneous 3D FR), 3D-aided recognition, where
real or reconstructed 3D models are used for registration or normalization (3D-aided
2D FR), or multi-modal recognition, where shape and texture data are fused on a single
facial signature (3D+2D FR).

Research on 3D-2D face recognition has been focusing primarily on methods, whose
performance is evaluated on existing 3D databases, with a subset of the registered tex-
tures of the 3D data used as 2D input. However, a realistic 3D-2D configuration may
involve different resolutions, sensors, and acquisition sessions between enrollment and
recognition sets. To facilitate research on 3D-2D and 3D-aided 2D face recognition,
we created database UHDB11 (University of Houston Database 11), that aims to ad-
dress 3D-2D database requirements and limitations related to high-resolution data, full-
face 3D data and identity-independent variability in pose and lighting conditions. In
spite of the small identity sample size, compensated by the relatively large number of
probe instances per individual (approx. 70) and the roughly-quantized head-pose (12)
and illumination variations (6), database UHDB11 provides challenging data instances
for pairwise comparisons and complements the limited (in number) available 3D-2D
databases such as FRGC v2.0 [11].

Why is UHDB11 database useful? (i) It provides a 3D+2D modality, asymmetric
3D/2D probe-gallery matches, and data from three modalities per subject (3D shape, 3D
texture, 2D image), (ii) it covers different acquisition conditions (posed subjects apart
from light conditions), (iii) it simulates realistic application scenarios (3D enrollment
and uncontrolled 2D recognition), and (iv) it is statistically more challenging, diverse
and information rich than evaluation cohorts of 10 times larger number of subjects [3].
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Fig. 2. Sample 2D image and 3D mesh data from the UHDB11 database.

Table 1. Databases for 2D-2D and 3D-3D face recognition with variations in: P : Pose, V: View-
points, I: Illumination, E: Expressions, M: Multiple instances/captures, T: Time-lapse, S: Ses-
sions, O: Occlusions, AU: Action Units (the levels of variation are given in parentheses).

Database Ref. Year Type # Subjects Variation # Samples
FERET [10] 2000 2D-2D 1,199 T, M 14,126

CMU PIE [15] 2002 2D-2D 68 V (13), E (4), I (43) >41,000
FRGC v2.0 [11] 2005 2D-2D 466 M, I (Controlled/Uncontrolled) 24,042

LFiW [9] 2007 2D-2D 5,749 Uncontrolled 13,233
CMU Multi-PIE [7] 2008 2D-2D 337 V (15), E (6), I (19), S (4) >750,000

GBU [12] 2011 2D-2D 437 I (Outdoor, Indoor Ambient) 6,510
FRGC v2.0 [11] 2005 3D-3D 466 E (7) 4,007
BU-3DFE [18] 2006 3D-3D 100 E (7) 2,500

UND ND-2006 [5] 2007 3D-3D 888 M, E (6) 13,450
Bosphorus [14] 2008 3D-3D 105 P (13), E (6), AU (28), O (4) 4,652
3D TEC [17] 2011 3D-3D 214 Twins, E (2) 428

The rest of this paper is organized as follows: In Sec. 2, we provide a brief overview
of existing databases for 2D-2D and 3D-3D face recognition along with reference co-
horts previously used for 3D-2D experiments. In Sec. 3, we outline the purpose and
potential use of the proposed 3D-2D database. The data specifications and six potential
experimental configurations for 3D-2D benchmarking are presented in Sec. 4, while a
baseline evaluation using a system for 3D-2D face recognition is provided in Sec. 5.
Limitations and extensions of UHDB11 are discussed in Sec. 6.

2 Face recognition databases

The type and variation in existing face recognition databases depends on the challenges
aimed to be addressed by each one [6]. Categories include facial expressions [13], un-
controlled acquisition conditions [9], illumination and viewpoints [15, 7], different sen-
sors and resolutions [11, 4], identity mismatches due to different sessions [12] and even
twin subjects [17]. Although a comprehensive review of available databases is out of
the scope of this paper, we provide a brief overview of well-established sets (Table 1)
in order to highlight their targeted challenges and contrast them to UHDB11.

2.1 Databases for 2D-2D recognition

The FERET database [10] was one of the first systematically collected sets for large
scale 2D face recognition evaluations. It contains 14,126 images of 1,199 individuals,
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with time-lapse and multiple sessions for some of the subjects (365 duplicate sets).
The average inter-pupil distance (IPD) in the FERET faces is 68 pixels with a stan-
dard deviation of 8.7 pixels. Controlled light conditions were also used in the CMU
PIE database [15], which in addition included viewpoint variations, resulting in dif-
ferent head poses, using a fixed camera grid and a still subject. Data are color images
of dimension 640× 486 pixels. The extended CMU Multi-PIE [7] increased the num-
ber of subjects (337), acquisition sessions and resolution of the collected images to
3,072 × 2,048, with an IPD typically more than 400 pixels. The Face Recognition
Grand Challenge [11] defined recognition frameworks on the 2D sets of FRGC v2.0
(Experiments 1 and 4) on probe sets of size 16,028 and 8,014 for controlled and uncon-
trolled (e.g., outdoor) conditions. Multiple viewpoints or sessions per subject were also
provided for multi-still recognition (Experiment 2). High-resolution, frontal images, of
average IPD 175±36 pixels, from the uncontrolled set of the FRVT 2006 Notre Dame
data were grouped in three partitions of increasing difficulty (easy, average and hard
matching pairs) on the GBU database [12]. Labeled Faces in the Wild (LFiW) [9] was
proposed as a large scale, unconstrained recognition benchmark, where both probe and
gallery faces can vary considerably with respect to non-identity or imaging factors. The
images are of resolution 250× 250 pixels and were collected for 5,749 subjects using
face detection on web data.

2.2 Databases for 3D-3D recognition

FRGC v2.0 is a multi-modal database which was designed to explore the independent
and comparative role of high resolution images, multiple captures, and 3D facial im-
agery for face recognition [11]. The size of the FRGC v2.0 3D set is 4,007 samples,
corresponding to 1-22 instances for each of 466 subjects. Samples are range data of
resolution 640 × 480 obtained from a structured light sensor, with a registered texture
image of the same dimensions and an average IPD of 160 pixels. Four facial landmarks
are provided as meta-data. The largest database of 3D facial data is UND ND-2006 [5],
originally proposed for multi-instance gallery and facial component studies, containing
13,450 scans for 888 subjects. Variations of identity among twins are captured in the
3D TEC [17] database that contains the 3D facial data for 107 pairs of identical twins.

BU-3DFE [18] was the first 3D database developed for facial expression analysis.
It includes facial meshes for 100 subjects, under a neutral and six prototypical expres-
sions, on four intensity levels. The 3D model data were acquired using the 3dMD sys-
tem [2], cropped to an effective facial region size of 13K− 21K polygons, with an as-
sociated texture of 512 × 512 pixels. The locations of 83 facial points are also specified
per sample. Similarly, the Bosphorus database [14] consists of 3D data captured using
a structured-light 3D sensor, for the study of multi-expression, multi-pose 3D recogni-
tion. Data variability includes facial expressions from six prototypical emotions and 28
groups of similar action units (lower, upper and combinations), pose variations in pitch
and yaw angles and occlusions. The texture images are of relatively high resolution
(1,600×1,200 pixels) and the segmented 3D facial areas correspond to approximately
35K vertices. A set of 24 manually labeled facial landmarks is provided as meta-data.
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Table 2. Databases and experimental cohorts for 3D-2D face recognition.

Source Subj. Gallery Size Probe Size Probe Type Resolution
FRGC-Exp 5 [11] FRGC v2.0 466 4,007 16,028 2D Image 1,200 × 1,600
FRGC-Exp 6 [11] FRGC v2.0 466 4,007 8,014 2D Image 2,272 × 1,704
Huang et al. [8] FRGC v2.0 466 466 3,541 2D Texture 640 × 480

Al-Osaimi et al. [3] FRGC v2.0 250 250 470 2D Texture 640 × 480
GBU/FRGC GBU, FRGC v2.0 437 186 (set) 2,170 2D Image 3,008 × 2,000

UHDB11-Exp. 1 UHDB11 23 23 1,602 2D Image 3,888 × 2,592

2.3 Cohorts for 3D-2D recognition

Several partitions or combinations of existing sets with 2D and 3D data can be employed
for 3D-2D experiments (Table 2). Two of the configurations for FRGC v2.0 [11] specify
a 3D-2D scenario, where the gallery is the full set of 3D data (4,007) and each probe
is a single 2D image. For controlled (Experiment 5) and uncontrolled (Experiment 6)
acquisition, the probe set size is 16,028 and 8,014, of pixel resolution 1,200 × 1,600
and 2,272 × 1,704 respectively.

Huang et al. [8] designed an asymmetric 3D-2D recognition configuration from
the 4,007 3D samples of FRGC v2.0 that correspond to 466 subjects. The first neutral-
expression instance from each subject was used to form a 3D gallery of 466, and the tex-
ture images of the remaining 3,541 instances, cropped to an effective size of 175 × 190,
form the 2D probe set. Evaluations involve 2D-2D (texture-based), 3D-2D (asymmet-
ric) and fused matching. Similarly, Al-Osaimi et al. [3] used 470 textures as probes,
matched against 250 3D galleries in an open recognition cohort, for studying illumi-
nation normalization. Alternative cohorts can be formed through the overlap of subject
identity sets for databases originating from the same Institutes. For example, using the
2D images from GBU [12] (2,170 per partition) and the corresponding 3D data from
FRGC v2.0, following the identity naming convention of the UND data, a 3D-2D ex-
periment of 186 3D targets and 2,170 probes can be defined for the difficult set.

Compared to these cohorts, UHDB11 proposes to address limitations regarding res-
olution, variability and type of 3D/2D data. FRGC v2.0, for example, offers a large-
scale framework, however with: (i) frontal-only 2D probes, (ii) lower resolution, (iii) no
2D images available for the 3D gallery (3D/2D same session) and (iv) no quantization
of the space of (illumination) variations that can facilitate condition-specific quantita-
tive analysis. With respect to [3], empirical statistical evidence from 3D-2D and 2D-
2D recognition suggests that UHDB11 (i) provides richer information (higher pairwise
score variance) from less subjects, and (ii) is more challenging (in terms of verification
performance and match-non-match score separability).

3 UHDB11 intended purpose and uses

The intended use of the developed database is primarily the performance and robust-
ness evaluation of 3D-2D face recognition algorithms under sample variability related
to pose and/or lighting. The enrollment set, referred also as gallery or target, is the col-
lection of data with known identity and the recognition set, referred as probe or query,
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Fig. 3. Database samples acquired with single light (3) and frontal pose (5) as raw 3D (top),
cropped in a sphere of radius 150 units centered at the tip of the nose, and 2D textures (bottom).
The samples correspond to the gallery set of the full UHDB11 3D-2D cohort (Exp. 1).

is the collection of samples of unknown identity that are acquired off- or on-line. The
recognition set can be restricted to the gallery identities (closed set) or include pre-
viously unseen samples (open set). For face verification, where a claimed identity is
verified on the set of gallery identities, a decision for a positive match is obtained on
a one-to-one matching basis. For face identification, the closest ranking identity is re-
trieved after one-to-many matching.

In a 3D-2D recognition setting the gallery data are 3D and the probe data 2D. If
the gallery is represented by both 2D and 3D modalities, template face signatures can
be extracted using any aspect of face appearance (texture and/or shape). Conversely, a
2D-3D setting yields comparisons of 3D probes to 2D gallery images. By specifying
close-set data partitions and inter-changing the role and number of probe and gallery
instances, both settings can be explored through the proposed database. In terms of
acquisition conditions, UHDB11 can be used to quantify the effects of pose (head rota-
tion in 2D views) and illumination (intensity, direction, shadows) on recognition perfor-
mance. Different cohorts can be formed adapted to pose, lighting or their combinations.
In addition, methods developed for multiple gallery instances, for enhancing the target
set or normalizing score values, can be assessed since multiple captures per subject are
available. A suggested list of experimental configurations is provided in Sec. 4.2.

With both 3D and 2D data available, the comparison of 3D-2D frameworks to
their 2D-2D or 3D-3D counterparts on the same data is advocated [11, 16]. We use
the following definitions: Image refers to a 2D still obtained via a photographic cam-
era, shape refers to the 3D data component acquired by a 3D scanner and texture to
the corresponding 2D component, registered to the 3D. UHDB11 can be used to evalu-
ate image-image algorithms for conventional 2D face recognition and 3D model-based,
image-image methods for 3D-aided 2D face recognition. Likewise, it can assist bench-
marking of asymmetric (e.g., texture-image, shape-image) [8] or multimodal schemes
(shape/texture-image) [4] for performance evaluation across features and modalities.
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Fig. 4. Illumination variations in 2D images. Rows correspond to light arrays positioned left and
right from the subject respectively. Columns correspond to lower, middle, upper positioned lights.
Different lights are indexed 1-6, from upper left to lower right.

4 Database description

4.1 Acquisition and specifications

Three-dimensional data were captured using a 3dMD two-pod optical scanner [2] and
2D data using a commercial Canon DSLR camera. Lighting condition variations were
obtained using multiple diffuse lights, from incandescent light bulbs with approximate
color temperature of 2,800K. Both 3D and 2D data were acquired from 23 subjects of
different ethnic groups and gender, under all combinations of six illumination condi-
tions and twelve head poses, four yaw and three roll rotations, resulting in 72 differ-
ent pose/light variations per subject. From the 23× 72 pool, 31 instances have been
removed due to inconsistent specifications or corrupted data, yielding 1,625 samples
across subjects and acquisition conditions.

Six directional lights (indexed by 1-6) were positioned on the sides of the cam-
era pair in two stacked, vertical arrays (lights 1-3 left and lights 4-6 right), simulating
directional light conditions on the face, apart from the ambient room light. Figure 4 il-
lustrates the lighting conditions formed on a frontal face from the left (top row) and the
right (bottom row) light arrays. For each illumination condition, a subject was asked to
face four different points in the room, generating rotations on the Y axis (yaw angles).
For each rotation on Y, three images with rotations on the Z axis (roll angles) were ac-
quired, assuming a coordinate system with the Z axis pointing towards the camera. In
Fig. 5, rows correspond to yaw and columns to roll pose variations.

Table 3. UHDB11 face sizes (inter-pupil distance in units).

Min Max Mean Median Std. Dev.
Gallery (3D) 61 70 66 66 2
Gallery (2D) 349 440 404 406 25

Probe (2D) 253 511 402 400 34
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Fig. 5. Head pose variations in 2D images. Rows correspond to yaw and columns to roll rotations.
Different poses are indexed 1-12 (upper left to lower right).

Since poses in images are the result of actual head movement (i.e., camera configu-
ration is fixed) as opposed to varying the camera viewpoints (as in most 2D databases),
precise ground truth for yaw and roll degrees is not available (e.g., through camera in-
formation and pose from calibration parameters). Poses are quantized with respect to
the virtual positions and instructions given to subjects during acquisition. A finer distri-
bution of the rotation angles can be obtained through automatic pose estimation using
3D-2D landmark correspondences.

The 2D images are high-resolution color JPEGs of size 3,888 × 2,592 pixels, and
the textures for the 3D facial meshes are bitmaps (BMP) of dimension 2,732 × 1,948
pixels. The raw 3D data include the upper torso and subject head, whereas the head
area corresponds roughly to 10K− 15K vertices and 20K− 30K triangles, depending
on head size. Data pre-processing can include isolating the 3D facial area by defining
a sphere around the most extruded facial location (tip of nose). The resulting 3D sets
(Fig. 3,7) range from 9.5K (min) to 17.5K (max) vertices and 18K to 35K triangles,
depending on face size.

Mesh data were reconstructed from the stereo pair as a single point cloud, trian-
gulated in a polygonal mesh. The 3dMD acquisition system is composed from two
stereo cameras (pods), under different viewpoints and provides a 180◦ face coverage
(ear-to-ear), with approximately 1.5 ms capture speed at the highest resolution. Data
are captured as a single point cloud from the stereo pair with a surface accuracy of less
than 0.2 mm RMS [2].
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Table 4. UHDB11 database evaluation configurations and experiments.

Setting Type Gallery Probes
# Instances (per subject) # Light - # Pose # Instances # Light - # Pose

Exp. 1 Full 23 (1) 1-1 1602 6-12
Exp. 2 Multi-sample 138 (6) 6 1487 6-12
Exp. 3 Light Var. 23 (1) 1-1 115 5-1
Exp. 4 Pose Var. 23 (1) 1-1 250 1-11
Exp. 5 Yaw Var. 23 (1) 1-1 382 6-3
Exp. 6 Op. Light 23 (1) 1-1 814 3-12

Fig. 6. Sample 3D data with head pose, corresponding to the single-subject poses of the multi-
sample gallery (Exp. 2 in Table 4).

4.2 Cohorts and 3D-2D experiments

The multitude of illumination/pose conditions on UHDB11 enables the specification
of different 3D-2D verification and identification tasks. As a reference, we define six
experimental settings (Table 4), for which the verification rate at 10−3 false acceptance
rate and rank-1 identification rate can be used, at a minimum, as performance metrics
for benchmark comparisons.
Exp. 1 - Full set, frontal galleries. The default 3D-2D configuration is designed as a
closed-set experiment, with 23 gallery datasets (3D mesh/texture, 2D image), shown in
Fig. 3, and 1,602 2D probe images. The gallery is composed of a single scan, texture
and image per subject, of frontal pose and unique light condition (3). The remaining,
multiple 2D images per subject are used for the probe set.
Exp. 2 - Multi-sample galleries: For the effect of multi-instance enrollment, a config-
uration with multiple 3D data for each of the 23 subjects is used as gallery. Six unique
pose-light instances per subject are used as gallery data, forming a total set of 138. Fig-
ure 6 depicts an example of multi-sample 3D data for a single subject. The remaining
1,487 samples are used as a closed 2D probe set.
Exp. 3 - Light variation: To verify resilience in illumination variations, the probe set
is composed by the 2D subset with frontal pose, across the five lighting conditions
(1,2,4-6) that are not in the default gallery set (Exp. 1).
Exp. 4 - Pose variation: To isolate the influence of pose, the probe set is composed by
the 2D subset with gallery light conditions (3), across the non-frontal pose variations
(1-4, 6-12) that are not in the default gallery set (Exp. 1).
Exp. 5 - Yaw variation: For the influence of the more common, yaw-only viewpoint
variations, the zero-roll poses (2, 8, 11) at the gallery light condition (3) are used for
the probe set, with the default, frontal-pose gallery (Exp. 1).
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Fig. 7. The reference UHLS9 facial landmark set (nine points on eyes, mouth and nose) annotated
on 3D meshes and 2D images.

Exp. 6 - Light direction: For the influence of opposing illumination conditions, the
probe set is formed from the frontal pose instances (5), illuminated from an opposite to
the default gallery (Exp. 1) light direction (4, 5, 6).

4.3 Facial landmarks

The locations of nine facial point landmarks are provided as a reference with UHDB11
for the purpose of landmark detection, registration or pose estimation. Landmarks have
been manually annotated by experts for both 3D and 2D data, examples of which
are shown in Fig. 7 superimposed on 3D meshes and 2D images. The reference set
(UHLS9) consists of the outer and inner eye corners, nose tip and nose inner corners
and mouth corners. For 3D, both the mesh and overlaid texture have been used for ac-
curate localization. Hidden points due to self-occlusions have been excluded from the
2D sets, with the final valid number of landmarks varying from four to nine across the
database.

5 Baseline performance evaluation

As baseline evaluation, we report recognition performance on the UHDB11 experi-
ments using a reference 3D-2D system [16], where the tested conjecture was that 3D-
2D surpasses 2D-2D and can approximate shape-based 3D-3D recognition. Results are
reported using light normalization through a bidirectional relighting module Raw sim-
ilarity matrices have been normalized using Z-score normalization, although improved
results have been reported using a Multi-Dimensional Scaling projection of the distance
matrix.

5.1 System description

For gallery processing, raw 3D data are fitted to a 3D deformable face model and model-
registered images for the texture components are generated using the model surface
parametrization. For recognition, a 2D probe is transformed to a geometry texture im-
age, given a fitted gallery model and the 3D-2D landmark correspondence between im-
age and mesh. The 3D-2D projection parameters are estimated for each probe-gallery
pair, so that a mapping between mesh and image points is defined. To match the illumi-
nation of the probe texture, the gallery texture is bidirectionally relit using an analytic
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Fig. 8. ROC curves (in logarithmic FAR range) for 3D-2D face verification using the reference
system, on the different experiments of UHDB11 database.

skin reflectance model and an iterative optimization scheme. The final similarity score
is based on the correlation of the gradient orientations of the pose and light-normalized
texture pair.

5.2 Verification and identification

Performance for 3D-2D face recognition is reported for the tasks of verification and
identification using receiver operating characteristics (ROC) curves that show verifica-
tion rate (VR) at varying false acceptance rates (FAR) (Fig. 8), and cumulative match
characteristics (CMC) curves that show rank-k recognition rate (RRk) (Fig. 9). For
quantitative comparisons we report the following curve-extracted measures in Table 5:
VR at FAR = 0.001 and FAR = 0.01, equal error rate (EER), i.e., the point where
false accept equals false reject rate, area under curve (AUC) for verification and rank-1
recognition rate (RR1) for identification.

The specified UHDB11 experiments (Table 4) constitute configurations of different
sizes, thus different number of total comparisons for ROCs, ranging from 2,645 (Exp. 3)
to 36,846 (Exp. 1). For all experiments the verification rate is above 66% at 0.001 and
81% at 0.01 FAR. In addition, AUC values are very high (above 0.98 in every case), and
the EER are low (below 0.07 in all cases). For the full UHDB11 3D-2D set (Exp. 1),
verification performance is 69.5% at 0.001 and 85.1% at 0.01 FAR, with a set size
that is two to 10 times larger than experiments 3-6. This performance is superior to
2D-2D FR systems [16] and can be additionally enhanced by more sophisticated score
normalization algorithms.

A relative evaluation of the different experiments allows for observations on the
challenges of the proposed database, as seen by the reference system. Overall best per-
formance, with a 88.8% VR at 0.001 FAR, is achieved in Exp. 4 (23 × 250) where
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Fig. 9. CMC curves (ranks 1-10) for 3D-2D face identification using the reference system, on the
different experiments of UHDB11 database.

the light conditions are the same in probe and gallery sets. This indicates the antici-
pated decrease in performance when imposing illumination inconsistencies in the 2D
images and an increased pose-resilience of the reference system. Analogously, Exp. 3
(23×115) where frontal pose is used in both sets, demonstrates a 10.5% lower verifica-
tion rate. Experiments 5 and 6 involve combinations of pose and light variations, similar
to Exp. 1, but constrain the type of head-pose and light direction variation respectively.
Differences due to opposing lighting directions, captured by Exp. 6 (23× 814), attain
the lowest relative performance, possibly due to asymmetric shadows and specularities.

Identification baselines for the different 3D-2D experiments, shown in Fig. 9 for
rank 1-10 out of the 23 gallery identities, are all above 84% and up to 96% rank - 1 rate.
With the main baseline (Exp. 1) at 85.6%, Exp. 5 ranks second best to Exp. 4, along
with Exp. 3. Since it is not clear if this performance ordering of the six configurations is
due to the reference system or the challenges in the database, the results of competing
3D-2D algorithms will further rate the difficulty of each set.

Table 5. Face recognition results using the reference 3D-2D system on UHDB11 database.

Method Size Verification RR1(%)
@ 10−3 FAR @ 10−2 FAR EER AUC

Exp. 1 23 × 1,602 0.695 0.851 0.056 0.986 85.6
Exp. 2 138 × 1,487 0.759 0.864 0.078 0.960 98.1
Exp. 3 23 × 115 0.783 0.870 0.062 0.983 86.1
Exp. 4 23 × 250 0.888 0.980 0.016 0.994 95.6
Exp. 5 23 × 382 0.728 0.874 0.051 0.988 87.7
Exp. 6 23 × 814 0.663 0.817 0.067 0.985 83.8
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6 Limitations and extensions

Database UHDB11 is a systematic approach to bridge the availability gap between 3D-
2D and symmetric 3D or 2D facial database benchmarks. The main source of limita-
tion of the current distribution relates to the small subject number, which is restricted
compared to existing 2D or 3D datasets (Table 1) or formed 3D-2D cohorts (Table 2).
However UHDB11 was formed in order to facilitate the development of 3D-2D systems
in the presence of non-identity variations, and contains multiple captures of the same
subject. In that respect, it can be useful for evaluating light and pose normalization al-
gorithms, on a restricted identity set, with multiple samples per subject on the probe or
gallery sets.

Some additional limitations concern the type and variability of acquisition con-
ditions. More challenging and even extreme poses are required for real-life recogni-
tion conditions, and these can include unconstrained head rotations, self-occlusions and
change in camera viewpoint. UHDB11 involves a single, fixed camera and approximate
head rotations in roll and yaw angles. Extensions will include pitch rotations, yaw ro-
tations above 30◦ and multiple viewpoints for combined face/camera position variation
and ground-truth. The acquired, indoor illumination conditions, simulate a small range
of lighting conditions and can be further enhanced to include outdoor captures, multiple
light sources and varying intensity.

Our on-going efforts focus on addressing these limitations by complementing the
database with additional captures, an increased subject and sample size and more chal-
lenging acquisition conditions. This involves outdoor sessions with natural lighting con-
ditions and sessions from a custom 21 3D/2D camera acquisition system with multiple
reference viewpoints, reconstructions from posed or partial 3D data and an increased
subject number (5-10 times) of multiple captures, age groups and ethnic groups.

7 Conclusions

We presented a database and evaluation framework for 3D-2D and 2D-3D face recog-
nition, where the gallery and recognition sets have data from different facial sensing
modalities. UHDB11 is publicly available [1] and aims to address data requirements
regarding face resolution in 2D and 3D and identity-independent variability, in the form
of lighting conditions and facial pose. For performance benchmarking under different
light/pose combinations, a set of database cohorts and experiments has been designed,
on which we provided a 3D-2D face identification and verification baseline at demand-
ing operational conditions (0.001 FAR). The database may additionally be useful for
asymmetric, model-based or multimodal face recognition.
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