
ORIGINAL PAPER

Discrete-time weight updates in neural-adaptive control

D. Richert • K. Masaud • C. J. B. Macnab

Published online: 30 September 2012
! Springer-Verlag 2012

Abstract Typical neural-adaptive control approaches
update neural-network weights as though they were adap-

tive parameters in a continuous-time adaptive control.

However, requiring fast digital rates usually restricts the
size of the neural network. In this paper we analyze a delta-

rule update for the weights, applied at a relatively slow

digital rate. We show that digital weight update causes the
neural network to estimate a discrete-time model of the

system, assuming that state feedback is still applied in

continuous time. A Lyapunov analysis shows uniformly
ultimately bounded signals. Furthermore, slowing the

update frequency and using the extra computational time to

increase the size/accuracy of the neural network results in
better performance. Experimental results achieving link

tracking of a two-link flexible-joint robot verify the

improved performance.

Keywords Neural-adaptive control ! Fuzzy-adaptive
control ! Discrete-time control ! Lyapunov stability !
Robot manipulators ! Flexible-joint robots

1 Introduction

Originally, researchers saw the potential of neural networks

in control systems to perform discrete mappings. In
robotics specifically, a neural network can learn the static

discrete-time inverse dynamics: mapping desired positions/

velocities at a future time step to the currently applied
control torques as in Miller et al. (1990). However,

adapting to changing dynamics like significant payloads
requires on-line real-time weight updates. It is now well

known that a continuous-time adaptive Lyapunov design

can provide stable weight updates. In this paradigm, the
neural-network basis functions take the place of linear-in-

parameter (LP) regressor matrices, and weights take the

place of adaptive parameters. When using neural networks
with adaptive weight updates, i.e. neural-adaptive control,

choices include backpropogation networks (Kim et al.

2004; Wang et al. 2007), radial basis function networks
(Nakanishi and Schaal 2004), and the Cerebellar Model

Arithmetic Computer (CMAC) (Kim and Lewis 2000).

When using fuzzy approximators the centers of fuzzy
membership functions become the adaptive parameters

(Lee and Zak 2004). Various combinations and modifica-

tions of these basic types are often proposed to improve
approximation abilities and adaptation rates, such as the

output recurrent CMAC (Chiu 2010, 2011), generalized

neurons (Chaturvedi and Malik 2007), and the feedback
fuzzy neural controller (Frayman and Wang 2002).

In this paper we use the platform of a flexible-joint robot
with large (exaggerated) elasticity to test the proposed

method in an application where achieving both stability

and performance is non-trivial. A survey of control tech-
niques applied to flexible-joint robot appears in (Ozgoli

and Taghirad 2006). Here, we look at adaptive control for

link (output) tracking. Although traditional linear-in-
parameters (LP) adaptive controls have been proposed for

two-link flexible-joint robots, for example, (Huang and

Chien 2009; Kim and Lee 2004), due to the size of the
regressor matrices experimental validation is not trivial for

multiple links; most experimental results utilize the single-

link and/or single-flexible-joint, for example (Huang and
Chen 2004). The only example of an experiment (for

adaptive link-tracking of a 2-link flexible-joint robot)

D. Richert ! K. Masaud ! C. J. B. Macnab (&)
Department of Electrical and Computer Engineering,
University of Calgary, Calgary, AB T2N-1N4, Canada
e-mail: cmacnab@ucaglary.ca

123

Soft Comput (2013) 17:431–444

DOI 10.1007/s00500-012-0918-1



found by the authors was in (Dixon et al. 2000), which

takes about ten repetitions of the trajectory before con-
vergence due to the over-parameterized design, and

requires an interm trajectory that slowly moves toward the

desired trajectory due to the use of high-gain nonlinear-
damping terms. On the other-hand, the use of neural-

adaptive control offers a low-gain solution with the ability

to avoid over-parameterization (using tuning functions)
which results in faster convergence time without need of

interm trajectories, with experimental verification on a
2-link flexible-joint robot in (Macnab 2010).

Mathematical treatment of a neural network as if it were

a continuous-time signal may not constitute the most
practical approach. Highly accurate, and thus large, neural

networks can take significant time calculating outputs and

applying weight updates. This implies a digital design of the
weight updates. However, few papers appear in the robotics

literature on this topic, especially for robots with elastic

degrees of freedom. Purely digital designs for neural-
adaptive control of a rigid robot appear in (Jagannathan

1999; Lei and Wu 2006; Suna et al. 2002). Robots with

elastic degrees of freedom offer a challenge to the control
designer, as the under-actuated nonminimum phase nature

of the system makes achieving stability a challenge.

Experimental validation becomes important, since stability
proofs can rely on unrealistic assumptions about physi-

cal systems including unconstrained actuation, lack of

unmodeled dynamics, and continuous signals. Violation of
these assumptions in real elastic systems may lead to

excitation of natural frequencies and instability. An indirect

discrete-time adaptive scheme was proposed for a flexible-
link robot was tested in experiment in (Rokui and Khorasani

2000) and more recently simulation results appear in (Tian

et al. 2004). Non-adaptive digital control of a simulated
flexible-joint robot was examined in (Ider and Zgren 2000).

Most neural-adaptive approaches use a Lyapunov-based

design for controls and weight updates, straightforward
where nonlinearities are matched by control signals. When

the nonlinearities are not matched, Lyapunov backstepping

is appropriate for systems in strict-feedback form. How-
ever, limitations to treating neural-networks in identical

fashion to LP models include the following:

1. offering no advantages over adaptive control if the

nonlinear model is LP,

2. requiring on-line integration of weight update laws,
and

3. violating stability-proof assumptions when the neural

network output is calculated at a relatively slow digital
frequency.

In general, some of the unique and interesting features
of neural networks are ignored or under-utilized when

weights are treated as if they were adaptive parameters in

LP models. Some notable differences between neural-net-

works and LP models, that may be exploited, are as
follows:

1. a neural network can approximate a discrete-time
inverse-dynamics mapping and

2. the greater the number of basis functions (and weights)

the more accurate the approximation capability.

The present work stems from that in (Macnab and

D’Eleuterio 2000), which used the above properties to
reveal the inherent difference between LP adaptive and

neural-adaptive approaches. Here we develop the meth-

odology to the point where actual experiments with a
flexible-joint robot are shown to be successful.

In LP adaptive control a parameter update law appears

as a time derivative, and numerical integration provides the
adaptive parameter estimates. If one applies a delta-rule

(rectangular integration) at a relatively slow frequency

instead of a more advanced numerical integration routine,
very poor performance or instability is the result. More-

over, flexible-joint robots require a computationally com-

plex LP-adaptive design, requiring a very slow frequency
unsuitable for numerical integration. In contrast, we show

here that updating neural network weights with a delta-rule,

at a relatively slow frequency, is completely appropriate.
Moreover, by slowing the update frequency (to a point) and

using that extra computational time to add basis functions

to the network, robot performance actually improves. In
this paper we show the reason for this effect; with a delta-

rule update the network approximates terms in a discrete-

time model of the system, which is more accurate when
more basis functions are added.

The main advantage to using continuous time control

designs for robotic manipulators has been the ease of
making the control adaptive. In this work, we maintain a

continuous-time backstepping design of Kwan and Lewis

(2000) only for the error-feedback (proportional-deriva-
tive) control signals. Only the neural networks appear as

discrete-time signals. Practically speaking, the error-feed-

back signals are simple and easily applied at a rate several
orders of magnitude above the highest natural frequency of

interest. Using a slow digital frequency for the neural
network allows more computational time and thus more

basis functions in the neural network. We show the

increased approximation abilities of the network results in
significant gains in performance. Discrete-time Lyapunov

functions establish the stability properties.

2 Background

In this section we consider the traditional design of a direct

neural-adaptive control for a rigid robotic manipulator in

432 D. Richert et al.

123



continuous time. The dynamics of an n-linked rigid robot

manipulator are

MðhÞ€hþ Cðh; _hÞ ¼ u; ð1Þ

where h 2 <n contains link angles, MðhÞ 2 <n&n is the

positive definite inertia matrix, Cðh; _hÞ 2 <n includes
friction, centripetal and Coriolis terms, and u 2 <n

contains control torques. Given desired trajectory

hdðtÞ; _hdðtÞ; €hdðtÞ and using the auxiliary error

z ¼ Kðh' hdÞ þ ð _h' _hÞd ¼ Ke1 þ e2; ð2Þ

with positive constant K results in error dynamics

M _z ¼ MKe2 ' C'M€hd þ u: ð3Þ

Consider a control containing neural network outputs

and linear feedback

u ¼ '/ðqÞŵ'Gz; ð4Þ

with positive gains in G, matrix of m basis functions / 2
Rn&m; and m weights in ŵ 2 Rm: In this paper G contains
positive control gains on the diagonal, and zeros off the

diagonal. The network requires inputs q ¼ ½x1; x2; hd;
_hd; €hd)T : The error dynamics become

M _z ¼ 'Gzþ ðMKe2 ' C'M€hdÞ ' /ðqÞŵ: ð5Þ

The error variable ~w ¼ w' ŵ denotes the difference

between (unknown) ideal weights w and the weight

estimates (actual weights) ŵ: Consider the Lyapunov
function candidate

V ¼ 1

2
zTMzþ 1

2c
~wT ~w ð6Þ

where c is a positive adaptation gain. Taking the time-
derivative gives

_V ¼ zTðMKe2 ' C'M€hd þ
d

dt
ðM'1Þz=2' /ðqÞŵ

'GzÞ ' ~wT _̂w=c: ð7Þ

_V ¼ zTðfðqÞ ' /ðqÞŵ'GzÞ ' ~wT _̂w=c ð8Þ

An ideal neural network /ðqÞw can uniformly
approximate the nonlinear function f(q) so that

fðqÞ ¼ /ðqÞwþ dðqÞ; ð9Þ

where approximation error magnitude kdk is bounded by a

constant dmax in the region of approximation D (i.e.

kdk* dmax8q 2 D). The time-derivative becomes

_V ¼ zT /ðqÞ~wþ d'Gz½ ) ' ~wT _̂w=c ð10Þ

_V ¼ zTðd'GzÞ þ ~wTð/TðqÞz' _̂w=cÞ: ð11Þ

Applying robust [r-modification leakage (Ioannuou and

Kokotovic 1984)] weight updates

_̂w ¼ cð/TðqÞz' mŵÞ; ð12Þ

allow one to bound the time-derivative

_V * sðkzk; k~wkÞ; ð13Þ

where

sðkzk; k~wkÞ ¼ 'Gminkzk2 þ dmaxkzkþ mkwkk~wk
' mk~wk2; ð14Þ

where Gmin is the minimum eigenvalue of symmetric

G (Fig. 1). Thus _V\0 outside a compact set on the

ðkzk; k~wkÞ plane defined by ellipse sðkzk; k~wkÞ ¼ 0: This
guarantees that kzk and k~wk are uniformly ultimately

bounded (UUB). In particular _V\0 when kzk[ dz or

k~wk[ dw where

dz ¼
dmax

2Gmin
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2max

4G2
min

þ mkwk2

4Gmin

s

; ð15Þ

dw ¼ kwk
2

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2max

4mGmin
þ kwk2

4

s

: ð16Þ

Defining

Vbðkzk; k~wkÞ ¼ Mminkzk2=2þ k~wk2=ð2cÞ;

where Mmin is the smallest eigenvalue of MðhÞ over all
values of h; then the uniform ultimate bound on the error

comes from solving for zb in

Vbðkzk ¼ zb; k~wk ¼ 0Þ ¼ Vbðkzk ¼ dz; k~wk ¼ dwÞ; ð17Þ

Mmin

2
z2b ¼

Mmin

2
d2z þ

d2w
2c

: ð18Þ

The resulting uniform ultimate bound on kzk is

zb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2z þ
d2w

Mminc

s

: ð19Þ

3 Proposed method

3.1 Discrete-time model

When implementing the control with a serial digital pro-
cessor, the feedback part of the control law -Gz can run at

a high frequency (typically in KHz or even MHz on a PC),

but the neural network will take significantly more com-
putational time. With our commercial control software, the

additional custom neural network runs slower than 100 Hz,

although efficient specially written software on contem-
porary multi-core processors are capable of much faster

rates. We propose treating the feedback as a continuous

Discrete-time weight updates in neural-adaptive control 433

123



time signal in the control design, but the neural network as
a discrete time signal

uðtÞ ¼ '/ðqðkTÞÞŵðkTÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
discretetime

' GzðtÞ|fflffl{zfflffl}
continuoustime

; ð20Þ

u ¼ uk 'Gz; ð21Þ

where k denotes the discrete sampling interval andT is the
period of the sampling interval. In this paper subscript kwill
mean at time kT e.g.uk = u(kT). The error dynamics become

_z ¼ AðhÞzþHðh; _h; hd; _hd; €hdÞ þ BðhÞuk; ð22Þ

where

A ¼ 'M'1G; H ¼ Ke2 'M'1C' €hd;

B ¼ M'1:

Assuming the resulting discrete-time signals follow from a

sampler activated by a periodic discrete-time component,
followed by zero-order hold, then the discrete-time

transformation (see Appendix) results in difference equation

zkþ1 ¼ akzk þ bkuk þ
Zðkþ1ÞT

s¼kT

½y1ðsÞ þ y2ðsÞuk)ds; ð23Þ

where the ak, bk terms are the well-known linear discrete-

time transformations

ak ¼ eAkT ; bk ¼
Zðkþ1ÞT

s¼kT

eAkððkþ1ÞT'sÞdsBk; ð24Þ

and nonlinear terms [also noted in (Kanellakopoulos 1994;
Rokui and Khorasani 1997; Yeh and Kokotovic 1995)] are

derived in the Appendix

y1ðtÞ ¼ eAkððkþ1ÞT'tÞðDAðtÞzþHðtÞÞ;
y2ðtÞ ¼ eAkððkþ1ÞT'tÞDBðtÞ;

where DAðtÞ ¼ AðtÞ ' Ak and DBðtÞ ¼ BðtÞ ' Bk for

t C kT. Note that ak has positive eigenvalues less than
one, and bk has positive eigenvalues (both due to positive

definite M and G in the continuous-time system).

Expressing y1 and y2 using Taylor series and using a
trapezoidal approximation of the integral (noting that

y1ðkTÞ ¼ eTAk H(kT) and y2(kT) = 0 and DBðkTÞ ¼ 0) as

in (Macnab and D’Eleuterio 2000) results in

zkþ1 ¼ akzk þ bkuk þ Ty1;k þ
T2

2

o
ot
y1ðtÞ

####
t¼kT

þ T2

2

o
ot
y2ðtÞ

####
t¼kT

uk þOðT3Þ; ð25Þ

zkþ1 ¼ akzk þ bkuk þ F0ðqÞ þ F1ðqÞ þ F2ðqÞuk þOðT3Þ;
ð26Þ

where

F0ðqÞ ¼ TeTAkHk; F1ðqÞ ¼ Ty1;k þ
T2

2

o
ot
y1ðtÞ

####
t¼kT

;

F2ðqÞ ¼
T2

2

o
ot
y2ðtÞ

####
t¼kT

uk

and OðT3Þ consists of third order terms (multiplied by T3)
and higher. For adaptive control design purposes, it will be

easier to use

mk ¼ b'1
k ; and gk ¼ b'1

k ak: ð27Þ

Note that mk has positive eigenvalues. The discrete-time
error dynamics become

Fig. 1 Block diagram for multirate neural-adaptive control of a rigid robot

434 D. Richert et al.

123



mkzkþ1 ¼ gkzk þ uk þmkðF0 þ F1Þ þmkF2uk þOðT3Þ:
ð28Þ

Assuming the neural network sampling interval T is
(chosen) small enough means that third-order terms can be

ignored. The remaining second-order terms in (28) are

multiplied by a first-order term in the control, and thus
become third order as well. The network needs to

approximate remaining terms

/kðqÞwþ dkðqÞ ¼ mkðF0ðqÞ þ F1ðqÞÞ; ð29Þ

where dk is the bounded approximation error in input

region D: The discrete part of the control consists of neural
network output

uk ¼ '/kŵk: ð30Þ

The neural network approximates a term of order T in (29);
thus the term multiplied by uk in (28) should now become

order T3 so that

mkzkþ1 ¼ gkzk þ /k ~wk þ dk þOðT3Þ: ð31Þ

We are now ready to prove the stability of the system and

design the discrete weight update for the network using the

Lyapunov approach.

3.2 Discrete weight update

Consider the positive definite discrete-time Lyapunov

candidate

Vk ¼ zTkm
T
k'1g

'1
k'1mk'1zk þ

1

2c
~wT
k ~wk; ð32Þ

where c is a positive constant adaptation gain. For clarity of
presentation, first let us consider the case when dk = 0 (the

final result in this section includes dk). The design ignores
higher order terms in (31) since they are of order T3.
Utilizing (31) and writing ~wkþ1 ¼ ~wk þ D~w ¼ ~wk ' Dŵ;
the time difference equation is

DV ¼ Vkþ1 ' Vk

¼ ðzTk g
T
k þ ~wT

k/
T
k Þg

'1
k ðgkzk þ /k ~wkÞ

þ 1

c
ð~wT

k ' DŵTÞð~wk ' DŵÞ ' zTkm
T
k g

'1
k'1mkzk '

1

c
~wT
k ~wk

ð33Þ

DV ¼ zTk ðg
T
k 'mT

k g
'1
k'1mkÞzk þ zTk g

T
k g

'1
k /k ~wk þ ~wT

k/
T
k zk

þ ~wT
k/

T
k g

'1
k /k ~wk þ

1

c
'2~wT

kDŵþ DŵTDŵ
$ %

:

ð34Þ

A symmetric G ensures a symmetric gk (since inertia

matrix M is also symmetric) implying gk
T gk

-1 = I. Then

DV ¼ zTk ðg
T
k 'mT

k g
'1
k'1mkÞzk þ 2~wT

k/
T
k zk

þ ~wT
k/

T
k g

'1
k /k ~wk þ

1

c
'2~wT

kDŵþ DŵTDŵ
$ %

:

ð35Þ

Thus, choosing the discrete weight update

Dŵ ¼ cð/T
k zk ' mŵkÞ; ð36Þ

results in

DV ¼ zTk ðg
T
k 'mT

k g
'1
k'1mkÞzk þ 2~wT

k/
T
k zk þ ~wT

k/
T
k g

'1
k /k ~wk

þ 1

c
'2c~wT

k/
T
k zk þ 2cm~wT

k ŵk þ c2ðzTk/k ' mŵT
k Þ

$

& /T
k zk ' mŵkÞ

$ %
: ð37Þ

with the 2~wT
k/

T
k zk terms cancelling to give

DV ¼ zTk ðg
T
k 'mT

k g
'1
k'1mkÞzk þ ~wT

k/
T
k g

'1
k /k ~wk

þ 1

c
2cm~wT

k ŵk þ c2ðzTk/k ' mŵT
k Þð/

T
k zk ' mŵkÞ

$ %
:

ð38Þ

Substituting ŵk ¼ w' ~wk gives

DV ¼ zTk ðg
T
k 'mT

k g
'1
k'1mk þ c/k/

T
k Þzk

þ ~wT
k ð'2mþ cm2ÞIþ /T

k g
'1
k /k

$ %
~wk

þ 2mczTk/k ~wk þ ð2m' cm2ÞwT ~wk

' 2cm/T
kw

T
k zk þ cm2wTw: ð39Þ

The time difference can be bounded by

DV * ' ZTLZþ RTZþ D; ð40Þ

where

Z ¼
kzkk
k~wkk

& '
; R ¼

2mckwk
ðm' m2cÞkwk

& '
;

D ¼ cm2kwk2;

and

L ¼ ' kmaxðgk 'mT
k g

'1
k mkÞ þ ck/k2 'mc

'mc '2mþ m2cþ kmaxðg'1
k Þk/k2

& '
:

ð41Þ

The condition for uniformly ultimately bounded signals is
that eigenvalues of L must be positive

Lmin ¼ inf
h
ðkðLÞÞ[ 0: ð42Þ

Rewriting the bound (40) as

DV * sdðZÞ; ð43Þ

with

sdðZÞ ¼ 'Lmin kZk' kRk
2Lmin

( )2

þ kRk2

4Lmin
þ D: ð44Þ

Discrete-time weight updates in neural-adaptive control 435

123



leads us to conclude _V\0 when kZk[ dZ where

dZ ¼ kRk
2Lmin

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kRk2

4L2min

þ D

Lmin

s

: ð45Þ

Thus dZ constitutes a uniform ultimate bound on kZk:
Consider

Vd ¼ ZTPminZ; ð46Þ

where Pmin contains smallest possible eigenvalues of mk-1
T

gk-1
-1 mk-1 and 1/c

Pmin ¼
infh kðmT

k'1g
'1
k'1mk'1Þ 0

0 1=c

& '
¼ P1;min 0

0 1=c

& '
:

ð47Þ

Then a bound on the state error, when it is larger than

dZ, follows from solving for zb using

Vdðkzkk ¼ zb; k~wkk ¼ 0Þ ¼ Vdðkzkk ¼ 0; k~wkk ¼ dZÞ;
ð48Þ

P1;minz
2
b ¼ d2Z=c; ð49Þ

zb ¼ dZ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1;minc

p
: ð50Þ

Note that if dZ [ zb then dZwould become the bound on kzkk:

3.3 Robustness of weight update

Taking into account neural network approximation error,
such that dk 6¼ 0; L remains the same, but now

R ¼
2mckwkþ 2dmax

ðm' m2cÞkwkþ 2kmaxðg'1
k Þdmax

& '
;

D ¼ cm2kwk2 þ d2maxkmaxðg'1
k Þ:

Thus, the conditions for uniform ultimate bounded signals
do not change; no redesign of parameters is necessary to

ensure stability. The size of the bound does increase.

3.4 Extension to flexible-joint robots

For a flexible-joint robot, angles h are link angles and the
actual rotor angles (after gear reduction) are denoted /:
The equations of motion for the flexible-joint robot are then

(Spong and Vidyasagar 1989)

M€h ¼ Cðh; _hÞ þKð/' hÞ ð51Þ

J€/ ¼ 'Dð _/Þ þKðh' /Þ þ u ð52Þ

where K is a diagonal matrix of joint stiffnesses, J is the

inertia matrix of the rotors (after gear reduction) and
D contains friction coefficients. Writing this in strict-

feedback form suitable for backstepping, with l1 a desired

value for /; with l2 a desired value for _/; and z2 ¼
/' l1; z3 ¼ _/' l2 results in

K'1M _z1 ¼ R1ðh; _h; hd; _hd; €hdÞ þ l1 þ z2 ' h ð53Þ

_z2 ¼ l2 þ z3 ' _l1ðh; _h; hd; _hd; €hd; h
ð3Þ
d ;/Þ ' _h ð54Þ

J _z3 ¼ R2ð/; _/; h; _hÞ þ u

' J _l2ðh; _h; hd; _hd; €hd; ; h
ð3Þ
d ; hð4Þd ;/; _/Þ ð55Þ

where R1 and R2 collect linear and nonlinear terms.

Analogous to the rigid case, the virtual controls and control
will have both continuous-time linear and digital network

components. Choosing (virtual) controls

l1 ¼ l1;k þ h'G1z1 ð56Þ

l2 ¼ l2;k þ _h' z1 'G2z2 ð57Þ

u ¼ uk ' z2 'G3z3 ð58Þ

results in error dynamics

M _f ¼ 'Gfþ F ðq2Þ þ lk ð59Þ

where q2 ¼ ½h; _h;/; _/; hd; _hd; €hd; hð3Þd ; hð4Þd )T and

f ¼
z

/' l1
_/' l2

2

64

3

75 lk ¼
l1;k
l2;k
uk

2

64

3

75

M ¼
K'1MðhÞ 0 0

0 I 0

0 0 J

2

64

3

75 G ¼
G 'I 0

I G 'I

0 I G

2

64

3

75

and

F ðq2Þ ¼ R1 ' _l1 R2 ' J _l2½ )T ð60Þ

By seeing that the form of (59) is analogous to (3) one

could calculate a new ak, bk, mk and gk. This calculation
would use M and G instead of M and G, respectively, as

well as F instead of nonlinear terms M-1 H. The analogy

works because M and G are both positive definite.
However, neither M nor G are symmetric; therefore, a

new gk would not be symmetric. To regain a symmetric gk
needed in the stability analysis consider that

M _f ¼ 'Cfþ 0:5ðGT ' GÞfþ F ðq2;kÞ þ lk ð61Þ

where C ¼ 0:5ðGþ GTÞ is a diagonal matrix. Then

_f ¼ AfþM'1½0:5ðGT ' GÞfþ F ðq2;kÞ) þ Blk ð62Þ

where A ¼ 'M'1C and B ¼ M'1: Rewriting this as

_f ¼ AfþHþ Blk ð63Þ

where H collects linear and nonlinear terms, puts the

dynamics in the same form as (5). However, A and B will
only be symmetric if joint stiffness are identical in

436 D. Richert et al.

123



K, ensuring K-1 M and M are symmetric. Thus, we must

deal with this equation with two cases.

3.4.1 Case 1: identical joint stiffnesses

Assuming identical joint stiffnesses makes K-1M sym-
metric leading to symmetric matrices M; A and B: Then
discrete time matrices ak, bk, mk, gk follow from (24) and

(27) using A; f;H;B; lk instead of A, z, H, B, uk,
respectively. The resulting discrete-time representation can
be expressed like (25) as

mkfkþ1 ¼ gkfk þ uk þmk½F0ðT ; xk; fkÞ þ F1ðT2; xk; fkÞ
þ F2ðT2; x; fÞlk) þOðT3Þ; ð64Þ

For the flexible-joint design, we will ignore terms of order

T2 rather than T3. Even so, the neural networks in l1,k
and l2,k cannot fully approximate the first two elements of

F0 since virtual control must only rely on states and errors

from previous backstepping steps, i.e we must have

l1 ¼ l1ðx1; x2; zÞ ð65Þ

l2 ¼ l2ðx2; x2; x3; z; z2Þ ð66Þ

We must split F0 into parts

F0 ¼ TeTAðhkÞH ð67Þ

F0 ¼ TeTAðhk ½M'1ðhkÞF ðq2;kÞ þM'1ðhkÞ0:5ðGT ' GÞfk)
ð68Þ

By replacing fk ¼ fk'1 þ Df we can separate this
expression into two constituent terms

F0 ¼ Tf0;1ðq2;k; fk'1Þ þ Tf0;2ðhk;DfÞ ð69Þ

Since Df is of order T the second term is of order T2 and

will be ignored. The first term can be estimated by the

neural network, since fk'1 is known (from a previous time
step). Specifically, the three neural networks are provided

with inputs

/1ðÞ ¼ /1ðq2;k; zk; z2;k'1; z3;k'1Þ ð70Þ

/2ðÞ ¼ /2ðq2;k; zk; z2;k; z3;k'1Þ ð71Þ

/3ðÞ ¼ /3ðq2;k; zk; z2;k; z3;kÞ ð72Þ

Then (28) for the flexible case becomes

mkzkþ1 ¼ gkzk þ uk þ /kwþ dk þOðT2Þ; ð73Þ

where the network /kw approximates mk F0 with

approximation error dk. Thus, the flexible-joint design

requires a faster frequency, one where terms of order T2

can be ignored rather than just T3 as in the rigid case. The

analysis then follows in exactly the same way as (30)

through (50).

3.4.2 Case 2: differing joint stiffnesses

For the case of different stiffnesses on the joints, the
stiffnesses need to be known. The virtual control l1 must

now be a desired value for K/ making

z2 ¼ K/' l1 ð74Þ

and the first equation of the error dynamics (53) becomes

M _z1 ¼ R1ðh; _h; hd; _hd; €hdÞ þ l1 þ z2 'Kh ð75Þ

Thus the continuous part of the first virtual control changes

slightly to

l1;c ¼ Kh'G1z ð76Þ

and then the top-left matrix in M becomes M instead of

K-1 M. Since M is now symmetric as required, the rest of
the stability analysis then follows in the same way as (61)

through (73).

4 Results

4.1 Two-link planar flexible-joint robot

The experimental apparatus consists of a two-link planar
flexible-joint robotic arm (Fig. 2). Harmonic drives have

gear ratios of 100:1 and 80:1 for rotors 1 and 2, respec-

tively. The control design ignores the harmonic drive
dynamics, since their natural frequencies are more than an

order of magnitude higher than the elastic (spring) joints.
The manufacturer supplies some mechanical model

parameters (Table 1) as well as WinCon interface/control

software in a Matlab/Simulink-based environment.
External linear springs provide the flexibility in the

joints, allowing large elastic deflections. The natural fre-

quencies at h1 = h2 = 0 are 0.67 and 3.7 Hz (calculated
from manufacturer data and confirmed by observation). In

the experiments, the robot holds a 0.54 Kg payload during

the experiments. The natural frequencies at h1 = h2 = 0
become 0.5 and 2.0 Hz, with the payload center-of-mass

17.5 cm from joint 2. In the experiment the desired tra-

jectories are sinusoids in joint coordinates, with amplitudes
of 23" and 11.5", for joints one and two, respectively, each

with period of 20 s. The experiment presents a challenging

underactuated control problem.
These sinusoids provide achievable trajectories, imply-

ing the weight drift will not be severe. Thus, a relatively

small leakage parameter m will stop the drift, meaning it
will not reduce performance significantly. Note this may

not be the case for complex trajectories or when large

external disturbances are present.

Discrete-time weight updates in neural-adaptive control 437

123



Four optical encoders measure the two rotor angles and

the two link angles, i.e. the angles on each side of a flexible
joint. The control software, running on a 3-GHz PC,

samples the encoders at 2,000 Hz. Second-order filters,

with cutoff frequency of 25 Hz, provide velocity estimates
in the control software.

X2ðsÞ
X1ðsÞ

¼
sx2

f

s2 þ s2ffxf þ x2
f

with xf ¼ 25 ! p and f ¼ 0:707:
The supplied software from the manufacturer allows one

to specify torque as a motor input, and appropriate voltage

commands are automatically supplied to the motor. The
actuators saturate quite easily; thus the provided control

software truncates the control signal at ±1 Nm of com-

manded torque. The state-feedback control that augments
the neural network also produces control outputs to the

motor at the 2,000-Hz frequency. For the purposes of the

control design in this experiment the state-feedback is
considered a continuous-time signal.

The neural network can only provide its outputs, and

update its weights, at a much slower update due to the
amount of computational overhead involved. The experi-

ments use the discrete-time frequency of the neural

network as the independent variable, testing the proposed

multi-rate control formulation at both 100 and 50 Hz.

4.2 Tuned PID control

We compare the proposed method to a PID control of form

ui ¼ Kc e1;i þ
1

Ti

Z
e1;idt þ Tde2;i

( )
; ð77Þ

where i = 1, 2 are the two links (i.e. a decentralized con-

trol). We tune the gains using Zieglar-Nichols methods:
first using proportional term only with increasing gain

Ku, then introducing an oscillation by creating a large

initial spring deflection, and finally recording the value of
Ku where a sustained or increasing oscillation is (just)

observed and noting the period of oscillation Pu. The tun-

ing is done for each joint separately. Values of Kc, Ti and
Td are read off the standard Zieglar-Nichols tuning tables

for the given Ku and Pu, with results shown in Table 2. We

first tune the PID control with no payload (although it is
actually tested in experiment with the payload) and then

create another PID control by tuning it with the 0.54

payload attached on the second link.
The PID control runs at 2,000 Hz, a frequency high

enough above the physical natural frequencies (1 Hz) that

the continuous-time design can be implemented without
discrete-time modifications.

4.3 Estimating stability for proposed method

The matrices Ak;Ak; ak; ak;mK are all time-varying

because of time-varying inertia matrix M(h2). The smallest
eigenvalues of L are found at h2 = 0. We will show the

calculations for one case, h2 = 0, no payload, 50 Hz digital

frequency, and put the other results in table form. In this
first case the global inertia matrix using parameters in SI

units supplied by the manufacturer is

Mðh2 ¼ 0; no payloadÞ

¼

0:22 0:023 0 0 0 0

0:023 0:012 0 0 0 0

0 0 1:0000 0 0 0

0 0 0 1:0000 0 0

0 0 0 0 0:011 0

0 0 0 0 0 0:0094

2

666666664

3

777777775

;

ð78Þ

Choosing diagonal unity feedback gains G = I2x2
results in symmetric matrix C ¼ 0:5 ðGþGTÞ ¼ I6x6:

Using A ¼ 'M'1G ¼ 'M'1 and B ¼ M'1 the first

discrete-time linear transformation matrix at 50 Hz

(h = 1/50) is

Fig. 2 Experimental two-link flexible-joint robot arm

Table 1 Flexible-joint robot parameters

Link 1 Link 2

Length (m) 0.343 0.264

Center of mass (m) 0.159 0.055

Mass (kg) 1.51 0.87326

Inertia about center of mass (kg m2) 39170.18e–6 8082.84e–6

Joint 1 Joint 2

Equivalent motor inertia (kg m2) 0.0111 0.0085

Stiffness (N m s )/rad 4.0 4.0

438 D. Richert et al.

123



akð50HzÞ ¼

0:58 0:073 0 0 0 0
0:073 0:0092 0 0 0 0
0 0 0:98 0 0 0
0 0 0 0:98 0 0
0 0 0 0 0:17 0
0 0 0 0 0 0:12

2

6666664

3

7777775

ð79Þ

and the eigenvalues of ak are 0, 0.59, 0.98, 0.98, 0.17, 0.12
(all within the unit circle) and the inverse of the second
discrete-time linear transformation is

mk ¼ b'1
k

¼

2:4142 0:1777 0 0 0 0

0:1777 1:0223 0 0 0 0

0 0 50:5017 0 0 0

0 0 0 50:5017 0 0

0 0 0 0 1:1988 0

0 0 0 0 0 1:1367

2

666666664

3

777777775

ð80Þ

with positive eigenvalues values 50, 50, 2.4, 1.2, 1.1, 1.0.
Calculating gk = b-1 ak gives the symmetric matrix

gk ¼

1:4142 0:1777 0 0 0 0
0:1777 0:0223 0 0 0 0

0 0 49:5017 0 0 0
0 0 0 49:5017 0 0
0 0 0 0 0:1988 0
0 0 0 0 0 0:1367

2

6666664

3

7777775

ð81Þ

The parameters used for the neural network training in the
experiments were c = 0.2 and m = 2, with basis functions

normalized such that k/k* 0:1: Calculations for the min-

imum eigenvalue of L can then be done for different fre-
quencies and payloads (Table 3). This confirms that gains

c; m; normalization parameter for /; and sampling period

h can be chosen to ensure (42) holds for the experimental

robot (and moreover becomes easier to satisfy the higher

the sampling frequency). The experiments are done with a
payload of 0.5 Kg and frequencies of 50 and 100 Hz,

which fall within the stability range.

4.4 CMAC and controller parameters

The CMAC neural network performs the nonlinear
approximation in this work, but the general method simply

assumes a neural-adaptive backstepping design has been

previously accomplished in continuous time which can also
be accomplished with other types of neural networks like

multi-layer perceptrons (Macnab 2007). The CMAC basis

functions have hypercube domains, offering significantly
easier implementation than other neural networks in real-

time control systems (Albus 1975a, b). It avoids the curse-

of-dimensionality (Kuo and Sloan 2005) found with radial-
basis-function networks, allowing it to handle the 14 inputs

(states and desired states) for the flexible-joint robot. It
trains much faster than multilayer perceptron (backpropa-

gation) networks, requiring many less repetitions of a tra-

jectory for convergence (Miller III et al. 1990). Using a
delta-rule update is especially advantageous in CMAC, as

the local nature of the basis functions make them rather

sharp and hard to integrate with accuracy.
Given n inputs, a CMAC consists of m layers of

n-dimensional look-up tables. Each dimension of the look-

up table is a normalized input, quantized into q discrete
intervals. Thus, the CMAC input activates (indexes) one

hypercube on each layer. In a binary CMAC, the sum of the

weights associated with the activated hypercubes provides
the output. Theoretically, there are a total of m qn hyper-

cubes. Utilizing a hash-coding scheme allows storage of

weights into a much smaller physical memory.
In this experiment the CMAC uses a physical memory

with a size of 40,000 cells—allocated in the off-line

memory as a 1D array. However, we only use at most
m = 400 basis functions, which have to be calculated

within sampling period h. Compare this with an RBF

design which, assuming the desired trajectory was not

Table 2 PID gains

Ku,1 Pu,1 (s) Kc,1 Ti,1 Td,i Ku,2 Pu,2 (s) Kc,2 Ti,2 Td,2

PID tuned without payload 0.875 1.6 0.51 0.8 0.20 3 0.3 1.8 0.15 0.066

PID tuned with payload 0.875 2.2 0.51 1.1 0.28 3 4.2 1.8 0.21 0.053

Table 3 kmin(L) for different frequencies and payloads (must be
greater than zero for stability)

Payload
(Kg)

25 Hz 50 Hz 100 Hz 200 Hz

0 –3.2e7 –565 0.70 1.9

0.5 –78 1.7 1.9 1.9

1 –3.9 1.9 1.9 1.9

Table 4 CMAC parameters

Min, max (h1) = –143,143 deg Min, max (h2) = –114,114 deg

Min, max ( _h1) = –57, 57 deg/s Min, max ( _h2) = –28, 28 deg/s

Min, max (€h1) = -17,17 deg/{s2 Min, max (€h2) = –11,11 deg/s2

Discrete-time weight updates in neural-adaptive control 439

123



known in advance so that basis function centres must be

placed on an N-per-input lattice, would require N14 basis
functions since the flexible-joint robot has 14 (desired and

actual) state inputs. Even using minimum N = 2, this is

16,384 basis functions for an RBF network which would
have to be calculated within h seconds. For the CMAC,

each input is quantized into ten units, based on a normal-

ization of each input using maximum and minimum values
for each joint (in degrees) shown in Table 4.

The desired angles and velocities have the same nor-

malizations. Note that only desired €hd is input for each
joint; acceleration measurement is not required. There are

six CMAC outputs needed in total (two at each step of the
backstepping procedure), but we can provide the same

inputs for each output and the hypercubes need only be

indexed once per control cycle.
The parameters for the control and weight update laws

used in all experiments where K ¼ 1;Gi ¼ 1fori ¼
1; 2; 3; c ¼ 0:2; and m = 2. The first experiments are run
with a period of 0.01 s (at 100 Hz) until performance and

weights have converged, and the proposed discrete

update law Dw is compared with numerical integration of
the traditional update _w: Using Dw it is possible to

compute more layers in the CMAC since it does not

require the computational overhead of numerical inte-
gration found with using _w (50 more in the 100 Hz case).

A numerical integration routine based on the 5th-order

Simpson’s Rule provides a straightforward way to inte-
grate the sampled data. At the 100 Hz frequency, it

provides more than enough accuracy to integrate the

signals coming from the (approximately) 1 Hz natural
frequencies of the robot. The second experiment doubles

the sampling period to 0.02 s (50 Hz). With this

increased amount of computational time available, it is
possible to double the number of layers in each CMAC.

With twice as many layers, the CMAC is capable of

greater approximation accuracy and therefore (poten-
tially) achieving better performance.

4.5 Training time and convergence

In order to demonstrate the difficulty involved in control-
ling such a highly elastic system, we first look at the per-

formance with some linear controls. The PID tuned without

payload (pre-tuned) results in instability when trying to
control the system with payload added (Fig. 3, dashed

line). The PID tuned with the payload attached remains

stable but does not result in high performance, with a root-
mean-square (RMS) position error (the calculation includes

the angle error in both links) in one trajectory oscillation of

8.2" (Fig. 3, dash-dot line). The backstepping technique
without neural network compensation [i.e. Eqs. (56, 57, 58)

with lk;1 ¼ lk;2 ¼ uk ¼ ½0 0)T ] results in RMS error of 5.0"
(Fig. 3, solid line). Note that the performance of the

backstepping without neural networks is approximately the
same as that using the neural networks with continuous-

time update on the first trial (after which the neural-adap-

tive scheme would and will start to reduce the error). The

5 10 15 20 25 30 35 40 45 50 55 60
−40

−20

0

20

40

5 10 15 20 25 30 35 40 45 50 55 60
−40

−20

0

20

40

Time (s)

(d
eg

)
(d

eg
)

Pre-tuned PID
Post-tuned PID
Backstepping (noNN)
Desired Trajectory

Fig. 3 The first three
oscillations (trials) of the
desired trajectory with linear
controls

440 D. Richert et al.

123



amount of elastic deflection in the system is significant,

illustrating the difficulty in controlling the system (Fig. 4).
The experiments compare the proposed Dŵ for training

a discrete-time model with integrating the update rule _̂w for

continuous-time model, at both 100 and 50 Hz (Table 5).
The continuous time feedback control is the same for all

experiments, and all parameters remain the same except for

the number of CMAC layers. The maximum number of
CMAC layers possible is used in each case that can be

calculated during the 0.01 or 0.02 sec periods.

At 100 Hz, the discrete-timeweight updateDŵ causes the
performance to converge in 50 trials, compared with 120

trials for the integratedweight update _̂wwhen using the same

adaptation rate constant c (Fig. 5, left). Verifying that the
largest weight magnitude over the training time has stopped

growing allows us to conclude that the CMAC training has

indeed converged (Fig. 6), and we are assured no surprising
bursting effect will occur later on. Since one can simply

increase c in _̂w to speed convergence, this result does not
imply the proposed method trains faster in general. Rather,

we are interested in comparing the final performance. After

convergence, the RMS position error is 1.18" for Dŵ and

1.36" for _̂w; with the slight improvement explained by the
additional 50 CMAC layers used in the discrete design.

Note that this result is quite different than what is found

in traditional adaptive control using a linear-in-parameters
model. In that case, numerical integration is a must and a

delta-rule update would result in a much poorer (or

unstable) performance.

At 50 Hz, the result from integrating _̂w results in an

RMS error of 1.63" (Fig. 5, right). The performance is

actually 20 % worse than the 100-Hz experiment, even
though the number of layers in the CMAC is double. This

is due to the numerical inaccuracies resulting from

numerical integration at the lower frequency, lowering the
ability of the CMAC to approximate the continuous-time

model. For the discrete-time design the RMS error

improves 26 % from the 100-Hz case, to 0.871". In this
case, the doubling of the CMAC size allows a more

accurate approximation of the discrete time model.

Note that performance will improve only to a point by
lowering the frequency and increasing CMAC size. For

example, at 25 Hz both methods fail to produce an

acceptable result, and the system appears to go unstable.
This is consistent with the stability analysis for different

frequencies performed in Table 3.

5 10 15 20 25 30 35 40 45 50 55 60
−5

0

5

5 10 15 20 25 30 35 40 45 50 55 60
−2

−1

0

1

2

Time (s)

(d
eg

)
(d

eg
)

Pre-tuned PID
Post-tuned PID
Backstepping (noNN)

Fig. 4 Elastic deflections
resulting with linear controls

Table 5 Experiment parameters

Experiment Frequency
(Hz)

Update
method

Number of CMAC
layers

1 100 _̂w m = 150

2 100 Dŵ m = 200

3 50 _̂w m = 300

4 50 Dŵ m = 400

Discrete-time weight updates in neural-adaptive control 441

123



The mathematical form of the system and control is

identical for known non-identical stifnesses according to

(75, 76), but admittedly performance will degrade when
there is uncertainty, nonlinearities, or time variations in the

stiffnesses. We emphasize that the platform of a flexible-

joint robot was chosen as generic non-minimum phase

experiment to test the stability properties of discrete-time
adaptive control in a non-trivial application. This is not a

20 40 60 80 100 120
0

1

2

3

4

5

6

20 40 60 80 100 120
0

1

2

3

4

5

6
at 100Hz,

at 100Hz,

at 50Hz,

at 50Hz,

Repetitive trialRepetitive trial

R
M

S 
E

rr
or

 (d
eg

)

R
M

S 
E

rr
or

 (d
eg

)

Fig. 5 Training over repetitive
trials: A 100-Hz update
frequency results in similar
performance as the traditional
method (left), but halving the
update frequency while
doubling the neural network size
actually improves performance
with the proposed discrete
update method (right)

20 40 60 80 100 120
0

1

2

3

4

5

20 40 60 80 100 120
0

1

2

3

4

5

Repetitive trialRepetitive trial

Fig. 6 Halting weight drift:
The maximum weight
converges in each case,
justifying the value for m in the
weight update and the length of
training time

2 4 6 8 10 12 14 16 18 20

−20

−10

0

10

20

2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

Time (s)

(d
eg

)
(d

eg
)

at 100Hz,

at 100Hz,

Desired Trajectory

Fig. 7 Angle tracking with
100 Hz update: Comparing
performance on the 100th
repetitive trial

442 D. Richert et al.

123



paper that is geared specifically toward industrial flexible-

joint robots; indeed, the elasticity is far greater than typical
terrestrial robots (space robots do have large joint flexi-

bilities, however).

5 Conclusion

When implementing continuous-time neural-adaptive designs

for a robotic manipulator, digital implementation of control
signals is typical. Assuming the digital frequency is high

enough, these continuous-time designs of controls and weight

updates result in high performance. However, some systems
may have difficulty calculating required neural-network out-

puts fast enough. Alternatively, one may wish to improve

approximation accuracy by increasing the size of the neural
network and slowing the output rate. For addressing these

problems, we propose analyzing the effects of the neural

network in discrete time and applying delta-rule weight
updates. The state feedback components of the control law

remain in continuous time, as these can easily be implemented

at a high frequency. Stability analysis follows from utilization
of discrete Lyapunov functions. A non-minimum phase non-

linear system verifies stability. Specifically, an experimental

two-link flexible-joint robot with highly elastic springs tracks
a desired trajectory in the link angles, i.e. tip tracking.

Experiments confirm that increasing the size of the neural

network while slowing the digital update rate improves per-
formance using the new method, whereas continuous-time

designs do worse at the slower rate (Fig. 7).

Appendix: discrete-time transformation

We are interested in the discrete-time transformation of a

continuous nonlinear system given by

_z ¼ AðhÞzþHðh; _h; hd; _hd; €hdÞ þ BðhÞuk ð82Þ

We want to integrate the expression from time t = t1 to
t = t2, where t2 - t1 = T. Let us denote terms like AðhðtÞÞ
simply as A(t) for ease of presentation. Now in anticipation
of handling the time-varying matrix A(t), let us rewrite the
equation as

_z ¼ Aðt1Þzþ ½AðtÞ ' Aðt1Þ)zþHðtÞ þ BðtÞuk ð83Þ

Premultiply by expð'Aðt1ÞtÞ; and let us define DA ¼
AðtÞ ' Aðt1Þ; then

e'Aðt1Þt _z' e'Aðt1ÞtAðt1Þz ¼ e'Aðt1Þt½DAzþHðtÞ þ BðtÞuk)
ð84Þ

de'Aðt1Þtz

dt
¼ e'Aðt1Þt½DAzþHðtÞ þ BðtÞuk) ð85Þ

Let us integrate the left-hand side of (85).

Zt2

t1

de'Aðt1Þsz

ds
ds ¼ e'Aðt1ÞtzðtÞ

#####

t2

t1

¼ e'Aðt1Þt2zðt2Þ ' e'Aðt1Þt1zðt1Þ

By integrating and multiplying both sides by expðAðt1Þt2Þ
we have

2 4 6 8 10 12 14 16 18 20

−20

−10

0

10

20

2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

Time (s)

(d
eg

)
(d

eg
)

at 50Hz,

at 50Hz,

Desired Trajectory

Fig. 8 Angle tracking with
50 Hz update: Comparing
performance on the 100th
repetitive trial

Discrete-time weight updates in neural-adaptive control 443

123



zðt2Þ ' eAðt1Þðt2't1Þzðt1Þ ¼
Zt2

t1

eAðt1Þðt2'sÞ½DAðsÞzþHðsÞ

þ BðsÞuk)ds ð86Þ

Choose t1 = kT, t2 = (k ? 1)T, and denote zk = z(kT),
Ak = A(kT), and Bk = B(kT)

zkþ1 ¼ eTAkzk þ
Zðkþ1ÞT

kT

eAkððkþ1ÞT'sÞ½DAðsÞzþHðsÞ

þ BðsÞ)ds ð87Þ

By defining DBðtÞ ¼ BðtÞ ' Bk; then we can write

zkþ1 ¼ akzk þ bkuk þ
Zðkþ1ÞT

kT

eAkððkþ1ÞT'sÞ½DAðsÞzþHðsÞ

þ DBðsÞuk)ds
ð88Þ

where (Fig. 8)

ak ¼ eTAk ð89Þ

bk ¼
Zðkþ1ÞT

kT

eAkððkþ1ÞT'sÞdsBk ð90Þ

References

Albus J (1975) Data storage in the cerebellar model articulation
controller (CMAC). J Dyn Syst Meas Contr 97:228–233

Albus J (1975) A new approach to manipulator control: the cerebellar
model articulation controller (CMAC). J Dyn Syst Measur Contr
97:220–227

Chaturvedi DK, Malik OP (2007) Experimental studies of a
generalized neuron based adaptive power system stabilizer. Soft
Comput 11:149–155

Chiu CH (2010) Adaptive output recurrent cerebellar model articu-
lation controller for nonlinear system control. Soft Comput
14:627–638

Chiu CH, Peng YF, Lin YW (2011) Robust intelligent backstepping
tracking control for wheeled inverted pendulum. Soft Comput
15:2029–2040

Dixon W, Zergeroglu E, Dawson D, Hannan M (2000) Global
adaptive partial state feedback tracking control of rigid- link
flexible-joint robots. Robotica 18:325–336

Frayman Y, Wang L (2002) A dynamically constructed fuzzy neural
controller for direct model reference adaptive control of multi-
input-multi-output nonlinear processes. Soft Computing 6:244–253

Huang AC, Chen YC (2004) Adaptive sliding control for single-link
flexible-joint robot with mismatched uncertainties. IEEE Trans.
Contr. Syst. Technol 12(5):770–775

Huang AC, Chien MC (2009) Design of a regressor-free adaptive
impedance controller for flexible-joint electrically driven robots.
In: Proceedings of IEEE International Conference on Industrial
Electronics and Applications, pp 17–22. Xi’an, China

Ider S, zgren M (2000) Trajectory tracking control of flexible-joint
robots. Comput Struct 76(6):757–763

Ioannuou P, Kokotovic P (1984) Instability analysis and improvement
of robustness of adaptive control. Automatica 20(5):583–594

Jagannathan S (1999) Discrete-time CMAC NN control of feedback
linearizable nonlinear systems under a persistence of excitation.
IEEE Trans Neural Netw 10:128–137

Kanellakopoulos I (1994) A discrete-time adaptive nonlinear system.
IEEE Trans Automat Contr 39:2362–2365

Kim MS, Lee JS (2004) Adaptive tracking control of flexible-joint
manipulators without overparametrization. J Robotic Syst 21(7):
369–379

Kim N, Calise A, Hovakimyan N (2004) Several extensions in
methods for adaptive output feedback control. In: Proceedings of
American Control Conference, pp 2421–2426, Boston

Kim Y, Lewis F (2000) Optimal design of CMAC neural-network
controller for robot manipulators. IEEE Trans Syst Man Cybern
C 30(1):22–30

Kuo F, Sloan I (2005) Lifting the curse of dimensionality. Am Math
Soc 52:1320–1328

Kwan C, Lewis F (2000) Robust backstepping control of nonlinear
systems using neural networks. IEEE Trans Syst Man Cybern A
30:753–766

Lee Y, Zak SH (2004) Uniformly ultimately bounded fuzzy adaptive
tracking controllers for uncertain systems. IEEE Trans Fuzzy
Syst 12:797–811

Lei Y, Wu H (2006) Tracking control of robotic manipulators based
on the all-coefficient adaptive control method. Int J Control
Automat Syst 4(2):139–145

Macnab C (2007) A new robust weight update for multilayer-
perceptron adaptive control. Control Intell Syst 35(3):279–288

Macnab C (2010) Improved output tracking of a flexible-joint arm
using neural networks. Neural Process Lett 32(2):201–218

Macnab C, D’Eleuterio G (2000) Discrete-time Lyapunov design for
neuroadaptive control of elastic-joint robots. Int J Robot Res
19:511–525

Miller III W, Glanz F, Kraft L (1990) CMAC: an associative neural
network alternative to backpropagation. Proc IEEE 78(10):1561–
1567

Miller III W, Hewes P, Glanz F, Kraft L (1990) Real-time dynamic
control of an industrial manipulator using a neural-network-
based learning controller. IEEE Trans Robot Automat 6(1):1–9

Nakanishi J, Schaal S (2004) Feedback error learning and nonlinear
adaptive control. Neural Netw 17:1453–1465

Ozgoli S, Taghirad HD (2006) A survey on the control of flexible
joint robots. Asian J Control 8(4):1–15

Rokui M, Khorasani K (1997) An indirect adaptive control for fully
feedback linearizable discrete-time non-linear systems. Int J
Adapt Contr Sig Proc 11:665–680

Rokui MR, Khorasani K (2000) Experimental results on discrete-time
nonlinear adaptive tracking control of a flexible link manipula-
tor. IEEE Trans Syst Man Cybern B 30(1):151–164

Spong M, Vidyasagar M (1989) Robot dynamics and control. Wiley,
New York

Suna FC, Lib HX, Lic L (2002) Robot discrete adaptive control based
on dynamic inversion using dynamical neural networks. Autom-
atica 38:1977–1983

Tian L, Wang J, Mao Z (2004) Constrained motion control of flexible
robot manipulators based on recurrent neural networks. IEEE
Trans Syst Man Cybern B 34(3):1541–1552

Wang HR, Yang L, Wei LX (2007) Fuzzy-neuro position/force
control for robotic manipulators with uncertainties. Soft Comput
11:311–315

Yeh P, Kokotovic P (1995) Adaptive control of a class of nonlinear
discrete-time systems. Int J Contr 62:303–324

444 D. Richert et al.

123


	Discrete-time weight updates in neural-adaptive control
	Abstract
	Introduction
	Background
	Proposed method
	Discrete-time model
	Discrete weight update
	Robustness of weight update
	Extension to flexible-joint robots
	Case 1: identical joint stiffnesses
	Case 2: differing joint stiffnesses


	Results
	Two-link planar flexible-joint robot
	Tuned PID control
	Estimating stability for proposed method
	CMAC and controller parameters
	Training time and convergence

	Conclusion
	Appendix: discrete-time transformation
	References


