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ABSTRACT 
The work investigates applicability of recurrence 

quantification analysis (RQA) in metal cutting with an 

objective to detect tool wear. The effectiveness of applying a 

system input signal; the drive motor current, in relation to a 

system output signal; the tool vibration, for the analysis is also 

explored. The work establishes conclusively that three of the 

RQA variables, percent determinism, percent recurrence and 

entropy are sensitive to tool wear.  

 
Keywords: Time series analysis, Tool flank wear, Recurrence 
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INTRODUCTION 

In precision machining processes, one of the key factors 

that affect production optimization and surface quality of the 

work piece is the state of the cutting tool, characterized by the 

tool wear. Tool condition monitoring systems (TCMs) are, 

therefore, needed to ensure better quality of machining jobs and 

to obtain a reduction in the downtime of machine tools due to 

catastrophic tool failures. In addition, a successful online TCM 

results in significant savings in cost for manufacturers because 

of increased productivity and process reliability.  

 

Significant progresses have already been made in tool 

developments, and in-process real time monitoring and control 

of tools by various methods have been proposed [1, 2]. Dan Li 

[3] has published a detailed review of tool wear and failure 

monitoring techniques for turning. Dimla[4] has conducted an 

evaluation of the suitability and sensitivity of the most widely 

used process parameters to tool wear and their potential 

applicability for successful online TCMs. It has  been 

discovered by Bukk et al [5] that metal cutting shows low 
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dimensional chaos. This realization has a significant impact on 

the classical views concerning the dynamics of metal cutting. 

On the basis of the chaos theory, a method for discriminating 

sensor signals generated under different conditions of metal 

cutting using the correlation dimension has been reported by 

Rajesh et al. [6]. 

 

However, this method is sensitive to noise and is therefore 

developed on the assumption of stationarity of the dataset. In 

this work, the powerful method of recurrence quantification 

analysis (RQA) is used to study the sensor signals generated 

during the cutting process, which are simultaneously recorded 

with the objective of characterizing them on the basis of the 

calculated RQA variables. The study concludes that this 

extracted information contained in the signal can be used for 

describing a tool used in cutting as fresh or worn tool. The 

signals generated during the machining process using cutting 

tools with different degrees of flank wear on them; fresh tools 

with flank wear=0mm and worn tools with flank wear=0.3mm, 

were analyzed for the purpose. The study also explored the 

effectiveness of applying a system input signal, the drive motor 

current, in relation to a system output signal, the tool vibration, 

for the analysis. This has particular practical importance in 

signal measurements and analysis as the current signal is 

simpler and easier to measure compared with any system output 

signal such as feed force or tool vibrations. 

 

EXPERIMENTAL SETUP AND DATA-ACQUISITION 
SYSTEM 

Experiments are conducted on a three phase, 3.7kW, 

1400rpm PSG heavy duty lathe using CNMG 120408PM 

carbide inserts with a standard tool holder. The work pieces are 

made of 30mm diameter and 120mm long mild steel roads. The 

machining job involves reducing the diameter of the workpiece 

to 29.6 mm in the lathe. The cutting factors; speed (560 rpm), 

feed per revolution (0.06 mm), and depth of cut (0.2mm) are 
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maintained constant during machining. Two arrays of 

experiments, one with the fresh tool and the other with the 

worn tool, containing 7 trials in each array are conducted. A 

total of 14 numbers of experiments are conducted and 

simultaneous recordings of sensor signals representing the time 

history of the lathe drive motor current as well as tool 

vibrations during cutting are done, resulting in 14 datasets in 

each of the two arrays. In the experiment, a fresh tool is 

characterized by flank wear = 0 mm and a worn tool has a flank 

wear = 0.3 mm. 

 

The data acquisition system for drive motor current uses a 

3phase line current sensor to measure the current drawn by the 

lathe drive motor. The sensor consists of a current transformer 

(CT) having an output range of ± 5 volts. The analog voltage 

signal from the output of the CT is sent to DAQ NI PCI 6221 

through NI SHC68-68-EPM and SCB 68 for converting it to 

the digital domain. The sampling rate for this signal is fixed at 

500Hz. The digitized data is recorded in the PC hard drive 

using the NI LabVIEW. Continuous data is recorded for a cut 

of 10sec duration during every trial of the experiments and 

from each of  which 1000 data points representing a 2sec 

duration cut is randomly selected and analyzed. 

 

An ADXL-150 accelerometer sensor, is used to pick up the 

vibration of the cutting tool.  It is placed on the tool holder near 

its tail end to measure the vibration in the feed direction. The 

resulting output voltage signal, due to vibration,  is amplified 

and passed through a low pass filter having a cut off frequency 

of 1kHz. Here the sampling rate is fixed at 10kHz. The data 

acquisition system for the vibration signals used a different 

channel of the same DAC NI PCI 6221 and similarly other 

peripherals along with the NI-LabVIEW. Continuous data is 

recorded for a cut of 10sec duration during every trials of the 

experiments and from each of which 1000 data points 

representing a 0.1sec cut is randomly selected and analyzed. 

 

NONLINEAR ANALYSIS AND METHODS 
Most often, in signal analysis, the amplitude distribution of 

the signal is analyzed  and various statistical moments are used 

as characteristics. The nonlinear time series analysis (NTSA) 

approach is basically different from the statistical one, in the 

respect that it can overcome inherent limits of the traditional 

linear and statistical tools. Despite its wide range of 

app l ica t io ns ,  NTSA suf fer s  f ro m the  prob lems  of 

nonstationarity of the measured time series data, which may 

lead to pitfalls that may invalidate the analysis. These 

limitations can be overcome by the quantification of recurrence 

plots  through RQA.  In 1987, Eckmann et al. [7] introduced 

the concept of recurrence plot (RPs) that can visualize the 

recurrence behavior of  the phase space trajectory of dynamical 

systems. Subsequently, the RQA was developed by Zbilut and 

Webber Jr. [8,9] and further extended with new measures of 

complexity by Marwan et al. [10]. The basic idea behind RQA 

is the identification of recurrence of local data points in a 

reconstructed phase space. Because RQA simply tallies 

recurrences, critical issues such as signal stationarity, noise, and 

statistical distribution of data are precluded. Thus, it is ideally 

suited for analyzing experimental signals that are generally 

characterized by nonstationarity and noise.  In this section, our  

approach  is described, based on phase space reconstruction, 

the recurrence plot, and the recurrence quantification analysis. 

 

PHASE SPACE RECONSTRUCTION 
Takens [11] proved a theorem that is the firm basis of the 

methodology of delays. Since one variable only is measured 

(the usual case in an experiment), the delay coordinate 

approach is used in the present analysis. Given a time series 

(1),  (2),  (3),.......... ( )x x x x N
,
 we define points ( )X i  in an m -

dimensional state space as 

 

( ) [ ( ),  x( ),  x( 2 ),....... ( ( 1) )]X i x i i i x i m      
,
                       (1) 

 

for 1,2,3,...., ( 1)i N m   
,
 where i  represents time indices, 

 indicates the time lag, and m  is called the embedding 

dimension. Time evolution of ( )X i   is called a trajectory of the 

system, and the space,  which this trajectory evolves in,  is 

called the phase space.   

 

SELECTING THE MINIMUM EMBEDDING DIMENSION  
The embedding dimension is the minimum dimension at 

which the reconstructed attractor can be considered completely 

unfolded. This parameter is usually estimated by the method of 

false nearest neighbors (FNN), proposed by Abarbanel [12]. 

 

By checking the neighborhood of points embedded in the 

projection manifolds of increasing dimension, the algorithm 

eliminates 'false neighbors'[13]. A natural criterion for 

detecting embedding errors is that the increase in distance 

between two neighboring points is large when proceeding from 

dimension m  to (m+1). This criterion is stated by designating 

any neighbor for which the following equation is valid as a 

false nearest neighbor.  

 
1/2

2 2

1

2

( ) ( )( , ) ( , )

( , )( , )

rm r m r

tol

m rm r

x i m x i mR i i R i i
R

R i iR i i

 


   
  

 
,                 (2) 

 

Here, i  and 
ri  are the time points corresponding to the 

neighbor and the reference point, respectively. 
mR  and 

1mR 

denote the distance in phase space with the embedding 

dimensions m and ( 1m ) respectively, and tolR  is the 

tolerance threshold. For the present analysis the embedding 

dimension corresponding to the lowest value of FNN is 

selected. 

 
SELECTING THE TIME LAG  

To choose the time lag, , we use the nonlinear correlation 

function of  average mutual information (AMI). Fraser et. al 
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[14] have established that delay corresponds to the first local 

minimum of the AMI function ( )I 
,
which is defined as 

follows: 

2

( ( ), ( ))
( ) ( ( ), ( )) log

( ( )) ( ( ))

P x i x i
I P x i x i

P x i P x i


 



 
   

 
             (3) 

 

where ( ( ))P x i  is the probability of the measure ( )x i , 

( ( ))P x i   is the probability of the measure ( )x i 
,
 and 

( ( ), ( ))P x i x i  is the joint probability of the measure of ( )x i  

and ( )x i  . Plotting ( )I   versus  makes it possible to 

identify  the best value for the time delay, and this is related to 

the first local minimum. 

 

The values for time lag, , and  embedding dimension, m , 

for the fresh tool and worn tool have been calculated following 

the AMI and FNN methods and are shown in Table 1. The time 

lag values for both the sensor signals for the two types of tools 

matches whereas their embedding dimensions differ.  Since the 

work is aimed at monitoring  of tool wear that takes place 

progressively as cutting takes place, phase space reconstruction 

using two different sets of values is avoided here. Instead, they 

are chosen from the representative values of the worn tool, 

which demands higher embedding dimension. 

 
Table 1. Phase space reconstruction parameters obtained by 

AMI and FNN 

Tool 

Type 

Time lag,  

 

Embedding dimension, 
m  

Current 

signal 

Vibration 

Signal 

Current 

signal 

Vibration 

Signal 

Fresh 

Tool 
3 6 3 5 

Worn 

Tool 
3 6 5 7 

 

ANALYSIS BASED ON RECURRENCE PLOTS  
A recurrence plot is a way to visually investigate the 

multidimensional phase space trajectory through a two 

dimensional representation [8]. Recurrence of states of the 

system, in the meaning that states are arbitrarily close after 

some time, is a well known property of deterministic dynamical 

systems and is typical for nonlinear or chaotic systems. A 

recurrence plot is derived from the distance plot, which is a 

symmetric [ NxN ]matrix, where a point ( , )i j  represents the 

distance between the coordinates ( )X i  and ( )X j on the phase 

space trajectory. Thresholding the distance plot at a certain 

cutoff value transforms it into a RP which shows all the 

recurrent points as black spots. 

 

( , ) ( ( ) ( ) )RP i j X i X j   
,
                                           (4) 

where , 1,.,.,., ,   i j N   is the cutoff distance,   is some 

norm, and ( )   is the Heaviside function [15].  

 

In the present analysis,  recurrence plots are constructed 

applying the L2 norm in distance calculations. The threshold  

is chosen by analyzing the measure of recurrence point 

density[16] as the percentage of maximum distance ( Table 2) . 

Again, as followed and due to reasons assumed in phase space 

reconstruction, we use the threshold   values obtained for the 

worn tool (11 for current, 9 for vibration) as representative 

values for RQA estimation. 

 

Table 2. Calculated values for the threshold,  

Tool Type Current signal Vibration Signal 

Fresh Tool 10 7 

Worn Tool 11 9 

 

The recurrence plots constructed with the above chosen 

parameter values for a fresh tool and a worn tool are shown in 

Fig. 1. The RP axes are in time units. Since the RPs itself does 

not contain any visually appreciable quantitative information 

we utilize the  RQA approach for the purpose in the present 

study. 

 
(a)  Fresh tool- Current signal data (b) Worn Tool- Current signal data 

  

(c) Fresh tool-Vibration  signal data (d) Worn Tool-vibration signal data 

  
Figure 1. Recurrence plots of current and vibration signal data 

for  system using fresh and worn tools. 
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RECURRENCE QUANTIFICATION ANALYSIS 
The RQA is a tool based on the statistical description of the 

parallel lines distribution among the RP [9]. Measures of 

complexity are defined using the recurrence point density and 

diagonal line structures in the recurrence plot. These measures 

provide a qualitative description of the dynamics underlying the 

time series that is studied. In the original definition Eckman et 

al [7] used a fixed number of neighbours for determining 

recurrences. In the present analysis we use a fixed value for the 

threshold  due to which the RP is symmetric across the central 

diagonal, called the line of identity (LOI). Attention is focused 

on the diagonal and vertical structures in the RP since from 

those stem the recurrence variables or quantifications. As the 

recurrence plot is symmetrical across the central diagonal, all 

quantitative feature extractions take place within the upper 

triangle in the RP [16], excluding the long diagonal (which 

provides no unique information) and lower triangle (which 

provides only redundant information).   

 

We can derive eight statistical values from a RP using 

RQA. The first value is percent recurrence, quantifies the 

percentage of recurrent points falling within the specified 

radius. For a given window size W, where W refers to the 

recurrence window size after accounting for embedding and 

delay, 

 

Number of recurrent points in triangle* 100
Percent recurrence= 

(W(W-1)/2)
(5) 

 

The second variable is percent determinism and measures 

the percentage of recurrent points that are contained in lines 

parallel to the main diagonal of the RP, which are known as 

deterministic lines. A deterministic line is defined if it contains 

a predefined minimum number of recurrence points. It 

represents a measure of predictability of the system.  

  

Number of points in diagonal lines * 100
Percent determinism = 

Number of recurrence points
(6) 

 

The third recurrence variable is Linemax, which is simply 

the length of the longest diagonal line segment in the plot, 

excluding the main diagonal line of identity (where i = j). This 

is a very important recurrence variable because it inversely 

scales with the most positive Lyapunov exponent [7, 17].  

Positive Lyapunov exponents gauge the rate at which 

trajectories diverge, and are the hallmark for dynamic chaos.  

 

Linemax = length of longest diagonal line in recurrence plot         (7) 

 

The fourth variable value is called entropy and it refers to 

the Shannon entropy of the distribution probability of the 

diagonal lines length. Entropy is a measure of signal 

complexity and is calibrated in units of bits/bin and is 

calculated by binning the deterministic lines according to their 

length. Individual histogram bin probabilities ( )binP   are 

computed for each non zero bin and then summed according to 

Shannon’s equation. 

 

( ) log ( )
2

Entropy P P
bin bin

                  (8) 

 

The fifth statistical value is the Trend which is used to 

detect non stationarity in the data. The trend essentially 

measures how quickly the RP pales away from the main 

diagonal and can be utilized as a measure of stationarity.  If 

recurrent points are homogeneously distributed across the 

recurrence plot, Trend values will hover near zero units. If 

recurrent points are heterogeneously distributed across the 

recurrence plot, Trend values will deviate from zero units. 

Trend is computed as the slope of the least squares regression 

of percent local recurrence as a function of the orthogonal 

displacement from the central diagonal. Multiplying by 1000 

increases the gain of the Trend variable. 

 

Trend = 1000(slope of percent local recurrence vs. displacement)   (9) 

 

For the detection of chaos-chaos transitions, Marwan et al. 

[10] introduced other two additional RQA variables, the Percent 

Laminarity and Trapping time, in which attention is focused on 

vertical line structures and black patches. Percent Laminarity is 

analogous to percent determinism except that it measures the 

percentage of recurrent points comprising vertical line 

structures rather than diagonal line structures. The line 

parameter still governs the minimum length of vertical lines to 

be included.  

 

Number of points in vertical lines*100
Percent Laminarity = 

Number of recurrent points
    (10) 

 

Trapping time on the other hand is the average length of 

vertical line structures.  It represents the average time in which 

the system is ―trapped‖ in a specific state. 

 

Trapping time = average length of vertical lines  parameter line         (11) 

 

The eighth recurrence variable is Vmax, which is simply 

the length of the longest diagonal line segment in the plot. This 

variable is analogous to the standard measure Linemax 

 

Vmax = length of longest vertical line in recurrence plot           (12) 

 
SURROGATE DATA TEST 

The actual intact data RQA results for the fresh tool and 

the worn tool are compared with the RQA results obtained after 

randomizing their data points. It is found that this 

randomization effectively destroyed all the structures revealed 

under the input parameter values chosen earlier as shown in 

Table 3.  For example, with other recurrence variables, 

percentage recurrence and percentage determinism dropped to
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Table 3- RQA values of current and vibration signals for  system using fresh and worn tool using both intact and randomized data sets 
F

re
sh

 T
o

o
l 

Current sensor signals Actual data,  Randomized data,  

Percent recurrence (%) 3.491 0.113 

Percent determinism (%) 80.447 0.362 

Linemax 406 2 

Entropy 3.208 0 

Trend 1.028 0.06 

Percent laminarity (%) 0.00 0.725 

Vmax -- 2 

Trap time -- -- 

Vibration sensor signal Actual data,  Randomized data,  

Percent recurrence (%) 2.625 0.007 

Percent determinism (%) 82.572 0.00 

Linemax 179 -- 

Entropy 2.434 1 

Trend -6.390 0.003 

Percent laminarity (%) 52.445 0.00 

Vmax 4 1 

Traptime 2.116 -- 

 

W
o

rn
 T

o
o

l 

Current sensor signals Actual data,  Randomized data,  

Percent recurrence (%) 2.386 0.162 

Percent determinism (%) 73.827 0.00 

Linemax 597 -- 

Entropy 2.823 -- 

Trend 0.978 -0.007 

Percent laminarity (%) 0 0.506 

Vmax -- 2 

Trap time -- 2 

Vibration sensor signal Actual data,  Randomized data,  

Percent recurrence (%) 1.033 0.014 

Percent determinism (%) 69.462 0.00 

Linemax 98 -- 

Entropy 1.967 -1.00 

Trend 0.498 -0.006 

Percent laminarity (%) 10.828 0.00 

Vmax 3 -- 

Traptime 2.004 -- 

 

around 0–5%. Furthermore, recurrence plots showed a 

homogeneous typology and did not resemble those  for the 

actual intact data. Thus, it may be concluded that the results 

obtained under the present parameterization reflect  true 

properties of the temporal evolution of cutting dynamics and 

contain a degree of deterministic structure.   

MANN-WHITNEY U TEST 
Now, to ascertain whether the differences seen in the 

calculated RQA variable values due to  tool change, i.e. when 

the fresh tool is replaced by the worn tool, is by chance or 

otherwise, the non parametric Mann-Whitney U test [18] is 

carried out to find their statistical significance. The test results
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TABLE 4. RQA Variables – Mann-Whitney U test results 

Recurrence Variable Fresh Tool Worn Tool P(Two tailed) Significance Level 

Current Signal 

Percent recurrence 3.491 2.386 0.014 Marginally significant 

Percent determinism 80.447 73.827 0.0004 Highly significant 

Entropy 3.208 2.823 0.0045 Significantly different 

Vibration Signal 

Percent recurrence 2.625 1.033 0.013 Marginally significant 

Percent determinism 82.572 69.462 0.0016 Significantly different 

Entropy 2.434 1.967 0.0035 Significantly different 

 
 

shows that the difference in values between different sets can 

arise by chance is by about five per cent or less only in case of 

percent recurrence, percent determinism and entropy whereas 

the remaining five parameters are found to be not significantly 

different statistically, as indicated by the respective P (two 

tailed) values in Table 4. This is in contrast to the recent 

theoretical simulation studied by Litak et al. [19] where the 

finding points to Linemax as the most conclusive variable in 

cutting dynamics, but partially in agreement with sensitiveness 

to Shannon’s information entropy.  

 

EPISODIC TEST 
An episodic test conducted on the full length of sample 

datasets (Figure 2) shows a constancy of the significant RQA 

variables within the whole length of data. Here an epoch is 

designed to have a width of 400 data points and is made 

moving by giving a 2 point data shift. Also, the figures show 

wide separations between the means of the values of the 

recurrence variables suggesting of two distinct dynamics. This 

is explained by the source of the data: the upper graph in each 

is from a system using a fresh tool, whereas the lower graph in 

each is from a system using a worn tool. This result 

corroborates and reiterates the Mann-Whitney U test outputs. 

 

Finally, it is to be noted here that the above tests are conducted 

with constant input parameter values for both the datasets: fresh 

as well as worn tool. As a check, we have examined the effects 

on RQA variables if the calculated input parameter values were 

used in RQA.  Since the representative values of worn tool test 

data have been used as the constant input parameters, it is 

sufficient to analyze the fresh tool signal data only, but with the 

calculated input parameter values for it; ie. for current signal  

= 3, for vibration signal  = 6, and the corresponding values for

m  and  are 3, 5 and 10,7 respectively. The RQA results with 

these input parameters indicate a 40—50% increase in percent 

recurrence value while other significant RQA variables; the 

percent determinism and entropy, change by only 1—2%. The 

change in percent recurrence is attributed to the fact that, as the 

embedding dimension decreases from 5 to 3 along with a 

reduction in the threshold radius, the mean distance is found to 

decrease by over 20%. This result justifies the assumption to 

use constant input parameter values for online detection, as it is 

found to have no trade-off in using instantly calculated values 

for the input parameters epoch by epoch.  

 

CONCLUSION 
The study has been initiated with an assumption that 

system output signals (eg. vibration etc.) are much superior to 

the system input signals (eg. current drawn by the system) for 

analyzing the system dynamics. But, the present study could 

not establish such a distinction, implying that either of the 

signals can reliably transmit information.   

 

The surrogate data test shows that the results obtained are 

the true properties of the temporal evolution of cutting process 

dynamics and contain a degree of deterministic structure. 

Moreover, the Mann Whitney U test reveals that the results 

obtained are not due to some form of chance occurrence.  

 

The wide separation between the mean values of RQA 

variables representing the two conditions under study suggest 

that RQA can be an efficient tool in analyzing the time series 

related to tool wear. The advantage being that these features 

can be derived very easily from a noisy or non stationary time 

series signals which often is a challenge in mechanical systems 

signal processing. Also, since the data size and computational 

resource requirements are considerably not demanding in 

comparison to the existing TCM methods, the RQA based 

approach proves to be a cost effective alternative. These factors 

make RQA an attractive feature extraction methodology, 

suitable for deployment in real time cutting processes.  
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Current sensor signals Vibration sensor signals 

  

  

  

 
Figure 2. Episodic recurrence analysis of test results 
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