
Write Amplification Reduction
in Flash-Based SSDs Through Extent-Based Temperature Identification

Mansour Shafaei
Northeastern University

Peter Desnoyers
Northeastern University

Jim Fitzpatrick
SanDisk Corporation

Abstract

We apply an extent-based clustering technique to the problem
of identifying “hot” or frequently-written data in an SSD,
allowing such data to be segregated for improved cleaning
performance. We implement and evaluate this technology in
simulation, using a page-mapped FTL with Greedy cleaning
and separate hot and cold write frontiers. We compare it
with two recently proposed hot data identification algorithms,
Multiple Hash Functions and Multiple Bloom Filters,
keeping the remainder of the FTL / cleaning algorithm
unchanged. In almost all cases write amplification was lower
with the extent-based algorithm; although in some cases
the improvement was modest, in others it was as much as
20%. These gains are achieved with very small amounts
of memory, e.g. roughly 10 KB for the implementation
tested, an important factor for SSDs where most DRAM is
dedicated to address maps and data buffers.

1 Introduction

The performance of log-structured storage systems such
as Flash Translation Layers (FTLs) is often dominated by
cleaning costs—additional internal copy operations which
serve to compact active data and free log segments or flash
erase units for re-use. Early works [13, 14] established
that when the write frequency of a workload is skewed,
resulting in short-lived hot pages and long-lived cold pages,
the performance of simple cleaning methods (i.e. FIFO,
Greedy) suffers due to excessive copying. To improve
performance for realistic non-uniform workloads it is
necessary to take (estimated) data lifetime into account when
selecting segments for cleaning, either via methods such as
Cost-Benefit [13] or CAT [3] which consider data age when
making cleaning selections, or by segregating hot and cold
data into separate pools with different write frontiers [7].

The best performance is achieved by systems using
multiple write frontiers [5], requiring a method to track write

accesses and categorize data as either hot (short expected
time to overwrite or TRIM) or cold (long expected data
lifetime). Practical methods for doing so are memory-
constrained, as though even consumer-class SSDs have a fair
amount of memory, the LBA space to be tracked is huge (e.g.
256M 4 KB pages for a 1 TB SSD) and other functions such
as the address map itself have high memory requirements.
Yet accurate identification of hot data is important as well, in
order to group data with similar lifetimes in the same erase
unit and thereby achieve better cleaning efficiency.

A number of different techniques have been proposed
for hot data identification; however we assert that much
previous work suffers from the following deficiencies:

• Use of per-LBA tracking. As drives get larger and
faster, the number of blocks written grows faster than
the number of distinct IOs, resulting in workloads
comprised of long (yet unaligned) extents. We assert
that interval or extent-based methods may be more
effective for efficiently monitoring such workloads.

• Measurement of “accuracy” of hot data operation,
rather than performance of the hot data-informed FTL.

In the remainder of this paper we provide more
background on prior in this area, justify our choice of
extent-based methods with selected trace measurements,
and then describe and evaluate ETI, the Extent-based
Temperature Identification algorithm.

2 Background and Prior Work

Methods for identifying hot data for cleaning purposes fall
into several classes. Implicit algorithms [7] use LRU-like
queues where infrequently-updated data is pushed to the
bottom; explicit algorithms track per-LBA data access
frequency and/or recency; finally the length heuristic [8]
makes use of the fact that short host writes frequently
correspond to shorter-lived data. In this work we focus solely
on explicit hot data identification algorithms.

 0

 300

 600

 900

 1200

 1500

 1 2 4 8 16 32 64 128 256 512 1024

N
u
m

b
er

 o
f

h
o
t

d
at

a
ex

te
n
ts

Minimum cold extent length

proj_0
src1_2
src2_0
usr_0

SW1-R0Lv1

Figure 1: Hot extents after merging. Extents separated by
less than k cold sectors (X axis) were merged; remaining
number of hot extents is shown. Sector size=4 KB

The simplest of these, the direct algorithm [7], maintains a
per-page exponentially weighted moving average (EWMA)
of writes to that page, requiring one counter per page and
periodic aging where all counters are multiplicatively de-
creased, e.g. divided by two. This algorithm is effective, but
clearly requires excessive resources. Hsieh’s Multiple Hash
Functions [7] algorithm approximates the direct algorithm
using a counting Bloom filter with saturating counters and
periodic aging. Park et al.’s Multiple Bloom Filter [12] al-
gorithm instead uses an array of k Bloom filters (f1, f2,··· fk)
corresponding to trailing intervals of duration τ, where an
LBA is marked in filter fi if either one or more writes to that
LBA occurred in the period i (i.e. t−(i+1)τ···t−iτ) or at
least i writes to that LBA occurred in periods 1,2,···i−1.

3 Clustering for Hot Data Identification

Data temperature identification can be considered as a
density-based stream clustering problem, where writes are
located in a 1-dimensional space (LBAs) and the density
of each given address is determined by the number of
writes it receives. Although clustering techniques have
been widely studied in the artificial intelligence domain,
such techniques do not appear have been used for storage
workload characterization1.

3.1 Existing clustering schemes

Density-based clustering is the procedure to find arbitrary
shape clusters based on the density of data in a given
address space, forming dense clusters separated by sparse
areas. These algorithms are typically categorized as either
grid-based e.g. [10] and [2] or micro-clustering e.g. [6] and
[9] schemes; in this research we examine micro-clustering
techniques due to their (usually) higher accuracy. These

1Chiang’s DAC (Dynamic Data Clustering) [4] is a technique for
segregation of hot and cold data, not clustered measurement.

10
-4

10
-3

10
-2

10
-1

 2 4 8 16 32 64 128 256 512 1024

5%

M
is

-i
d
en

ti
fi

ed
 c

o
ld

 w
ri

te
s

Minimum cold extent length

src1_2
proj_0
src2_0
usr_0

SW1-R0Lv1

Figure 2: Cold data mis-prediction rate after merging.
Value shown is the fraction of all cold writes which were
mis-classified due to extent merging.

techniques use a set of statistical metrics such as center,
radius and weight to determine dense areas2. The weight
is adjusted by a decay function to give more weight to recent
inputs, and final clusters are identified as those with weight
above a defined threshold. Denstream [1] is an example of
such a scheme; it defines two types of micro-clusters (outlier
and potential) based on their weight. A new point is added
to the micro-cluster with the closest center, as long as it does
not expand the cluster enough to violate a maximum defined
radius; otherwise an outlier cluster is created. Outliers
are promoted to potential micro-clusters when they pass a
certain threshold; if aging causes potential micro-clusters to
drop below another threshold, they are removed. Intuitively
these methods appear appropriate for identifying hot data
for cleaning algorithms, as these data accesses are both
sparse (in part due to today’s large LBA spaces) and highly
non-uniform, with significant spatial locality.

3.2 Applicability to storage workloads

To help determine whether clustering techniques are in
fact applicable to storage workloads, we perform a series
of trace-driven tests, using the well-known MSR block
traces [11] (proj 0, src1 2, src2 0, usr 0) as well as a trace
provided by an industry partner (“SW1”). We approximate
the limited timescale examined by an online algorithm by
splitting each trace into fairly short sequences (1 GB of writes
each) and taking measurements on each segment, looking
at (a) how many extents are needed to accurately represent
the hot data map for a sequence, and (b) how much accuracy
is lost by merging extents separated by small amounts of
cold data, treating the merged range as entirely hot.

Traces were split into sequences, each containing 1 GB
of writes, and statistics (assuming a 4 KB sector size) were
measured for each sequence, with hot pages defined as

2Most of the literature refers to 2 or 3 dimensions; we will instead work
with 1-dimensional LBA extents.

2

hot cold hot cold write
Trace pages pages writes writes length
proj 0 23500 39800 181700 62100 10.2
src1 2 21200 41700 172900 67800 8.2
src2 0 7100 29300 157800 55000 1.9
usr 0 6100 36000 163100 63800 2.6
SW1 2100 198000 9600 222000 21.6

Table 1: Mean per 1 GB data written: unique hot (4 KB)
pages, cold pages, writes (4 KB) to hot pages, writes to cold
pages, mean write length (4 KB pages).

those written to 4 times or more during a 1 GB sequence.
Hot pages were grouped into compact extents (i.e. with
no intervening cold pages), and a map constructed of these
extents; the map was then used to classify data in the same
trace sequence. We then merge adjacent extents if they were
separated by less than k cold pages, with k ranging from 2
to 1024; when the resulting approximate maps are used to
classify accesses within the section, some cold accesses will
be mistakenly classified as hot.

In Figures 1 and 2 we see the mean map size (i.e.
number of extents) and inaccuracy (fraction of cold writes
mis-classified) as k increases from 1 (no map compression)
to 1024. The hot data map is small to begin with—a
thousand or two, or less—and shrinks down to a few hundred
as nearby segments are coalesced. Accuracy is high, and
in all but one case the number of map segments can be
cut in half with less than 5% misclassification3. We can
compare these results with the page-level statistics in Table 1.
Although tracking independent pages may be done more
simply (e.g. via a Bloom filter) than extents, we see that
page tracking must track orders of magnitude more items.

4 Extent-Based Temperature Identification

Extent-based Temperature Identification (ETI) is a 1-
dimensional density-based clustering scheme which splits
the address space into up to N hot and cold extents of
different sizes. It begins with a single extent covering the
entire address space, then splits extents in response to host
writes, and merges extents in a periodic aging process. The
algorithm is shown in Figure 1; more intuitively, given a
write to an extent of length L starting at LBA A:

• If the write matches an extent exactly (case A in Figure
3): increment the extent counter.

• If the write does not match an extent and the number
of extents is less than the maximum N: split extents
at A and A+L, so that the extent is now matched by

3This does not imply that online algorithms using an extent map can
predict hot accesses with such accuracy; however we believe it is strong
evidence that an approximate extent map can efficiently represent the
information needed by a realistic online algorithm, with small or negligible
loss in accuracy.

1 3 2 0

Initial State

2 3 2 0

Exact match: just increment

2 3 2 0 1

Aligned partial write: split extent, inheriting
counter value, then increment

2 3 2 0 1 1

Contained overwrite: extent splits into 3 parts

A:	

B:	

C:	

D:	 2 3 3 0 2 1

Full overlap: two extents split into 4

Figure 3: ETI Extent/Counter Update (see description in text)

Algorithm 1: Updating the latest found extent’s info
while updating extents

if Splitting an extent or more then
for Every split before latest found extent do

latest index+=1
for Splits within the latest found extent do

latest upper bound-=(2nd sub-extent’s
coverage+probable 3rd sub-extent’s coverage)

else if Merging extents then
for Every merged extent
composed of extents before latest found extent do

latest index-=(number of its initial extents-1)
for Merged
extent composed of the latest found extent do

for Its
every initial extent before latest found extent do

latest index-=1
for Its
every initial extent after latest found extent do

latest upper bound-=extent’s coverage

1 or 2 new extents, and increment appropriate counters.
(see cases B, C, and D in Figure 3).

• If the write does not match exactly but the number
of extents has reached N: for each extent overlapping
[A···A+L) by a fraction greater than α: increment the
extent counter.

ETI periodically decays counter values and merges extents
as follows:

• Divide all counters by two
• Merge all adjacent hot extents with equal counter values
• Merge all adjacent cold extents (i.e. those with counter

values less than β)

3

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

Hdp1B-R0Lv1Hdp1B-R6Lv1DB1-R6Lv1 Bup1-R6Dv1Hdp1B-R6Dv1Hdp2-R6Dv1DB1B-R0Lv1 src1_2 stg_0 hm_0 src2_0 usr_0

W
ri

te
 A

m
p
li

fi
ca

ti
o
n

Trace

MHF1
MHF2
MHF3
MBF1
MBF2
MBF3

ETI

Figure 4: Write amplification seen for different traces using implemented temperature identification schemes

Note that where prior algorithms such as MBF and MHF
operate once per block written, ETI is executed once per
write operation. With write lengths in the traces examined
ranging from 2-5 4 KB pages in the MSR traces, from
2007, to 25-30 pages in the more recent partner-supplied
traces, this is a significant reduction in execution frequency.
The algorithm is slightly more complex, requiring an
ordered search structure for extents, although one of limited
length. The lookup operation may be further optimized by
taking advantage of spatial locality in write workloads, and
beginning each search at the location of the last update.

5 Experimental Results

We measure the efficiency of ETI in terms of write amplifi-
cation reduction it can provide. Hence, we implement it in
a high-level SSD simulator [5] and feed it with 1) selected
MSR traces as well as 2) a set of traces provided by an indus-
trial partner. The partner traces represent traffic received by
several devices in three different RAID arrays—RAID-0 and
two RAID-6 variants—under different workload conditions—
two backup applications, a database, a Hadoop HDFS cluster,
and an unspecified software application. The simulator is
configured with 32K of 128-page blocks, 7% spare factor,
and a global greedy cleaning algorithm with hot and cold
data segregation. To get stable results, we sequentially write
the entire address space once and then uniformly twice before
running the target trace. In each experiment the total volume
of data written was 2× the volume size; workload traces were
truncated or repeated in order to reach the required length.

We compare ETI with Multiple Hash Functions (MHF)
and Multiple Bloom Filters (MBF), implemented in the same
simulator. Default parameters for each algorithm, including
hash functions, are given in Table 2. In some cases MHF
and MBF seemed sensitive to the particular hash functions
used; we thus provide results for three variants of each.

Figure 4 shows the write amplification for different traces
using each implemented scheme. As it can be seen, ETI

Table 2: Default parameters for implemented schemes
Scheme ETI MBF MHF

Extent (Table or BF) size Max of 2048 2048 2048
Counter Width 4-bit 4-bit 4-bit
Decay Period 4096 4096 4096

Hot/Cold Threshold 4 4 4
Splitting Threshold (α) 100% N/A N/A
Merging Threshold (β) 4 N/A N/A

Number of Hash Functions N/A 2 2
Type of Hash Functions N/A CRC CRC
BF Weight Difference N/A 0.5 N/A

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

DB1-R6Lv1src1_2 stg_0 hm_0 src2_0 usr_0

W
ri

te
 A

m
p
li

fi
ca

ti
o
n

Trace

2048 4096 8192

Figure 5: Effects of increasing bloom filter size on write
amplification reduction

reduces write amplification of traces such as src2 0 up to
21.3%, performing no worse than MHF in all cases and only
slightly worse (4%) than MBF for one trace, Hdp1B-R6Dv1.

Although ETI promises better (or at least equal) perfor-
mance compared to hashing based schemes, a valid question
is how MBF or MHF would behave in case the extra memory
used for keeping ETI’s metadata was spent on creating larger
hash tables or Bloom filters. To answer this question, we
increase the size of the MBF Bloom filters by factors of two

4

 0

 500

 1000

 1500

 2000

 2500

H
d
p
1
B

-R
0
L

v
1

H
d
p
1
B

-R
6
L

v
1

D
B

1
-R

6
L

v
1

B
u
p
1
-R

6
D

v
1

H
d
p
1
B

-R
6
D

v
1

H
d
p
2
-R

6
D

v
1

D
B

1
B

-R
0
L

v
1

sr
c1

_
2

st
g
_
0

h
m

_
0

sr
c2

_
0

u
sr

_
0

M
ax

.
N

u
m

b
er

 o
f

E
x
te

n
ts

 i
n
 U

se

Trace

Figure 6: Number of extents being used for different traces
with maximum possible extent set at 2048

and four, examining the traces on which ETI achieved the
highest gains; results are shown in Figure 5. In four cases
this resulted in modest improvements, significantly less than
that achieved by ETI, while in two cases write amplification
actually increased by negligible amounts.

To further examine the behavior of ETI we measure the av-
erage number of extents during each test run, as shown in Fig-
ure 6. The shorter partner traces with high mean write lengths
result in small extent tables, with a working set of a few hun-
dred extents. These traces show low write amplification and
little improvement from ETI relative to MHF and MBF. In
contrast the more complex MSR traces make use of the full
extent table; these are also the workloads with highest write
amplification, and on which ETI achieves more significant
performance improvements. From this we infer that in these
high write amplification cases ETI is able to identify hot data
with increased accuracy, resulting in reduced cleaning costs.

Finally we evaluate the sensitivity of ETI to its extent split
ratio and merging parameters, α and β . Setting α to 90%
and 80% and changing β from 4 to 3 and 2 show negligible
(<2%) changes in experimental results.

6 Conclusion

Much prior work on identifying frequently updated data has
focused on the measured ability of proposed algorithms to
detect addresses which fit the author’s definition of “hot”.
We assert that since the entire purpose of identifying hot
data is to segregate hot and cold data, thereby reducing write
amplification, that the appropriate metric by which such
an algorithm should be measured is in fact that reduction
in write amplification.

Using this criteria we present an extent-based hot data
tracking algorithm, ETI, which when combined with a dual

frontier, page-mapped Greedy translation layer is shown
to improve write amplification by up to 20% over both
Multiple Hash Functions and Multiple Bloom Filters.

7 Acknowledgments

This work has been supported by the National Science
Foundation under grant CNS-1149232, and by a NetApp
Faculty Fellowship.

References

[1] CAO, F., ESTER, M., QIAN, W., AND ZHOU, A. Density-based
clustering over an evolving data stream with noise. In SIAM ’06
(2006), pp. 328–339.

[2] CHEN, Y., AND TU, L. Density-based clustering for real-time stream
data. In Proc. SIGKDD Int’l Conf. on Knowledge Discovery and Data
Mining (2007), pp. 133–142.

[3] CHIANG, M.-L., AND CHANG, R.-C. Cleaning policies in mobile
computers using flash memory. J. Syst. Softw. 48, 3 (1999), 213–231.

[4] CHIANG, M.-L., LEE, P. C. H., AND CHANG, R.-C. Using data
clustering to improve cleaning performance for flash memory. Soft-
ware: Practice and Experience 29, 3 (Mar. 1999), 267–290.

[5] DESNOYERS, P. Analytic modeling of SSD write performance. In
SYSTOR (2012), pp. 1–10.

[6] FORESTIERO, A., PIZZUTI, C., AND SPEZZANO, G. A single
pass algorithm for clustering evolving data streams based on swarm
intelligence. Data Min. Knowl. Discov. 26, 1 (Jan. 2013), 1–26.

[7] HSIEH, J.-W., KUO, T.-W., AND CHANG, L.-P. Efficient identifica-
tion of hot data for flash memory storage systems. Trans. Storage 2, 1
(Feb. 2006), 22–40.

[8] IM, S., AND SHIN, D. ComboFTL: Improving performance and
lifespan of MLC flash memory using SLC flash buffer. Journal of
Systems Architecture 56, 12 (Dec. 2010), 641–653.

[9] ISAKSSON, C., DUNHAM, M. H., AND HAHSLER, M. Sostream:
Self organizing density-based clustering over data stream. In
MLDM’12 (Berlin, Heidelberg, 2012), Springer-Verlag, pp. 264–278.

[10] JIA, C., TAN, C., AND YONG, A. A grid and density-based clustering
algorithm for processing data stream. In WGEC ’08 (Sept 2008),
pp. 517–521.

[11] NARAYANAN, D., DONNELLY, A., THERESKA, E., ELNIKETY, S.,
AND ROWSTRON, A. Everest: scaling down peak loads through I/O
off-loading. In OSDI (San Diego, California, 2008), pp. 15–28.

[12] PARK, D., AND H.C. DU, D. Hot data identification for flash-based
storage systems using multiple bloom filters. In MSST ’11 (2011),
pp. 1–11.

[13] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and imple-
mentation of a log-structured file system. In 13th ACM symposium on
Operating systems principles (Pacific Grove, California, United States,
1991), ACM, pp. 1–15.

[14] WU, M., AND ZWAENEPOEL, W. eNVy: a non-volatile, main
memory storage system. In ASPLOS ’94 (1994), pp. 86–97.

5

