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Recently a new method for the computation of Lyapunov exponents that does not require rescaling and
reorthogonalization was proposgangarajan, Habib, and Ryne, Phys. Rev. L&®.3747(1998]. In this
paper we make a detailed numerical comparison of the new method and a standard algorithm, as regards
accuracy and efficiency, by applying them to some typical two-, three-, and four-dimensional systems. We find
that in most cases there is reasonable agreement between the Lyapunov spectra obtained using the two
algorithms. The CPU times required for computation are also comparable. However, in certain strongly chaotic
cases, the new method was found to be either inefficizking a lot of CPU time for computatigpror
inaccurate[S1063-651X%99)50907-0

PACS numbeps): 05.45—-a, 02.20.Qs

I. INTRODUCTION 5Z(t)=M(Z(t),t)5Z(O), (4
Consider ann-dimensional continuous-time dynamical whereM(Z(t),t) is the tangent map matrix whose evolution
system equation is easily seen to be
dz am =DF-M 5

whereZ andF aren-dimensional vector fields. To determine  The idea of the new method is to evaluate the Lyapunov

the n Lyapunov exponents of the system, corresponding t@xponents without using the vecto$Z directly and conse-

some initial conditionZ(0), we have to find the long term quently without using the associated reorthogonalization and

evolution of the axes of an infinitesimal sphere of stategescaling. For this one uses the fact tivatcan be written as

aroundZ(0). For this, consider the tangent map given by theM =QR, a product of an orthogonax n matrix Q and an

set of equations upper triangular matriR with positive diagonal entriefst].
Then it can be easily shown that

dsz
gt OF oz @ QQ+RR™=QDFQ=S, ©®)
whereDF is thenx n Jacobian matrix with where the overdot denotes a time derivative. The Lyapunov
exponents\; are equal tao;/t in the limit t—o whereo;
DF JF; 3) =In(R;) [5]. RR™! is also an upper triangular matrix and it

ij =a_zj' is easily shown that the evolution equations égrare con-

trolled by the diagonal elements 8f
One of the standard methods used to determine the full
Lyapunov spectrum due to Benetii al. and Shimada and oi=S;, i=1,...n. (7)
Nagashimd1] uses the Gram-Schmidt reorthonormalization o o
(GSR procedure. An explicit source code for computations Now Q, which is annXxn orthogonal matrix, is essen-
based on this procedure is given by Welfal.[2]. In this ~ tially the diagonalizing matrix for the tangent map flow and
method we have to integratg§n+ 1) coupled equations, as is parametrized byy(n—1)/2 angles(¢'s). QQ is an anti-
there aren equations for the fiducial trajectory in EL) and  symmetric matrix and the evolution equations for these
n copies of then tangent map equations in E@). We refer  angles can be obtained from the subdiagonal elemergsrof
to this method as the standard method in the following.  Eg. (6). For n<4, we can work with any explicit represen-
Recently, Rangarajan, Habib, and Ryne proposed a netation for Q. For n=4, we employ a representation fQ
algorithm for the computation of Lyapunov exponef®  based on the well known fact th&0O(4)~SOQ(3)X SO(3)
based on the QR methdd] for the decomposition of the [6]. This simplifies the calculations and numerical computa-
tangent map. This does not require the GSR procedure. Wions considerably. Hence, we have to solmén+3)/2
summarize the essentials of this method below. The readeoupled equations to find the Lyapunov exponents in this
can refer td 3] for details. method, as there areequations for the fiducial trajectory in
A solution of Eqg.(2) can be formally written as Eqg. (1), n equations for the exponents in E), andn(n
—1)/2 equations for the angles.
It might be thought that the new method has advantages
*Electronic address: tphysmu@imsc.ernet.in over the standard methods, as a minimal number of variables
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is used and rescaling and reorthogonalization are also elimgrable. Wheny# 1, the system is nonintegrable. Because of
nated. However, in this method the evolution equations fothe singularity atp=z=0, the Hamiltonian in the above
the angles and Lyapunov exponents are highly nonlineaform is hardly suitable for numerical integration. For this we
involving sines and cosines of the angles, whereas the staghoosez, = \/p+z andz,= \/p—z as the canonical variables.
dard method uses the linearized equationsddr directly. ~ We can find the corresponding canonical momegtandz,
Hence, there is a need to compare the efficiency and accin terms ofp, andp,. We also use a reparametrized time
racy of this method with a standard method. That is the subyariable r defined bydt=dr(z+z3).

ject of the present investigation. Here, we consider some The original Hamiltonian with old variables and eneiy

typical nonlinear systems of physical interest with2, 3,  corresponds to the following Hamiltonian witH’ =2 in
and 4. The driven Van der Pol oscillator is taken as an eXterms of the new variabldd]:

ample of a two-dimensional system, whereas the standard

Lorenz system is chosen far=3. Forn=4, we consider the , 1, ., 5 (2123~ 2524)°
coupled quartic oscillators and anisotropic Kepler problem as H' =2=5(23+2) —~E(z1+ ) +(y—1) 224D
examples of conservative Hamiltonian systems andsko 1o (12)
hyperchaos system as an example of a dissipative system. In

all these cases, the full Lyapunov spectrum is computed us- The equations of motion can be easily obtained from the
ing both methods. The time of integration is chosen to ensurgbove Hamiltonian. We have chosers=0.61 for computa-

reasonable convergence of the Lyapunov exponents. tional purposes.
(v) Rossler hyperchaos system=#4). This is a dissi-
[l. COMPARISON OF THE TWO METHODS pative system and an extension of the three-dimensional

. . . Rossler attractof8,9]. It is described by the equations
In this section, we take up the following systems for a

detailed comparison of the two methods. 7 —(2p+23)
(i) Driven Van der Pol oscillatori=2). d| z z,taz,tz,
d(z z, dt| z |~ b+zyz; |” 13
ﬁ(zz :(—d(l—zf)zz—zﬁbcosm, ’ ® %4 €24~ dz

wherea, b, ¢, andd are parameters whose values are taken
to be 0.25, 3.0, 0.05, and 0.5, respectively, for our computa-
tions.

For all the systems, we have used a variable step-size
Runge-Kutta routindRKQC) for integration with an error
tolerancee~ 10 —~108. All the computations were per-
formed on a DEC Alpha based workstation running
OpenVMS. We also noted the CPU time taken for each case
Z3 2)2,— Pz3 with either of the algorithms. This is the actual time taken by
This system is too well known to require any further discus-thﬁ CPUTo accomphsh a spec;ﬁc proces;fie%endflant off tr?e
sion. For computations we set=10.0, p=28.0, andg other Processes running n the sysjeffihe details o t e
83 comparison between the two methods are summarized in

(iii)' Coupled quartic oscillatorsn=4). This is a con- Table 1. : : .
servative system and the Hamiltonian ié given by It may be noticed that the two methods yleld_essenually

the same Lyapunov spectrum. For any dynamical system,

whereb andd are parameters analis the driven frequency.
In our numerical work we have choseh=—5.0, b=5.0,
and w=2.47 as the parameter values.

(ii) Lorenz systemri=3).

d Z 0(2,—21)

at Z | =| zalp—2z3)—2, . (9

2 72 one of the Lyapunov exponents has to be Zearespond-
H=— 4 _4+Z‘11+ 2‘21+ aZizg, (10) ing to the difference vectobz Iying along the trajectory
2 2 itself). For the Lorenz system, the Bsler hyperchaos sys-

tem (both dissipativg and the coupled quartic oscillators,
this condition is satisfied by both algorithms. For the driven
Van der Pol oscillator and the anisotropic Kepler problem,
both methods fail the test. This aspect needs to be studied
further. For the coupled quartic oscillators, all the exponents
should be zero corresponding to the integrable case of
=6. This is indeed satisfied by both algorithms. In Fig. 1 we
give plots of Lyapunov exponents as functions of time for a

wherez; andz, are the canonical coordinates, andz, are
the corresponding momenta, ands a parameter. The equa-
tions of motion are readily obtained from the Hamiltonian.
This system is known to be integrable ferx=0, 2 and 6.

(iv) Anisotropic Kepler problem {=4). The Hamil-
tonian of this system is given by

2 2 2
_Pp Pz € typical case. Again, there is little difference between the two
2 2 Jp?+ 72 algorithms as far as the convergence of the Lyapunov expo-
nents is concerned.
wherey is a number. However, for the system of coupled quartic oscillators,

The Hamiltonian given above describes the motion of arthe CPU time is abnormally high for the new method, corre-
electron in the Coloumb field in an anisotropic crystal, wheresponding to the nonintegrable casedot 8. This is true for
its effective mass along the-y plane andz direction are both small and large energies. For large energies
different. y=1 corresponds to the isotropic case and is inte{~25000), since the energy varied byl5 when we used
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TABLE I. Comparison of the two methods for some systems 0.12
with n=2, 3, and 4. The values given in parentheses correspond to
the standard method. _ o115
c
S 011
Lyapunov spectrum, g
Initial sum (s), and E>§ 0.105 |
System condition CPU time ¢) in sec %
Driven 0.0981(0.0987 ;5 o
van der Pol z;=-1.0 —6.8400 (—6.8411) 0.095 - -
Oscillator z,=1.0 S=—6.7419 (- 6.7424) 0.09 | | |
(n=2) t=519.22(825.56 ' 25000 50000 75000 100000
0.9056(0.9051 @) time t
Lorenz z,=0.0 0.0000(0.0000Q -21.5 7 T T
system 2,=1.0 —14.5723 (-14.5718) 22 .
(n=3) 2;=0.0 s=—13.6667 (- 13.6667) - 225 -
t=2394.30(1668.68 2 -23 .
0.1360(0.1332 g -235] .
Anisotropic 2,=1.0 0.0831(0.0832 s
Kepler 2,=2.0 —0.0833 (- 0.0833) s 245
problem z3=1.0 —0.1357 (—0.1331) g 25 I
(n=4) 2,=05 s=—0.0000 (- 0.0000) - 285
t=350.18(201.04 26 . . .
0.1128(0.1129 2% 25000 50000 75000 100000
z,=-20.0 0.0214(0.0196 (b) time t
Rossler 2,=0.0 —0.0000 (- 0.0000) .
hyperchaos 2,=0.0 24,7527 (- 25.1886) FIG. 1. Plots of_the Lyapunov exponent for thesRter hyper-
chaos system(a) Highest exponenk;, (b) lowest exponenh,.
(n=4) 2,=15.0 $=—24.6185 (~25.0568) The thick and thin lines correspond to the new and standard algo-
t=1527.58(5594.99 rithms, respectively.
0.0001(0.0002
=038 0.0001(0.0003 with the new methodwith hardly any difference in the
Coupled 2,=05 —0.0001 (~0.0001) Lyapunov spectrum
quartic oscr. 23=1.0 —0.0001 (-0.0001) In the standard method, as well as in Ra0], after solv-
(n=4, a=6) 24=13 s=0.0000(0.0000 ing for the fiducial trajectory, the equations for the tangent
t=803.49(492.09 flow are linearized equations. In the new method, these equa-
0.1806(0.1739 tions are replaced by the equations for the angles determin-
2,=0.8 0.0001(0.0002 ing the principal axes or the bases associated with the
Coupled 2,=05 —0.0001 (—0.0001) Lyapunov spectrum and the Lyapunov exponents. These
quartic oscr. 2;=1.0 —0.1806 (-0.1738) equations involving sines and cosines of the angles are
(n=4, a=8) 7,=1.3 s=0.0000(0.0000 highly nonlinear. For dissipative systems this nonlinearity

t=39012.77(855.64

does not pose a problem. However, in many cases, this non-
linearity renders the new method less efficient, and can even
lead to inaccuracies in strongly chaotic situations.

the RKQC routine, we also used a symplectic procedure that

eliminates secular variations in the energy. With this routine,

IIl. CONCLUSIONS

the CPU times were nearly the same for both methods. How-

ever, the new method yields poor results for the Lyapunov In a recently proposed new method for the computation of
spectrum. For instance, corresponding to the initial conditior_yapunov exponents, the Lyapunov exponents are calculated
z,=7.0,2,=7.0, z3=5.0, andz,=4.0, the Lyapunov spec- directly, so to say, by utilizing representations of orthogonal
tra computed using the new and the standard methods argatrices applied to the tangent map. Since it does not require

(1.5506, 0.3254-0.3261, —1.5499) and(1.5205, 0.0001,

—0.0001,—-1.5205), respectively.
We also compared the new method with another proceadvantages over existing methods. To test this claim, we
dure for computing Lyapunov spectra with continuoushave computed the full Lyapunov spectrum of some typical

Gram-Schmidt orthonormalizatidr0]. Here the number of

renormalization or reorthogonalization and requires a lesser
number of equations, it has been claimed that it has several

nonlinear systems with two, three, and four variables and

equations that need to be integrated to obtain the complet@ade a detailed comparison with the results obtained using a
spectrum isn(n+2), as compared ta(n+1) equations in  standard algorithm. For dissipative systems, there is reason-
the standard method ami{n+3)/2 equations in the new able agreement between the spectra obtained using the two
method, wheren is the order of the system. The CPU time algorithms. The CPU time taken for the computation is also
for this method, corresponding to the initial conditions givencomparable. However, in certain strongly chaotic situations,
in Table | fora=8, is 7658.57 s, as compared to 39012.77the new algorithm could lead to inaccuracies in the
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Lyapunov spectrum, when one uses fixed step-size integrattihhe proposed new method is still useful as an alternate algo-
routines, however small the step size may be. This could bathm for the computation of Lyapunov spectra.

remedied by a variable step-size routine with a reasonable

value of error tolerance. But this makes the new method far

less efficient(taking abnormally long times for computa- ACKNOWLEDGMENT

tion), compared to the standard algorithm. This could be at-

tributed to the highly nonlinear nature of the evolution equa- One of the author$K.R.) thanks the Council for Scien-
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