
Semi-Supervised Ranking on Very Large Graphs with Rich
Metadata

Bin Gao
Microsoft Research Asia

No. 5, Danling Street
Beijing, 100080, P. R. China

bingao@microsoft.com

Tie-Yan Liu
Microsoft Research Asia

No. 5, Danling Street
Beijing, 100080, P. R. China

tyliu@microsoft.com

Wei Wei
∗

School of Computer Science
and Technology

Huazhong University of
Science and Technology

Wuhan, 430074, P. R. China
weiwei8329@gmail.com

Taifeng Wang
Microsoft Research Asia

No. 5, Danling Street
Beijing, 100080, P. R. China

taifengw@microsoft.com

Hang Li
Microsoft Research Asia

No. 5, Danling Street
Beijing, 100080, P. R. China

hangli@microsoft.com

ABSTRACT

Graph ranking plays an important role in many applications,
such as page ranking on web graphs and entity ranking on
social networks. In applications, besides graph structure,
rich information on nodes and edges and explicit or implicit
human supervision are often available. In contrast, conven-
tional algorithms (e.g., PageRank and HITS) compute rank-
ing scores by only resorting to graph structure information.
A natural question arises here, that is, how to effectively and

efficiently leverage all the information to more accurately
calculate graph ranking scores than the conventional algo-
rithms, assuming that the graph is also very large. Previous
work only partially tackled the problem, and the proposed
solutions are also not satisfying. This paper addresses the
problem and proposes a general framework as well as an ef-
ficient algorithm for graph ranking. Specifically, we define a
semi-supervised learning framework for ranking of nodes on
a very large graph and derive within our proposed framework
an efficient algorithm called Semi-Supervised PageRank. In
the algorithm, the objective function is defined based upon
a Markov random walk on the graph. The transition prob-
ability and the reset probability of the Markov model are
defined as parametric models based on features on nodes
and edges. By minimizing the objective function, subject to
a number of constraints derived from supervision informa-
tion, we simultaneously learn the optimal parameters of the
model and the optimal ranking scores of the nodes. Finally,
we show that it is possible to make the algorithm efficient to

∗This work was performed when the third author was an
intern at Microsoft Research Asia.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’11, August 21–24, 2011, San Diego, California, USA.
Copyright 2011 ACM 978-1-4503-0813-7/11/08 ...$10.00.

handle a billion-node graph by taking advantage of the spar-
sity of the graph and implement it in the MapReduce logic.
Experiments on real data from a commercial search engine
show that the proposed algorithm can outperform previous
algorithms on several tasks.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.5.4 [Information Interface and

Presentation]: Hypertext/Hypermedia.

General Terms

Algorithm, Experimentation, Theory

Keywords

Page importance, PageRank, MapReduce.

1. INTRODUCTION
Graph ranking is one of the key technologies in applica-

tions like web search and social computing. Traditionally,
PageRank [7, 17] and HITS [15] algorithms and their vari-
ants [13, 16, 19] are exploited in the task, most of which
only make use of the link structure information. That is
why these algorithms are also known as link structure anal-
ysis. Nowadays, extremely large graphs with billions or even
trillions of nodes have been created, and a large amount of
information has also been accumulated around the graphs.
The information is also varied, and includes user behavior
data and rich metadata associated with the graphs. For ex-
ample, in web search, data on users’ browsing history of web
pages has been collected which can be viewed as humans’ su-
pervision on page importance ranking (intuitively, the more
visits a page has the more important it is). In addition, web
pages contain URLs, contents, anchor texts, tags assigned
by users, etc., which can also be useful signals for deter-
mining the quality, richness, and freshness of web pages and
thus for performing page importance ranking. Similarly, in-
formation on edges is helpful as well, such as the type of the
hyperlinks and the number of transitions on the hyperlinks.

Thus, graph ranking faces a significant challenge: that
is, how to effectively leverage all the useful information to
perform better graph ranking and to do it efficiently in order
to handle billion-node or trillion-node graphs.

Previous work only partially addressed the challenge. Sev-
eral approaches have been proposed to incorporate supervi-
sion information into the learning process to guide graph
ranking [2, 3, 4, 9, 10, 18, 22, 23]. However, these algo-
rithms still have the following issues. (i) Only the graph
structure is considered in the algorithms, and some of the
useful information on the graph is ignored. (ii) Most algo-
rithms require computations which are expensive in terms of
both time and space (nearly O(n3), where n is the number
of nodes), and the algorithms become intractable when the
scale of the problem is large.

In this paper, we propose a semi-supervised learning frame-
work for graph ranking to tackle the challenge. In the frame-
work, a graph is no longer considered a simple collection of
nodes and edges. Instead, we assign each node and each
edge a feature vector, representing meta information about
the node and the edge. The ranking model ranks the nodes
according to the meta information contained in the graph
representation as well as the information from human super-
vision. Ranking of nodes and learning of model parameters
are conducted at the same time and in a theoretically sound
way, by minimizing a graph-based objective function with
regard to parameterized models of the meta information,
subject to constraints from the supervision information.

In addition, we propose an efficient algorithm called Semi-

Supervised PageRank (SSP), within the framework. Specifi-
cally, we (i) define the graph-based objective function using
a Markov random walk (similarly as in PageRank); (ii) de-
fine the transition probability of the Markov process using
a parametric model containing features on edges, and define
the reset probability using a parametric model containing
features on nodes; (iii) define the constraints as pairwise
preferences from supervision information; and (iv) obtain
the optimal parameters and optimal ranking result simul-
taneously by minimizing the graph-based objective function
subject to the constraints. Furthermore, by leveraging the
fact that graphs are usually sparse, we implement the opti-
mization process in nearly linear complexity with regard to
the number of edges. We also show how to parallelize the
algorithm using the MapReduce logic [12].

We have conducted experiments on different ranking tasks
and with different graph data sets (up to billions of nodes) to
test the performance of the proposed algorithm. The exper-
imental results show that our proposed SSP algorithm can
outperform existing algorithms on anti-spam and relevance
ranking in search. Furthermore, the proposed algorithm can
handle billion-scale graphs while most other algorithms can-
not. These results demonstrate the advantages of the pro-
posed algorithm.

To sum up, the contributions of the paper are as below.
(i) We have proposed a novel learning problem, i.e., ranking
on a very large graph with rich metadata, and developed
a general framework to address the problem. (ii) We have
developed the SSP algorithm, which has very good rank-
ing performance and can scale up to rank billions of nodes.
(iii) We have performed an empirical study on state of the
art page ranking algorithms using billion-scale web graphs,
which is, as far as we know, the largest-scale experiment
reported in the literature.

The rest of the paper is organized as follows. The pro-
posed semi-supervised learning framework is presented in
Section 2. The SSP algorithm is introduced in Section 3.
The related work is discussed in Section 4. In Section 5, we
show that several related algorithms actually correspond to
special cases of the proposed framework. Experimental re-
sults are reported in Section 6. Conclusions and future work
are given in the last section.

2. SEMI-SUPERVISED LEARNING FRAME-

WORK FOR GRAPH RANKING
In this section, we define a general framework for semi-

supervised graph ranking, which enables us to develop pow-
erful graph ranking algorithms.

We first propose a new representation of a graph. Tradi-
tionally, a graph is defined as a tuple G′(V,E,W), where V

is a node set, E is an edge set, and W is a weight matrix
on the edges in E. In this definition, only the skeleton of
the graph can be described, and rich information about the
nodes and edges cannot be expressed. To tackle the prob-
lem, we propose defining a graph using the following new
representation, G(V,E,X, Y). That is, a graph still con-
tains a node set V with n nodes and an edge set E with
m edges. In addition, we also have a set of edge features
X = {xij} and node features Y = {yi}, which can encode
information in the graph. More specifically, for each edge
from node i to node j, there is an l-dimensional feature vec-
tor xij = (xij1, xij2, · · · , xijl)

T ; and for each node i, there
is an h-dimensional feature vector yi = (yi1, yi2, · · · , yih)T .
Usually, l and h are small numbers as compared to the scale
of the graph.

The edge weight in traditional graph representation can
be regarded as an edge feature. In addition, one can have
many other edge features. For example, in web search, the
intra-site or inter-site property of an edge (hyperlink) can be
a valuable edge feature. Similarly, one can have many node
features. Again in web search, the quality, content, and
freshness of a node (web page) can be useful node features.

To sum up, in the framework, a graph consists of graph
structure V and E, edge features X, and node features Y .
The graph structure defines the global relationship among
nodes, edge features represent the local relationships be-
tween any two nodes, and node features describe the prop-
erties of individual nodes. They are all useful information
for graph ranking.

Next, we define the semi-supervised graph ranking frame-
work as follows,

min
ω≥0,φ≥0,π≥0

R(π; f(ω,X), g(φ, Y)) (1)

s.t. S(π;B,µ) ≥ 0.

Here, we represent the ranking scores of nodes in graph
G(V,E,X, Y) as an n-dimensional vector π. Furthermore,
we introduce parameter vectors ω and φ for the node and
edge features, and the corresponding functions f(ω,X) and
g(φ, Y). The constraints on ω, φ, and π are ω ≥ 0, φ ≥ 0,
and π ≥ 0. Note that here by using “≥ 0”, we mean that
all the elements in the vector are non-negative and at least
one element is positive. We will explain these components
in the following subsections.

2.1 Objective Function
The objective function in the newly-defined framework

takes the following form:

R(π; f(ω,X), g(φ, Y)).

This objective function can be understood as a graph-
based smoothing function for ranking scores π. It ensures
that the ranking scores π are consistent with the information
contained in the graph in an unsupervised learning process.
For example, we can use the Markov random walk model to
build the smoothing function. The transition probability of
the Markov process is defined with f(ω,X), the parametric
model based on edge features, and the reset probability is
defined with g(φ, Y), the parametric model based on node
features. Then the smoothing function requires that the
ranking scores should be as close to the stationary distri-
bution of the parametric Markov process as possible. More
details about this example will be introduced in Section 3.

2.2 Constraints
The constraints in the framework take the following form:

S(π;B,µ) ≥ 0,

where matrix B encodes supervision information, and µ de-
notes weights on samples of supervision information.

The constraints require that the ranking scores π should
be consistent with supervision information as much as pos-
sible. Learning with regard to the constraints is performed
in a supervised manner. In contrast, learning with regard to
the objective function is performed in an unsupervised man-
ner. We therefore call (1) a semi-supervised framework for
graph ranking.

Matrix B can represent different types of supervision in-
formation, such as binary labels, pairwise preferences, par-
tial order, and even total order. For example, pairwise pref-
erences can be labeled by human annotators or mined from
users’ implicit feedback. In this case, B is a r-by-n matrix
with 1, −1, and 0 as elements, where r is the number of pref-
erence pairs. Each row of B represents a pairwise preference
u ≻ v, meaning that node u is preferred to node v. The cor-
responding row of B has 1 in u’s column, −1 in v’s column,
and zeros in the other columns. Accordingly, the constraints
can be specified as below, where e is an r-dimensional vector
with all its elements equal to 1.

S(π;B,µ) = −µT (e−Bπ) ≥ 0. (2)

For binary labels (e.g., in web search, spam pages and junk
pages may correspond to label zero while good pages corre-
spond to label one), partial order, or total order, it is not
difficult to convert them to a number of pairwise preference
relations and then use constraints similar to (2).

2.3 Equivalent Optimization Problem
For ease of computation, we convert the constraints into

a loss function and add it into the objective function (1),
obtaining the following equivalent optimization problem.

min
ω≥0,φ≥0,π≥0

αR(π; f(ω,X), g(φ, Y))− (1− α)S(π;B,µ), (3)

where 0 ≤ α ≤ 1. By solving Problem (1) or (3), we can
obtain the optimal ranking scores π∗ as well as the optimal
parameters ω∗ and φ∗.

3. SEMI-SUPERVISED PAGERANK
In this section, we propose an efficient algorithm named

Semi-Supervised PageRank (SSP) under the general frame-
work. This algorithm demonstrates, as a showcase, that we
can successfully address the challenge to graph ranking pre-
sented in Section 1.

3.1 Objective Function and Constraints
In SSP, we define the objective function using the same

principle as in PageRank. Specifically, one step of the Markov
random walk in PageRank can be written as below,

π̃ = dP
T
0 π + (1− d)r0, (4)

where P0 is the transition matrix, r0 is the reset probabil-
ity, and d is the damping factor. We introduce parameters
to both the transition matrix and the damping factor, and
define the loss of ‖π̃ − π‖2 as the objective function,

R(π; f(ω,X), g(φ, Y)) = ‖df(ω,X)π+ (1− d)g(φ,Y)− π‖2.
(5)

Here f(ω,X) plays the same role as P T
0 does in the orig-

inal PageRank algorithm (4). For ease of understanding,
we rewrite it as P T (ω,X) (or sometimes P T (ω) or P T for
compact reading) to show that it is a parametric transition
probability matrix. Each element pij(ω) in P (ω) represents
the transition probability from node i to node j, which is
determined by the model of edge features with parameter
ω. For example, we can use linear combination, i.e.,

pij(ω) =

{ ∑
k ωkxijk∑

j

∑
k ωkxijk

, if there is an edge from i to j,

0, otherwise.
(6)

That is, only the transition probability for an existing edge
in the graph is non-zero1, and the value is determined by the
edge features. We will only change the weight of an existing
edge including assigning zero weight, but will not add new
edges to the graph. This can keep the graph sparse.

Here g(φ, Y) plays the same role as r0 in the original
PageRank algorithm (4). We also rewrite it as r(φ, Y) (or
sometimes r(φ) or r for compact reading) to show that it
is a parametric reset probability vector. Each element ri(φ)
in r(φ) represents the reset probability of node i, which is
determined by the model of node features with parameter
φ. For example, we can once again use linear combination,
i.e.,

ri(φ) = φ
T
yi. (7)

Suppose the constraints are based on pairwise preferences.2

We then obtain the following optimization problem.

min
ω≥0,φ≥0,π≥0

{α‖dP T (ω)π + (1− d)r(φ)− π‖2

+(1− α)µT (e−Bπ)}. (8)

One may think about whether it is possible to move the
constraints ω ≥ 0, φ ≥ 0, and π ≥ 0 into the objective
function and formalize the problem as non-constrained op-
timization. It is not an appropriate formulation, however.
This is because the features and ranking scores must be non-
negative in the current problem and the three constraints

1To avoid rank sink, if a node has no outlink edges, we will
assume it links to all nodes.
2As mentioned before, all kinds of supervision information
can be converted to pairwise preferences.

must be strictly satisfied. The non-negative conditions will
not be guaranteed when included in the objective function.
In fact, in our formulation we need to conduct boundary de-
tection for ω, φ, π in each iteration to ensure that they are
non-negative. By solving this problem3, we can obtain the
optimal ω∗, φ∗, and π∗, and use them to rank the nodes in
the graph. In the next sub-sections, we will show how to
efficiently solve this optimization problem.

3.2 Solving the Optimization Problem
For ease of explanation, we use G(ω,φ, π) to denote the

objective function in (8),

G(ω,φ, π) = α‖dP T (ω)π + (1− d)r(φ)− π‖2

+(1− α)µT (e−Bπ). (9)

We use the gradient descent method to minimizeG(ω, φ, π).
The partial derivatives of G(ω, φ, π) with respect to ω, φ,
and π can be calculated as below,

∂G

∂ω
= 2αd[P T

π ⊗ π − π ⊗ π + (1− d)r ⊗ π]T
∂vec(P)

∂ωT
, (10)

∂G

∂φ
= 2α(1− d)[(1− d)r + dP

T
π − π]

∂r

∂φ
, (11)

∂G

∂π
= 2α[(dPP

T − dP − dP
T + I)π

−(1− d)(I − dP)r]− (1− α)BT
µ. (12)

Operator ⊗ represents the Kronecker product, and opera-
tor vec(·) denotes the expansion of a matrix to a long vector
by its columns. For the last fractions in (10) and (11), we
have,

∂vec(P)

∂ωT =































∂p11
∂ω1

· · · ∂p11
∂ωl

...
. . .

...
∂pn1
∂ω1

· · · ∂pn1
∂ωl

...
. . .

...
∂p1n
∂ω1

· · · ∂p1n
∂ωl

...
. . .

...
∂pnn
∂ω1

· · · ∂pnn
∂ωl































and ∂r
∂φ

=



















∂r
∂φ1

...
∂r
∂φi

...
∂r
∂φh



















.(13)

If pij(ω) is a linear function of the edge features, its partial
derivatives with respect to ωk will be,

∂pij

∂ωk

=
xijk

∑

j

∑

k
ωkxijk − (

∑

k
ωkxijk)(

∑

j
xijk)

(
∑

j

∑

k
ωkxijk)2

. (14)

With the above derivatives, we can iteratively update ω,
φ, and π by means of gradient descent. The corresponding
algorithm is given in Figure 1, where ρ is the learning rate
and ǫ controls the stopping condition. Note that the problem
does not have a unique minimum. We may compute the
original PageRank for the graph and use it as the initial
value of π.

3Note that we do not add
∑

i
πi = 1 as a constraint to the

optimization problem. In our mind, though this constraint
looks necessary if π is supposed to be a probability distri-
bution in PageRank, it is not so necessary if we use it for
ranking, where the absolute value of πi is not very important
as long as the relative order is preserved.

Input: X, Y, B, µ, l, h, n, ρ, ǫ, α.
Output: Node ranking score π∗

Algorithm:

1. Set s = 0, initialize π
(0)
i (i = 1, · · · , n),

ω
(0)
k (k = 1, · · · , l), and φ

(0)
t (t = 1, · · · , h).

2. Calculate P (s) = P (ω(s)), r(s) = r(φ(s)),

and G(s) = G(ω(s), φ(s), π(s)).

3. Update π
(s+1)
i = π

(s)
i + ρ ∂G(s)

∂π
(s)
i

,

ω
(s+1)
k = ω

(s)
k + ρ ∂G(s)

∂ω
(s)
k

, and φ
(s+1)
t = φ

(s)
t + ρ ∂G(s)

∂φ
(s)
t

.

4. Force π
(s+1)
i , ω

(s+1)
k , φ

(s+1)
t to 0, if they are negative.

5. Normalize π
(s+1)
i ← π

(s+1)
i

∑
n
j=1 π

(s+1)
j

,

ω
(s+1)
k ← ω

(s+1)
k

∑l
j=1 ω

(s+1)
j

, and φ
(s+1)
t ← φ

(s+1)
t

∑h
j=1 φ

(s+1)
j

.

6. Calculate G(s+1) = G(ω(s+1), φ(s+1), π(s+1)),

if G(s) −G(s+1) < ǫ, stop and output π∗ = π(s+1);
else s = s+ 1, jump to step 2.

Figure 1: The Learning Process of the SSP Algorithm.

3.3 Efficient Implementation
Next, we efficiently implement the algorithm, by using the

common fact that graphs in practice tend to be sparse.
By defining π′ = P Tπ and π′′ = π′ − π, and conducting

some simple mathematical transformations, we can reduce
the partial derivative on π to,

∂G

∂π
= 2α[d(Pπ

′′ − π
′′) + (1− d)(π − r + dPr)]

−(1− α)BT
µ. (15)

In order to compute (15), only three steps of matrix-vector
multiplications are needed: P Tπ, Pπ′′, and Pr. Similarly,
the computations in (10) and (11) can also be simplified with
the help of π′ and π′′, i.e.,

∂G

∂ω
= 2αd{[π′′ + (1− d)r]⊗ π}T ∂vec(P)

∂ωT
. (16)

∂G

∂φ
= 2α(1− d)[(1− d)r + dπ

′ − π]
∂r

∂φ
. (17)

Since the graph is sparse, in (16), we only need to com-
pute the non-zero blocks in the Kronecker product and the
left partial derivative vector in (13). Suppose there are m
edges in the graph, then the cost is proportional to m. In
general, the computational complexity of the proposed Semi-
Supervised PageRank algorithm is only of order O(ml+ n).

Moreover, we can parallelize the algorithm using MapRe-
duce. MapReduce [12] is a programming model for paral-
lelizing large-scale computations on a distributed computer
cluster. It reformulates the logic of a computation task to
a series of Map and Reduce operations. The map operation
takes a <key, value> pair, and emits one or more interme-
diate <key, value> pairs. Then all values with the same in-
termediate key are grouped together into a <key, valuelist>
pair, where valuelist contains all values associated with the
same key. The reduce operation reads a <key, valuelist>
pair and emits one or more new <key, value> pairs.

There are mainly two kinds of large-scale computation
prototypes in SSP, i.e., matrix-vector multiplication and Kro-
necker product of vectors on a sparse graph. These proto-

0

1

2

3

35

50

20
30

20

p01 = 0.3
p02 = 0.5

p30 = 0.35

p21 = 0.2

p13 = 0.2

π
T

0 : 100

π
T

1 : 100

π
T

3 : 100

π
T

2 : 100

(π′

0)
T : 35

(π′

3)
T : 20

(π′

2)
T : 50

(π′

1)
T : 30 + 50 = 80

Figure 2: Matrix P is built from the graph, in which element
pij is defined as the normalized edge weight from node i to
node j. The product πTP can be interpreted as the data
propagation process on the graph. πT ⇒ (π′)T .

types can be written in the below MapReduce logic, in which
we denote Oi as the outlink node set of node i, and Ii as the
inlink node set of node i.

3.3.1 Matrix-Vector Multiplication

We take π′ = P Tπ as example. It can be equally written
as (π′)T = πTP . The computation can be performed using
a graph based propagation process. That is, we first take
πT as a meta data of node i, and then pass πT from node
i to each of its connected node j by multiplying pij . By
aggregating all the incoming values on each node j, we can
get the new (π′)T . The process can be implemented as below
(refer to Figure 2).

Map: Take graph record < i, {j, pij}, j ∈ Oi > and
< i, πi > as input. Map input on j, such that tuples with
the same j are shuffled to the same machine in the form of
< j, {πipij},∀j ∈ Oi >.

Reduce: Take < j, {πipij},∀i ∈ Ij > and emit < j, π′
j >,

where π′
j =

∑

∀i∈Ij
πipij .

3.3.2 Kronecker Product of Vectors on a Sparse Graph

Suppose x and y are both n-dimensional vectors, we want
to compute the Kronecker product z = x ⊗ y (z is an n2-
dimensional vector) of them on a sparse graph, i.e., we need
to compute xiyj only if there is an edge from page i to page j
in the graph. We do not want to look up the sparse graph to
determine whether we need to compute xiyj . The solution
is to take xi, yi as the meta data of node i in the graph,
and pass xi from node i to its connected nodes. After that,
we can aggregate the incoming xi to node j. By multiplying
yj with all xi received on node j, we can get all necessary
xiyj . The operations can be implemented as below (refer to
Figure 3).

Map-I: Take graph record < i, {j, pij}, j ∈ Oi > and
< i, xi > as input. Map input on j, such that tuples with
the same j are shuffled to the same machine in the form of
< j, (i, xi) >.

Reduce-I: Take < j, (i, xi),∀i ∈ Ij >, and emit < j,
{(i, xi), i ∈ Ij} >.

Map-II: Map < j, {(i, xi), i ∈ Ij} > and < j, yj > on j,
such that tuples with the same j are shuffled to the same
machine in the form of < j, {yj , (i, xi), i ∈ Ij} >.

Reduce-II: Take < j, {yj , (i, xi), i ∈ Ij} >, and emit
< i, j, xiyj >.

0

1

2

3

x0 = 1

x1 = 10

x3 = 1000

x2 = 100

y0 = 2

y3 = 2000

y2 = 200

y1 = 20

Output:(x3y0, 2000)

Output:(x0y1, 20), (x2y1, 2000)

Output:(x1y3, 20000)

Output:(x0y2, 200)

x3, 1000

x0, 1

x2, 100 x1, 10

x0, 1

Figure 3: Kronecker product of two vectors is trying to com-
pute xiyj under the constraint of graph structure. We can
propagate xi along graph edges, so as to filter necessary xi

to multiply yj . The process can be implemented by two
MapReduce processes.

Besides this, there are some other operations in the SSP
algorithm that can also be written in the MapReduce logic,
including vector normalization, vector addition (and sub-
traction), and the gradient updating rules. As the imple-
mentations are trivial, we will not give unnecessary details.

3.4 Advantages
As has been seen so far, the SSP algorithm has the follow-

ing advantages. (i) It can naturally leverage all the informa-
tion useful for graph ranking, including meta information
on graphs and supervision information from humans. (ii)
It has a nearly linear time complexity with respect to the
number of edges, and thus can scale up to very large graphs.
(iii) It employs a parametric model, which has a generaliza-
tion ability. In fact, with our algorithm, the ranking model
can be learned from one graph (or one part of a graph) and
applied to the other graphs (or the other parts of a graph).

4. RELATED WORK
In the framework we defined in Section 2, graph structure,

edge features, and node features are all considered. If only
a part of them are used, we obtain several variants of the
objective function. Most recent work on graph ranking can
be understood as optimizing such special cases, as shown
below.4 It is obvious that these special cases are not as
powerful as the general case using the Type (a) objective
function in Table 1.

(i) LiftHITS [10] corresponds to optimizing the Type (d)
objective function defined based upon the HITS algorithm,
subject to constraints of binary labels derived from user
feedback. It cannot leverage information carried by node
and edge features, neither can it expand to very-large-scale
graphs. When ‘lifting’ the authority of one node, many cor-
responding sparse rows in the link matrix will become dense.
The problem will become more severe when ‘lifting’ the au-
thority of multiple nodes. As a result, the computation of
the eigenvectors of the link matrix will be prohibitively ex-
pensive.

(ii) Adaptive PageRank [22] alters the PageRank scores
of nodes according to feedback from humans, using an opti-
mization technique. It corresponds to optimizing the Type
(d) objective function subject to constraints of the pairwise

4We present the detailed derivations in Section 5.

Table 1: Different forms of the objective function.

TYPE EDGE NODE FORM EXAMPLE METHODS

(a)
√ √

R(π; f(ω,X), g(φ, Y)) Semi-Supervised PageRank
(b)

√
R(π; f(ω,X))

(c)
√

R(π; g(φ, Y))
(d) R(π) LiftHITS, Adaptive PageRank, NetRank, Laplacian Rank

preferences. It does not use the edge features, and it has high
time complexity. This is because it requires computing the
inverse of the link matrix during its optimization process.
The authors have proposed grouping nodes into clusters, to
reduce the complexity. However, to make effective use of
human supervision, the number of clusters cannot be too
small and thus the issue has not been fundamentally solved.

(iii) NetRank [9, 3] learns the parameters of the Markov
random walk on the graph according to supervision infor-
mation. It corresponds to optimizing the Type (d) objective
function subject to the constraints of the pairwise prefer-
ences. The method does not leverage the node and edge
features; and it is also inefficient, because it needs to com-
pute successive matrix multiplications multiple times at each
step of the optimization process.

(iv) Laplacian Rank [24, 4, 18, 23] formulates the super-
vised graph ranking problem as that of minimizing a com-
bination of an empirical loss and a graph Laplacian based
regularization term. It corresponds to optimizing the Type
(d) objective function subject to the constraints of the pair-
wise preferences. In addition to not being able to use the
node and edge features, it cannot scale up due to the neces-
sity of computing the pseudo-inverse of the Laplacian matrix
in the optimization process.

To sum up, these previous methods cannot make effective
use of information on the nodes and edges, and/or cannot
scale up to very large graphs.

In addition, there are some other works on classification
or link prediction on graphs with metadata. SPA [11] is a
graph node classifier based on kernel smoothing trained by
semi-supervised learning. It leverages the information from
both the labeled nodes and the relationship between labeled
and unlabeled nodes. WITCH [1] is a spam page classifier
based on graph regularization. It exploits both the graph
structure and the web page content to learn a linear classifier
using an SVM-like objective function. Supervised Random
Walks [5] combines the network structure with node and
edge attributes, and uses the attributes to supervise a ran-
dom walk on the graph in link prediction. All these works
are not for graph ranking, and thus it is not appropriate to
make a comparison of them with the current work.

5. DISCUSSION
We show that several previous graph ranking algorithms

actually correspond to special cases of the proposed frame-
work in (1) or another form (3).

5.1 LiftHITS
Suppose a link matrix M specifies the connectivity be-

tween nodes, i.e., Mij 6= 0 if there is a link from node i to
node j; Mij = 0, otherwise. Then the authority scores π

can be iteratively computed by π′ = MTMπ in HITS. If

we let S(π;B,µ) = B(π′ − π), and use a Type (d) objec-
tive function R(π) = ‖π′ −MTMπ‖, then Problem (1) will
become

minπ≥0 ‖π′ −MTMπ‖
s.t. B(π′ − π) ≥ 0,

(18)

where matrix B specifies the nodes that should be ‘lifted” in
the next iteration.

The above formulation is equivalent to the LiftHITS method
proposed in [10]. In other words, LiftHITS is a special case
of the general framework, in which the Type (d) objective
function and the constraints of binary labels are used.

5.2 Adaptive PageRank
If we let S(π;B,µ) = Bπ−ξ, where ξ > 0 is a slack vector,

and adopt a Type (d) objective function R(π) ≡ R(π(η)) =
‖π(η) − π̄‖, where π and π̄ are computed from the graph
structure, then Problem (1) will become

minπ≥0 ‖π(η)− π̄‖
s.t. Bπ ≥ ξ, ξ ≥ 0

π̄ = (1− d)(I − dP)−1e

π(η) = (1− d)(I − dP)−1η
η ≥ 0.

(19)

where P is the transition matrix derived from the graph, d
is the damping factor in PageRank, and η is a n-dimensional
parameter vector for the nodes in the graph.

The above formulation exactly corresponds to the Adap-
tive PageRank method proposed in [22]. In other words,
Adaptive PageRank is a special case of the general frame-
work, in which the Type (d) objective function and the con-
straints of the pairwise preferences are used.

5.3 NetRank
Suppose the transition matrix is parameterized by differ-

ent types of edges, i.e., edge (i, j) belongs to type t(i, j).
If type t has an associated weight w(t), the weight of edge
(i, j) will be w(t(i, j)). Thus one possible formulation of the
parametric transition matrix can be written by

Pij(t) =
w(t(i,j))∑
j w(t(i,j))

. (20)

If we set α = 0 and let S(π;B,µ) = −eT (e−Bπ), Problem
(3) will become as follows,

minπ≥0

∑

i≺j
(1 + πi − πj)

s.t. π = (P T (t))Hπ(0).
(21)

where π(0) is a vector whose elements all equal 1
n
, and H is

the iteration number of matrix multiplication.
The above problem corresponds to one formulation of the

NetRank method [9]. In other words, NetRank is a special

case of the general framework, in which the Type (d) objec-
tive function and the constraints of the pairwise preferences
are used.

5.4 Laplacian Rank
If we define the Type (d) objective function using the

Laplacian of the graph, i.e., R(π) = πTLπ, where

L = I − Π1/2PΠ−1/2+Π−1/2PT Π1/2

2
(22)

is the Laplacian for the directed graph, and Π is a diagonal
matrix with Πii = π̄i (π̄ has the same definition as in Section
5.2), use the pairwise preferences as the constraints, and set
α = 1

2
, Problem (3) will become,

minπ≥0
1
2
πTLπ + 1

2

∑

(i,j) µijξij

s.t. πi − πj ≥ 1− ξij , ξij ≥ 0.
(23)

This is exactly the Laplacian Rank method discussed in [24,
4, 18, 23].5 In this regard, we say Laplacian Rank is a
special case of the general framework, in which the Type
(d) objective function and the constraints of the pairwise
preferences are used.

6. EXPERIMENTAL RESULTS
In the experiments, we use page importance ranking on

web graphs to evaluate the performance of our proposed SSP
algorithm.

Two web graphs of different scales are used. The pages
on both graphs belong to the “.uk” domain.

• The first graph, denoted as G1, is the website graph
from the Web Spam Challenge [8, 25], which contains
114,529 nodes and 1,836,441 edges. Some websites in
the dataset G1 are labeled as “spam” or “non-spam”,
and the labeled data is partitioned into a training set
(with 222 spam sites and 3,776 non-spam sites) and
a test set (with 122 spam sites and 1,933 non-spam
sites).

• The second graph, denoted as G2, is from a commer-
cial web search engine, which contains about 1.4 billion
pages and 15.6 billion edges. Together with the graph,
a dataset of queries and their associated web pages
are also provided. The dataset is partitioned into a
training set (with millions of queries collected from the
query log in October 2009) and a test set (with about
2000 queries sampled from the query log in November
2009). In the training set, the click-through count of
each page is given as the implicit judgment on its rel-
evance to the query. In the test set, each document is
manually labeled as “relevant” or “irrelevant.”

For each edge in the graphs, we extract ten features, in-
cluding (1) the type of the edge (i.e., intra-site or inter-site),
(2) the inlink number of the source node of the edge, (3) the
outlink number of the source node of the edge, (4) the inlink
number of the destination node of the edge, (5) the outlink
number of the destination node of the edge, (6) the URL
depth of the source node of the edge, (7) the URL depth of
the destination node of the edge, (8) the URL length of the

5The work in [18] used an alternate form of Laplacian Rank
in label propagation for classification, and used an alternate
form of PageRank in graph ranking.

Table 2: Number of spam websites over buckets.

No. # of Websites PageRank AP SSP
1 150 2 0 0
2 537 2 0 0
3 1257 1 1 0
4 2660 2 8 2
5 4788 4 7 8
6 8344 12 7 9
7 13708 7 16 12
8 20846 13 33 27
9 29008 19 25 42
10 33231 60 25 22

source node of the edge, (9) the URL length of the destina-
tion node of the edge, and (10) the weight (link number) of
the edge. For each node, we extract five features, including
(1) the inlink number of the node, (2) the outlink number
of the node, (3) the number of two-step neighbors, (4) the
URL depth of the node, and (5) the URL length of the node.

The parameters for our algorithm are set empirically as
follows: (i) µ is set to a vector whose elements are all equal
to 1; (ii) ρ is set to 0.1; (iii) ǫ is set to 10−12; (iv) α is set to
0.5. In our experiments, the SSP algorithm converges within
30 iterations.

We run the experiments on a cluster of 40 Rackable C2004
servers each with a quad-core CPU and 8 gigabytes mem-
ory. We test two baseline algorithms in addition to our algo-
rithm: PageRank and Adaptive PageRank (AP for short).
We are not able to test LiftHITS, NetRank, and Laplacian
Rank in our computer cluster, because these algorithms are
computationally very demanding. Even in a more power-
ful computing environment, these algorithms could hardly
handle a dataset like G1 or G2. In the experiments, the
damping factors for SSP, PageRank, and AP are all heuris-
tically set to 0.85. For AP, we conduct clustering on the
nodes, with each cluster containing about 10,000 nodes, fol-
lowing the proposal in [22]. Even with clustering, AP can
only run on G1. Therefore we only report the result of AP
on G1. Note that we do not consider the efficient implemen-
tations of personalized PageRank [14] such as those in [21]
as baselines. The reason is that such personalized PageRank
methods largely depend on the preference assumption, like
the topic bias in topic-sensitive PageRank[13], which does
not hold in the general setting of SSP.

6.1 Anti-Spam
We use the spam labels in the training set ofG1 as supervi-

sion information to train different page importance ranking
methods, and evaluate the ranking results on the test set to
see whether the methods are good at anti-spam.

In order to train SSP and AP, we create pairwise pref-
erences from the spam labels (i.e., non-spam websites are
preferred to spam websites). We evaluate the ranking per-
formance using spam bucket distribution. Specifically, given
an algorithm, we sort all the websites in G1 in the descending
order of their ranking scores given by the algorithm. Then
we put these sorted websites into 10 buckets.6 The numbers
of the labeled spam websites in the test set over the buckets

6The buckets are partitioned based on the scores given by
the algorithm. That is, the sum of the scores in each bucket
is 10% of the total score.

0.5 0.6 0.7 0.8 0.9 1
0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

Combining Parameter θ

M
A

P

SSP

PageRank

(a)

0.5 0.6 0.7 0.8 0.9 1
0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

Combining Parameter θ

P
re

c
is

io
n

@
3

SSP

PageRank

(b)

0.5 0.6 0.7 0.8 0.9 1
0.53

0.54

0.55

0.56

0.57

0.58

0.59

Combining Parameter θ

P
re

c
is

io
n

@
5

SSP

PageRank

(c)

0.5 0.6 0.7 0.8 0.9 1
0.67

0.68

0.69

0.7

0.71

0.72

0.73

Combining Parameter θ

N
D

C
G

@
3

SSP

PageRank

(d)

0.5 0.6 0.7 0.8 0.9 1
0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

Combining Parameter θ
N

D
C

G
@

5

SSP

PageRank

(e)

Figure 4: (a) Search performance in terms of MAP. (b) Search performance in terms of Precision@3. (c) Search performance
in terms of Precision@5. (d) Search performance in terms of NDCG@3. (e) Search performance in terms of NDCG@5.

for different algorithms are listed in Table 2. Considering
that the goal of spammers is to promote the ranking posi-
tions of their websites, a ranking algorithm with good anti-
spam ability should remove as many spam sites from the top
buckets as possible. For the websites in the bottom buckets,
as their page importance scores are very low, whether they
are spam or not does not make much difference.

From the table, we have the following observations: (i)
AP performs better than PageRank, for AP can take ad-
vantage of supervision information while PageRank is an
unsupervised algorithm. (ii) SSP outperforms AP, for SSP
can leverage more information than AP. Specifically, SSP in-
tegrates graph structure, edge features, node features, and
supervision information into the ranking mechanism, while
AP does not consider using edge features and node features.
Therefore, SSP can successfully remove more spam websites
from the top buckets, compared to the two baselines.

6.2 Relevance Ranking
In web search, the retrieved pages for a given query are

often ranked according to two factors: content relevance and
page importance. Without loss of generality, we use a linear
combination of these two factors to produce the final ranking
result,

θScorerelevance + (1− θ)Scoreimportance, (24)

where 0 ≤ θ ≤ 1 is the combining parameter. In our experi-
ments, we use BM25 [20] to generate the relevance score,
and the importance score is calculated by different algo-
rithms under investigation. The corresponding relevance
ranking performances are evaluated in terms of MAP [6],
Precision@k [6], and NDCG@k [6] on the test set.

As mentioned above, since G2 is extremely large, only
PageRank and SSP can run on the data. For SSP, we con-
struct pairwise preferences from the click-through counts.
That is, if the number of clicks of a page for all the queries
in the training data is larger than that of the other page, we
will create a pairwise constraint on the two pages. PageRank
does not use any training data since it is an unsupervised al-
gorithm. After a ranking model is trained by an algorithm,
we compute the importance scores of all the pages in G2

using the ranking model. We then combine the importance
score and relevance score to rank the pages in the test set.

MAP of the ranking results are shown in Figure 4 (a).
Precision @3, 5 of the ranking results are shown in Figure 4
(b) and (c). NDCG@3, 5 of the ranking results are shown in
Figure 4 (d) and (e). From the figures, we can see that SSP
consistently outperforms PageRank, with all θ values, and
in terms of all evaluation measures. The explanation for the
better performance of SSP is as follows. By leveraging more
helpful information (e.g., node and edge features, supervi-
sion information), SSP can achieve better performance than
PageRank in page importance ranking.

To summarize the experimental results, SSP outperforms
the baseline algorithms on several tasks and in several eval-
uation measures, and can handle billion-scale graphs very
well.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have defined a semi-supervised learning

framework for graph ranking on a very-large-scale graph,
and developed an efficient algorithm named Semi-Supervised
PageRank (SSP) within the framework. The new algorithm
can make effective use of supervision information, leverage

rich information on the graph, and scale up to very-large-
scale problems. Our experimental results have shown that
the proposed algorithm can outperform baseline algorithms
on graph ranking.

For future work, we plan to investigate the following is-
sues. (i) We will try advanced optimization techniques like
conjugate gradient method to minimize the objective func-
tion in Semi-Supervised PageRank, instead of using the sim-
ple gradient descent method. (ii) We plan to try other forms
of objective functions, so as to extend the idea of SSP to
other algorithms such as Semi-Supervised HITS. (iii) We
will consider improving SSP using both labeled and unla-
beled data as in conventional semi-supervised learning. Cur-
rently, the preference matrix B only contains known prefer-
ence pairs; we may extent B to cover all pairs (both known
pairs and unknown pairs) and also predict the relationship
of the unknown pairs in the learning process. (iv) We will
conduct more comprehensive studies to investigate the sen-
sitivity of the parameters in the model.

8. REFERENCES

[1] J. Abernethy, O. Chapelle, and C. Castillo. Web spam
identification through content and hyperlinks. In the
proceedings of AIRWeb’08, 2008.

[2] A. Agarwal and S. Chakrabarti. Learning random
walks to rank nodes in graphs. In the proceedings of
the 24th International Conference on Machine
Learning (ICML), pages 9-16, 2007.

[3] A. Agarwal, S. Chakrabarti, and S. Aggarwal.
Learning to rank networked entites. In the proceedings
of the 12th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
14-23, 2006.

[4] S. Agarwal. Ranking on graph data. In the
proceedings of the 23th International Conference on
Machine Learning (ICML), pages 25-32, 2006.

[5] L. Backstrom and J. Leskovec. Supervised Random
Walks: Predicting and Recommending Links in Social
Networks. In the proceedings of the 4th ACM
International Conference on Web Search and Data
Mining (WSDM), pages 635-644, 2011.

[6] R. Baeza-Yates and B. Ribeiro-Neto. Modern

Information Retrieval. Addison Wesley, ISBN-13:
978-0201398298, May 1999.

[7] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. In Computer

Networks and ISDN Systems, volume 30, issue 1-7,
pages 107-117, 1998.

[8] C. Castillo, D. Donato, L. Becchetti, P. Boldi,
S. Leonardi, M. Santini, and S. Vigna. A reference
collection for web spam. In SIGIR Forum, volumn 40,
issue 2, pages 11-24, 2006.

[9] S. Chakrabarti and A. Agarwal. Learning parameters
in entity relationship graphs from ranking preferences.
In the proceedings of the 10th European Conference
on Principles and Practice of Knowledge Discovery in
Databases (PKDD), volume 4213, pages 91-102, 2006.

[10] H. Chang, D. Cohn, and A. K. McCallum. Learning to
create customized authority lists. In the proceedings of
the 17th International Conference on Machine
Learning (ICML), pages 127-134, 2000.

[11] M. Culp and G. Michailidis. Graph-based
semisupervised learning. IEEE Transactions on
Pattern Analysis and Machine Intelligence, VOL. 30,
No. 1, pages 174-179, 2008.

[12] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In the proceedings
of the 6th Symposium on Operating System Design
and Implementation (OSDI), 2004.

[13] T. H. Haveliwala. Topic-sensitive PageRank. In the
proceedings of the 11th International World Wide
Web Conference (WWW), 2002.

[14] T. Haveliwala, S. D. Kamvar, and G. Jeh. An
Analytical Comparison of Approaches to Personalizing
PageRank. Stanford University, Preprint, 2003.

[15] J. M. Kleinberg. Authoritative sources in a
hyperlinked environment. In the proceedings of the
9th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 668-677, 1998.

[16] T. Kolda and B. Bader. The TOPHITS Model for
Higher-Order Web Link Analysis. In the proceedings
of the 4th Workshop on Link Analysis,
Counterterrorism and Security, in conjunction with
the 6th SIAM International Conference on Data
Mining (SDM), 2006.

[17] L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank citation ranking: bringing order to the web.
Technical report, Stanford Digital Library
Technologies Project, 1998.

[18] D. Rao, and D. Yarowsky. Ranking and
semi-supervised classification on large scale graphs
using map-reduce. In the proceedings of the 4th
International Joint Conference on Natural Language
Processing of the Asian Federation of Natural
Language Processing (ACL-IJCNLP), 2009.

[19] M. Richardson and P. Domingos. The intelligent
surfer: probabilistic combination of link and content
information in PageRank. In the proceedings of the
16th Annual Conference on Neural Information
Processing Systems (NIPS), 2002.

[20] S. E. Robertson. Overview of okapi projects. Journal
of Documentatioin, volumn 53, issue 1, pages 3-7,
1997.

[21] T. Sarlos, A. A. Benczur, K. Csalogany, D. Fogaras,
and B. Racz. To randomize or not to randomize: space
optimal summaries for hyperlink analysis. In the
proceedings of the 15th International World Wide
Web Conference (WWW), pages 297-306, 2006.

[22] A. C. Tsoi, G. Morini, F. Scarselli, M. Hagenbuchner,
and M. Maggini. Adaptive ranking of Web pages. In
the proceedings of the 12th International World Wide
Web Conference (WWW), pages 356-365, 2003.

[23] M. Xie, J. Liu, N. Zheng, D. Li, Y. Huang, and
Y. Wang. Semi-supervised graph-ranking for text
retrieval. In the proceedings of the 4th Asia
Infomation Retrieval Symposium (AIRS), pages
256-263, 2008.

[24] D. Zhou, J. Huang, and B. Scholkopf. Learning from
labeled and unlabeled data on a directed graph. In the
proceedings of the 22th International Conference on
Machine Learning (ICML), pages 1041-1048, 2005.

[25] http://www.yr-bcn.es/webspam/datasets/uk2007/

