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Abstract 

In common interest games, players generally manage to coordinate their actions on mutually optimal outcomes, but 
orthodox game theory provides no reason for them to play their individual parts in these seemingly obvious 
solutions and no justification for choosing the corresponding strategies. A number of theories have been suggested 
to explain coordination, among the most prominent being versions of cognitive hierarchy theory, theories of team 
reasoning, and social projection theory (in symmetric games). Each of these theories provides a plausible 
explanation but is theoretically problematic. An improved theory of strong Stackelberg reasoning avoids these 
problems and explains coordination among players who care about their co-players’ payoffs and who act as though 
their co-players can anticipate their choices. Two experiments designed to test cognitive hierarchy, team reasoning, 
and strong Stackelberg theories against one another in games without obvious, payoff-dominant solutions suggest 
that each of the theories provides part of the explanation. Cognitive hierarchy Level-1 reasoning, facilitated by a 
heuristic of avoiding the worst payoff, tended to predominate, especially in more complicated games, but strong 
Stackelberg reasoning occurred quite frequently in the simpler games and team reasoning in both the simpler and the 
more complicated games. Most players considered two or more of these reasoning processes before choosing their 
strategies. 
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As Schelling (1960, chap. 3) was the first to demonstrate empirically, human decision makers 

are remarkably adept at coordinating their actions and their expectations of one another’s actions, 
but it is surprisingly difficult to explain how they achieve this. Game theory provides the 
appropriate framework for formulating coordination problems rigorously, but although this helps 
to clarify the problem, it also exposes what is arguably game theory’s most conspicuous 
limitation, namely its indeterminacy—its failure to generate determinate solutions to many 
games, the prime examples being games of common interest. 

Consider the following problem of coordination between doubles partners in a tennis match. 
The server has to choose between aiming the service wide or down the center line, and the 
server’s partner has to prepare to intercept a service return from either a wide or center line 
service. Let us assume that the partners have not discussed the service but are twice as likely to 
win the point if both choose the wide rather than the center option and have no chance of 
winning the point if they choose different options, given the particular circumstances at the time. 
If both players know all this, then they are involved in a coordination problem with a strategic 
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structure corresponding to the Hi-Lo game shown in Figure 1, where wide corresponds to H and 
center to L. 
 
   Player 2 
   H L 

 Player 1 H 2, 2 0, 0 
L 0, 0 1, 1 

 
Figure 1. The Hi-Lo game, with a payoff-dominant Nash equilibrium at (H, H) and a dominated equilibrium at (L, 
L). 

 
In the payoff matrix depicted in Figure 1, Player 1 chooses a strategy represented by a row, 

either H or L and, independently of Player 1, Player 2 chooses a strategy represented by a 
column, either H or L. The outcome of the game is one of the four cells where the chosen 
strategies intersect. The numbers in each cell represent the payoffs to Player 1 and Player 2 in 
that order. In this game, it is in both players’ interests to coordinate their strategy choices on 
either the (H, H) or the (L, L) outcome, and (H, H) is obviously better for both than (L, L); this is 
represented by the payoffs of 2 to each player in (H, H), 1 to each in (L, L), and 0 to each in 
outcomes in which they fail to coordinate. More generally, any 2 × 2 game with payoffs of (a, a) 
and (b, b) in the main diagonal and zero elsewhere is a Hi-Lo game, provided that 0 < b < a, and 
all such games are strategically equivalent. 

Like any other game, the Hi-Lo game is an idealized abstraction of a potentially unlimited 
number of social interactions sharing a common strategic structure. To illustrate this point, one 
further radically different example of a Hi-Lo interaction will suffice. Consider a scenario in 
which three children are trapped in a burning building, two of them in one room and the third in 
a second room some distance away. A neighbor breaks in and has just enough time to rescue 
either the two children in the first room or the single child in the second room, but the rescue can 
succeed only if another neighbor with a fire extinguisher, who has found a different point of 
entry, heads straight for the same room. If both neighbors go to the first room, then the two 
children in it will be rescued, and if both go to the second room, then the single child in that 
room will be rescued; but if each neighbor goes to a different room, then none of the children 
will be rescued. If both neighbors know all this, then the strategic structure is once again the Hi-
Lo game shown in Figure 1, with the first room corresponding to H and the second room to L. As 
in the previous example, it is in both players’ interests to coordinate their strategy choices on 
either the (H, H) or the (L, L) outcome, and both prefer (H, H) to (L, L) if their objective is to 
save as many lives as possible. The game model strips out complicating factors such as dynamic 
visual monitoring and adjustment in tennis or communication via cellphones in a fire emergency. 
It is not difficult to think of other lifelike examples of the Hi-Lo game; see Bacharach (2006, pp. 
36-42) and Sugden (2005, pp. 181-182) for several further suggestions. 

The Hi-Lo game is the simplest example of a common interest game, a class of games that 
illustrate most starkly the inability of game theory to explain strategic coordination. A common 
interest game is one in which a single strategy profile or outcome strongly payoff-dominates all 
others, in the sense that it yields strictly better payoffs to every player than any other outcome 
and is therefore jointly optimal for all (Anderlini, 1999; Aumann & Sorin, 1989). It seems 
intuitively obvious that rational players will choose H in the Hi-Lo game, resulting in the payoff-
dominant outcome (H, H), and it is therefore surprising that game theory provides a player with 
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no reason or justification for choosing H. To see why this is so, consider the following standard 
common knowledge and rationality assumptions of game theory: 

1. Common knowledge: The specification of the game, represented in a simple two-player 
case by its payoff matrix, together with everything that can validly be deduced from it, is 
common knowledge in the game, in the sense that both players know it, know that both know it, 
know that both know that both know it, and so on. 

2. Rationality: The players are instrumentally rational in the sense of always choosing 
strategies that maximize their own individual payoffs, relative to their knowledge and beliefs, 
and this too is common knowledge in the game. 

On the basis of these assumptions, Player 1, for example, has a reason to choose H in the Hi-
Lo game if and only if there is a reason to expect Player 2 to choose H. The “only if” condition 
arises from the fact that H is not an unconditionally best strategy, because if Player 2 were to 
choose L, then Player 1 would do better by also choosing L. The crucial question is therefore 
whether Player 1 has a reason to expect Player 2 to choose H. The answer is no, because the 
symmetry of the game ensures that Player 2 faces exactly the same dilemma, having no reason to 
choose H in the absence of a reason to expect Player 1 to choose it. 

This problem of coordination cannot be solved by pointing out that the (H, H) outcome is 
more salient or prominent than (L, L), because of its superior payoffs, or in other words that it is 
a focal point in the sense of Schelling (1960), although it obviously is. Gilbert (1989) provided a 
rigorous and conclusive argument showing that “mere salience is not enough to provide rational 
agents with a reason for action (though it would obviously be nice, from the point of view of 
rational agency, if it did)” (p. 69, italics in original). She showed that a player has no reason to 
choose a salient focal point in the absence of a reason to expect the co-player to choose it. Any 
attempt to derive a reason for choosing H from the standard common knowledge and rationality 
assumptions generates a vicious circle that loops back to the starting point without reaching any 
definite conclusion (Anderlini, 1999; Aumann & Sorin, 1989; Bacharach, 2006, chap. 1; 
Bardsley, Mehta, Starmer, & Sugden, 2010; Cooper, DeJong, Forsythe, & Ross, 1990; Crawford 
& Haller, 1990; Harsanyi & Selten, 1988; Janssen, 2001). The problem of coordination is of 
central importance to our understanding of human social behavior, and it arises frequently in 
everyday strategic interactions, but it is poorly understood, and both psychologists and decision 
scientists have failed to pay it as much attention as it deserves. 

The fundamental solution concept of game theory is Nash equilibrium (Nash, 1950, 1951). In 
a two-player game, a Nash equilibrium is a pair of strategies that are best replies to each other, a 
best reply being a strategy that maximizes the payoff of the player choosing it, given the strategy 
chosen by the co-player. It follows from this definition that any pair of strategies that are out of 
equilibrium constitute an outcome that is necessarily self-destabilizing, because at least one 
player could have done better by acting differently and therefore has a motive to avoid that 
outcome. In the Hi-Lo game, (H, H) is a Nash equilibrium, because if Player 1 chooses row H, 
then Player 2’s best reply is column H (because 2 > 0), and if Player 2 chooses column H, then 
Player 1’s best reply is row H for the same reason. The H strategies are best replies to each other, 
but essentially the same argument establishes that (L, L) is also a Nash equilibrium, because L is 
a best reply to L for both players, although with lower payoffs of 1 to each. The game also has a 
mixed-strategy equilibrium, the details of which need not detain us here, in which both players 
choose randomly with probabilities of 1/3 H and 2/3 L. The outcomes (H, L) and (L, H) are both 
out of equilibrium, neither strategy being a best reply to the other. The (H, H) equilibrium 
payoff-dominates (or Pareto-dominates) all other outcomes of the game, including the (L, L) and 



In press: Decision.   © 2014 American Psychological Association. DOI: 10.1037/dec0000001  4 

mixed-strategy equilibria, in the sense that both players receive higher payoffs in (H, H) than in 
any other outcome of the game, and the Hi-Lo game is therefore a common interest game. 
However, there is no reason, based on the standard assumptions of game theory, for either player 
to choose H, and neither the influential subgame-perfect equilibrium introduced by Selten (1975) 
nor any of the other Nash equilibrium refinements that have been proposed solves this 
surprisingly tricky problem. 

A celebrated indirect argument, first put forward by von Neumann and Morgenstern (1944, 
section 17.3.3, pp. 146–148) in relation to strictly competitive games and later generalized to 
other games by Luce and Raiffa (1957, pp. 63–65, 173) proves that if a game has a uniquely 
rational solution, then that solution must be a Nash equilibrium. The proof can be outlined for a 
two-player game as follows. The standard common knowledge and rationality assumptions imply 
that if a game has a uniquely rational solution—in a two-player game, if it is uniquely rational 
for Player 1 to choose a particular strategy 1s  and for Player 2 to choose a particular strategy 2s
—then those strategies must be best replies to each other, because common knowledge ensures 
that each player can anticipate the other’s strategy and will choose a best reply to it. Because 1s  
and 2s  are best replies to each other, they are in Nash equilibrium by definition. However, 
although a uniquely rational solution must necessarily be a Nash equilibrium, the theory is 
indeterminate in games with two or more Nash equilibria, even in common interest games in 
which one equilibrium is better for both players than any other, because the standard common 
knowledge and rationality assumptions provide no reason for choosing strategies associated with 
a payoff-dominant equilibrium (Harsanyi & Selten, 1988). Nevertheless, in the Hi-Lo game, for 
example, experimental evidence confirms that, in practice, more than 96% of players manage 
without difficulty to coordinate on the obvious payoff-dominant (H, H) equilibrium (Bardsley et 
al., 2010). 

 
Ad-Hoc Explanations 

How can coordination in common interest games be explained? In particular, what accounts 
for the powerful intuition that it is rational to choose strategies associated with payoff-dominant 
Nash equilibria in the Hi-Lo game and other common interest games? Harsanyi and Selten 
(1988) called this the payoff-dominance problem and discussed it at length in relation to the Stag 
Hunt game shown in Figure 2. Like the Hi-Lo game, the Stag Hunt game is a common interest 
game with two Nash equilibria in the main diagonal, (C, C) payoff-dominating (D, D). It is 
named after Rousseau’s (1755, Part II, paragraph 9) example of two hunters who need to 
cooperate (C) to catch a stag, but who are both tempted to defect (D) and chase after a hare, 
which they can catch without each other’s help. (In Harsanyi and Selten’s version shown in 
Figure 2, if both players defect, then they are slightly less likely to catch hares, perhaps because 
they may chase after the same one.) 

 
   Player 2 
   C D 

 Player 1 C 9, 9 0, 8 
D 8, 0 7, 7 

 
Figure 2. The Stag Hunt game, with a payoff-dominant Nash equilibrium at (C, C) and a payoff-dominated Nash 
equilibrium at (D, D). 
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Harsanyi and Selten (1988) solved the problem by introducing a payoff-dominance principle 

as an axiom of rationality. According to this principle, it is simply an axiomatic feature of human 
rationality that if one Nash equilibrium payoff-dominates all others in a game, then players will 
choose the strategies associated with it. Harsanyi and Selten proposed this principle (together 
with a secondary risk-dominance principle that we need not discuss here) merely as a temporary 
workaround, acknowledging that it provides no explanation for the fact that payoff-dominant 
equilibria are easily chosen by players in practice, or for the powerful intuitive appeal of such 
solutions (see their comments on pp. 355–363). Janssen’s (2001, 2006) principle of individual 
team member rationality is a weak variant of the same ad-hoc axiom, applying to payoff-
dominant outcomes whether or not they are Nash equilibria. 

A number of other researchers have grasped the nettle and attempted to explain the payoff-
dominance phenomenon. Following these introductory remarks, we critically review the most 
prominent explanations. We refer to these explanations as theories, restricting the term strategies 
to the game-theoretic sense of options that players can choose in any particular game. We leave 
aside theories that depend on essential alterations of the rules of the game—that it is played just 
once and that players choose their strategies independently—particularly those that require 
repetitions of the game (Anderlini & Sabourian, 1995; Aumann & Sorin, 1989) or costless pre-
play communication or “cheap talk” between the players (Anderlini, 1999; Ellingsen & Östling, 
2010; Farrell, 1988; Rabin, 1994). Among the theories that we discuss is a theory of strong 
Stackelberg reasoning, designed to avoid the problems associated with other theories and 
presented here for the first time in its improved form. We then report the results of two 
experiments designed to compare the performance of the leading theories against one another, 
and we conclude with a discussion of the results. 

 
Principle of Indifference and Theory of Rational Beliefs 

According to the principle of indifference (Keynes, 1921, pp. 41–64), also called the 
principle of insufficient reason, we may assign equal probabilities to events whenever there is no 
reason to believe that one is more probable than another. A common fallacy (e.g., Gintis, 2003; 
Monterosso & Ainslie, 2003) involves an attempt to apply this principle to the payoff-dominance 
problem, using an argument along the following lines. In the Hi-Lo game shown in Figure 1, if 
Player 1 does not know which strategy Player 2 is likely to choose, then Player 1 may assign 
equal probabilities to Player 2’s strategies. Player 1’s expected payoff from choosing H is then 
(1/2 × 2) + (1/2 × 0) = 1, and because this is better than the expected payoff from choosing L, 
namely (1/2 × 0) + (1/2 × 1) = 1/2, it is rational for Player 1 to choose H and, by symmetry, it is 
also rational for Player 2 to choose H. This appears to establish a reason for choosing strategies 
associated with the payoff-dominant Nash equilibrium (H, H). Unfortunately, it is not valid to 
assign probabilities to a co-player’s strategies in this way, as the following proof by reductio ad 
absurdum shows (Colman, 2003a). According to the standard common knowledge assumption 
(1) stated formally earlier in the article, Player 1’s deduction that it is rational to choose H, if it 
were valid, would be common knowledge in the game, and according to the rationality 
assumption (2), Player 2 would therefore choose H with certainty, contradicting Player 1’s initial 
assumption that this probability is 1/2. Therefore, Player 1 cannot apply the principle of 
indifference without contradiction. 

Other versions of this argument, more subtle but equally invalid, are also based on subjective 
probabilities. For example, Hausman (2003) invoked the theory of rational beliefs as a basis for 
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arguing as follows: “Player 1 can believe that the probability that Player 2 will play H is not less 
than one-half, and also believe that Player 2 believes the same of Player 1. Player 1 can then 
reason that Player 2 will definitely play H, update his or her subject probability accordingly, and 
play H” (pp. 163–164).1 But why should a player believe that the probability is not less than 1/2 
that the co-player will choose H? Can Player 1 believe that the probability is not less than 3/4 
and then apply the same reasoning? The absurdity becomes clear if we carry this to its logical 
conclusion and assume Player 1 believes that the probability is not less than unity that Player 2 
will play H. This exposes the hidden logical fallacy of begging the question (petitio principii) or 
assuming what we are trying to prove. Solutions of this type, together with those based on the 
principle of indifference, are spurious, and we do not include them in our experimental tests, 
described later in this article. 

 
Social Projection Theory 

Social projection theory (Acevedo & Krueger, 2004, 2005; Krueger, 2007, 2008; Krueger & 
Acevedo, 2005; Krueger, DiDonato, & Freestone, 2012) rests on a fundamental assumption that 
people tend to project their preferences and intentions on to others and, in particular, that “most 
people have a strong expectation that members of their own groups will act as they themselves 
do” (Krueger, 2008, p. 399). In the Hi-Lo game (Figure 1), a player therefore expects either 
strategy choice to be matched by the co-player. The payoff from choosing H is thus expected to 
be 2 and from choosing L it is expected to be 1, and a rational player has a reason to choose H, 
because 2 > 1. This theory seeks to explain not only coordination in symmetric common interest 
games, but also cooperation in social dilemmas, from the assumption that players expect their 
strategy choices to be matched. 

A mathematical foundation for social projection theory was first suggested by Dawes (1989) 
in his rationalization of the false consensus effect, later elaborated by Krueger (1998), Dawes 
(2000), and Krueger, DiDonato, and Freestone (2012), among others. Suppose that you have 
literally no basis for predicting whether your co-player will choose H or L in the Hi-Lo game. 
You apply the principle of indifference and, in the terminology of Bayesian decision theory, start 
off with a uniform prior—your initial subjective probability that your co-player will choose the 
H strategy is P(H) = 1/2. Suppose further that you decide to choose H. Your own choice provides 
data that you should use to update your probability estimate of the co-player’s choice to P(H) > 
1/2. Dawes argued that there is no good reason to ignore it, because it is empirical evidence of 
how people behave, even though the size of the sample is just N = 1 and its only member is you. 
We can model this with the process of judging the probability that a ball drawn from an urn will 
be red, assuming that the urn contains an unknown mixture of red and black balls, every possible 
ratio of red and black balls being equally likely. Initially, you have no way of knowing the 
composition of the urn, so it seems reasonable to start with a uniform prior. Suppose that you 
then draw a single ball, note that it is red, and replace it in the urn. Your task is to estimate the 
probability that a second draw will produce another red ball. Your estimate should be influenced 
by the color of the first ball, because whatever your prior before drawing any balls, a red ball 
should nudge your posterior (the probability of a second red ball) higher. This appears to provide 
a reason for choosing H in the Hi-Lo game, because if you choose H and consider your own 
choice as evidence, you should expect that your co-player will probably choose H also. 

Dawes (1989, 1990, 2000) claimed that, according to Bayesian theory, a person who starts 
out with a uniform prior, P(H) = 1/2, should update the probability to P(H) = 2/3 after drawing a 
single red ball. He offered several heuristic arguments and partial proofs, and other researchers 
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have repeated his claim but, as far as we are aware, no complete proof has appeared. The result 
is, however, correct, and the phenomenon turns out to be a special case of Laplace’s rule of 
succession (see Kendall, 1945, pp. 176–177). In Appendix A we provide a proof of it that is not 
difficult but (surprisingly) requires integral calculus. The relevance of this to social projection 
theory is that a player with a uniform prior who chooses either H or L in the Hi-Lo game shown 
in Figure 1 should assign a probability of 2/3 to the event that the co-player will choose the 
matching strategy. It is argued that a player’s expected payoff from choosing H is therefore (2/3 
× 2) + (1/3 × 0) = 4/3, and from choosing L is (1/3 × 0) + (2/3 × 1) = 2/3, therefore a player who 
is rational in the sense of the rationality assumption (2) stated formally earlier in the article will 
choose H. This is the mathematical foundation of the social projection theory of coordination in 
common interest games first suggested by Acevedo and Krueger (2004, 2005). 

There are two main problems with this. The first is that the Bayesian reasoning underlying it 
applies only if players have no grounds whatsoever, apart from the evidence of their own 
choices, for judging the probabilities associated with the choices of others. This condition is 
never satisfied in real-life social interactions. Past experience invariably provides clues from 
similar interactions that are bound to influence a player’s assessment of the probabilities. In fact, 
in the context of past experience, a player’s own choice is hardly likely to provide a significant 
amount of additional evidence, still less the only evidence. 

A more fundamental problem arises from the temporal structure of the hypothesized 
judgment and decision process. According to social projection theory as applied to the Hi-Lo 
game, (a) players expect others to choose the same strategies that they choose themselves; (b) 
therefore, whatever they choose in the Hi-Lo game, they expect their co-players to choose the 
matching strategy; and (c) this explains why they normally choose H and why this seems 
intuitively appealing. The problem is that players’ expectations follow after and as a 
consequence or effect of their own choices and cannot therefore explain those choices, because 
an effect cannot precede its own cause. This problem can be evaded by assuming that players 
merely contemplate choosing each of the available strategies, assuming in each case that their 
choice would be matched if they were to make it, and then choose the strategy that promises the 
best payoff given that assumption (Krueger, DiDonato, & Freestone, 2012), but this seems 
acceptable only if choices that are merely contemplated are treated on an equal footing, for 
purposes of Bayesian updating, with choices that are actually made. A player’s actual choices 
may possibly provide evidence that others are likely to choose the same strategies, but it could be 
argued that options that are merely contemplated and not chosen provide no such evidence. A 
consistent interpretation of social projection theory suggests that people should expect others not 
to choose what they themselves have not chosen, after contemplation. 

Social projection theory relies on a form of reasoning, called evidential decision theory, that 
is rejected by many decision theorists but also has some distinguished advocates (e.g., Eells, 
1984, 1989; Jeffrey, 1983, 2004; Nozick, 1993, pp. 43–59). The temporal structure objection set 
out in the previous paragraph is not universally accepted and, whether or not evidential decision 
theory is valid, there is experimental evidence that many people do, in fact, apply it in certain 
circumstances (Anand, 1990; Quattrone & Tversky, 1984). However, social projection theory is 
obviously limited to symmetric games, because decision makers have no reason to expect others 
to act as they themselves do in situations in which similar actions have different consequences, 
or in games in which similar actions cannot even be unambiguously specified. Cognitive 
hierarchy theory and other theories of coordination outlined in the following paragraphs apply to 
both symmetric and asymmetric games, and any empirical comparison of theories requires 
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asymmetric experimental games, because different theories all predict the same choices in 
symmetric games. For this reason, we do not include social projection theory in our experimental 
tests, although we acknowledge that it may help, in part at least, to explain choices in symmetric 
games such as the Hi-Lo and Stag Hunt games shown in Figures 1 and 2. 

 
Cognitive Hierarchy Theory 

Cognitive hierarchy theory was first proposed by Camerer, Ho, and Chong (2004), following 
slightly more elaborate versions put forward by Stahl and Wilson (1994, 1995) and Bacharach 
and Stahl (2000). It is a theory of bounded rationality designed to model players who reason with 
varying levels of strategic depth. Level-0 players have no beliefs about their co-players and 
choose strategies randomly, with uniform probability; Level-1 players maximize their own 
payoffs given their belief that their co-players are Level-0 players; Level-2 players maximize 
their own payoffs given their belief that their co-players are Level-1 or Level-0 players; and so 
on. The integrative models of social value orientation proposed by Van Lange (1999) amount to 
Level-1 reasoning applied to transformed payoffs, after each player’s payoffs have been 
incremented by a fixed amount h in outcomes where their co-players receive identical payoffs or 
decreased by h in outcomes where they are different, to reflect equality-seeking, and in some 
models, additional payoff transformations are applied (Colman, Pulford, & Rose, 2008b; Van 
Lange, 2008). 

Experimental evidence reported by Camerer, Ho, and Chong (2004) suggested that Level 1 is 
most common, followed by Level 2, and that higher levels occur only very infrequently. This has 
been corroborated by Hedden and Zhang (2002), Bardsley et al. (2010), and others, and it is also 
consistent with evidence of levels of recursive thinking typically found in other domains of 
cognition (Colman, 2003b). 

The reasoning used by Level-1 players amounts to unweighted (or equal-weighted) expected 
payoff maximization, and it is nonstrategic in the sense that it makes no attempt to analyze the 
game from the co-player’s point of view. In the Hi-Lo game shown in Figure 1, a Level-1 player 
believes that the co-player will choose H or L with equal probability, and the Level-1 player 
chooses the strategy that maximizes expected payoff relative to that belief about the co-player. 
That strategy is H, because (1/2 × 2) + (1/2 × 0) > (1/2 × 0) + (1/2 × 1). A Level-2 player also 
chooses H because it yields the best payoff (2 rather than 0) against a Level-1 player who, as we 
have just shown, chooses H. 

One major weakness of cognitive hierarchy theory as a theory of coordination is that, 
whereas it works for pure coordination games such as the Hi-Lo game, it fails in other common 
interest games. It will suffice to consider the Stag Hunt game shown in Figure 2. A Level-1 
player chooses D, because (1/2 × 9) + (1/2 × 0) < (1/2 × 8) + (1/2 × 7), a Level-2 player also 
chooses D, because 7 > 0, and the same applies to higher-level players. Thus, cognitive hierarchy 
theory fails to predict the payoff-dominant (C, C) outcome in this frequently discussed version of 
an iconic common interest game, even with arbitrarily deep levels of strategic reasoning. 
However, (C, C) is intuitively appealing, and 79% of players in an experimental Stag Hunt game 
reported by Colman and Stirk (1998) chose C. 

A second problem with the theory is its asymmetry: it relies on an assumption that players 
never credit their co-players with the same level of strategic sophistication as themselves. 
Although there is evidence for self-serving beliefs in other domains (Krueger & Wright, 2011), it 
is not clear why players should hold this patronizing belief, and it seems unlikely that they do. A 
world in which everyone is a deeper strategic thinker than everyone else is reminiscent of Lake 
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Wobegon in Garrison Keillor’s radio show A Prairie Home Companion, “where all the women 
are strong, all the men are good-looking, and all the children are above average.” Nevertheless, 
the theory certainly provides a simple explanation for coordination in many common interest 
games, including asymmetric games, therefore we include it in our experimental tests. 

 
Team Reasoning 

According to theories of team reasoning (Bacharach, 1999, 2006; Gold & Sugden, 2007; 
Smerilli, 2012; Sugden, 1993, 2005), there are circumstances in which players are motivated to 
maximize not their individual expected payoffs, as specified by the standard rationality 
assumption (2) stated formally earlier in the article, but the collective payoff of the group of 
players involved in the game. Decision making based on such collective preferences is usually 
called team reasoning, and theories of team reasoning generally assume that circumstances 
dictate whether players attempt to maximize their collective payoffs (team reasoning) or their 
individual payoffs (orthodox individual reasoning). Common interest games provide typical 
circumstances in which collective payoff maximization and team reasoning might be expected to 
occur (Tan & Zizzo, 2008). Standard game theory is interpreted as a special case of team 
reasoning in which the group happens to be a singleton. 

The key assumption, that team-reasoning players attempt to maximize collective rather than 
individual payoffs, is a radical departure from orthodox game theory and decision theory. In 
orthodox theory, players are assumed to ask themselves, in effect, What do I want, and what 
should I do to achieve it? Team-reasoning players are assumed to ask, What do we want, and 
what should I do to play my part in achieving it? If we make the natural assumption that the 
collective payoff is simply the sum (or equivalently, the average) of the individual payoffs in any 
outcome, then in the Hi-Lo game shown in Figure 1, the team-reasoning answer is obviously: We 
want (H, H), because the collective payoff of 4 is greater than in any other outcome, and what I 
need to do to play my part in achieving that outcome is to choose H. In the Stag Hunt game 
shown in Figure 2, a team-reasoning player reasons: We want (C, C), because the collective 
payoff of 18 in that outcome is greater than in any other, and I should play my part by choosing 
C. Team reasoning thus provides a compelling solution to both of these games, and to all other 
common interest games as well. 

Team-reasoning players use a distinctive mode of reasoning to reach decisions on the basis of 
their own and their co-players’ individual preferences. They begin by searching for a profile of 
strategies that maximizes the collective payoff of the pair or group of players. If such a profile is 
unique, they choose and play its component strategies. If the game has no unique strategy profile 
that is collectively rational, then the theory is indeterminate. Team reasoning provides a 
complete solution to the payoff-dominance problem. It solves all common interest games, 
because these games have payoff-dominant Nash equilibria that are necessarily collectively 
rational outcomes. 

A player has no reason to adopt the team-reasoning mode in the absence of a belief that the 
other player(s) will do likewise, and all versions of the theory assume that team reasoning occurs 
only when a player expects the co-player(s) to adopt the team-reasoning mode. This should be 
distinguished from social projection theory, according to which players assume automatically 
that others will act as they do themselves. In Bacharach’s (1999, 2006) stochastic version of the 
theory, players adopt the team-reasoning mode if the probability that the co-player(s) will do the 
same is high enough. The probability that a player will adopt the team-reasoning mode is 
represented by a parameter omega (0 ≤ ω ≤ 1), the value of which is common knowledge in the 
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game, and players are assumed to adopt the team-reasoning mode if and only if ω is high enough 
to ensure that the expected collective payoff is maximized by team reasoning; otherwise, the 
player is assumed to lapse into the individual payoff maximization characteristic of standard 
game-theoretic reasoning. 

Team reasoning requires the abandonment of a fundamental assumption of methodological 
individualism, the bedrock of rational choice theory, incorporated in the standard rationality 
assumption (2) stated formally earlier in the article. More generally, methodological 
individualism implies that decision makers are rational in the sense of attempting to do the best 
for themselves as individuals in all circumstances that arise (Elster, 1982). This creates problems 
in interpreting team reasoning within the framework of orthodox game theory, where the payoffs 
are von Neumann–Morgenstern utilities in the sense of expected utility theory. These are 
supposed to represent the players’ preferences, taking into account everything that affects these 
preferences, including other-regarding considerations of how co-players are affected by the 
outcomes. Theories of team reasoning assume that team-reasoning players’ utilities are functions 
of their own and their co-players’ individual payoffs, but individual payoffs, if they are von 
Neumann–Morgenstern utilities, already incorporate considerations of co-players’ payoffs, and 
all that ought to remain is for players to maximize their own individual utilities. We cannot get 
round this problem by conceding that team-reasoning players do indeed attempt to do the best for 
themselves as individuals, but that they happen to be individually motivated to achieve 
collectively rational outcomes, because in that case their collective preferences should be fully 
reflected in their individual payoff functions, and conventional individual reasoning should 
suffice, so that we could simply replace each individual payoff by the sum of both players’ 
payoffs in the corresponding outcome. For example, in Figure 1, we could replace the payoffs in 
(H, H) with (4, 4) and the payoffs in (L, L) with (2, 2), but this would not provide players with 
any reason to choose H: the strategic structure of the game would be unaltered and team 
reasoning would still be required. 

However, the financial payoffs used to motivate players in experimental games do not and 
cannot incorporate other-regarding preferences, and there is persuasive experimental evidence 
that team reasoning applied to individual objective payoffs, rather than subjective utilities, does 
indeed occur in experimental games (Bardsley et al., 2010; Butler, 2012; Colman, Pulford, & 
Rose, 2008a). Although team reasoning violates the assumption of methodological individualism 
at a theoretical level, from a more practical point of view it offers a persuasive explanation for 
coordination in experimental games, where it applies to objective payoffs rather than utilities, 
and we therefore include it in our experiments. 

 
Strong Stackelberg Reasoning 

The theory of strong Stackelberg reasoning is an improved version of an earlier theory of 
Stackelberg reasoning (Colman & Bacharach, 1997), named after a simple model of leader-
follower games proposed by Heinrich von Stackelberg (1934). The new theory is designed to 
overcome a limitation of the previous version and to avoid problems associated with the other 
theories of coordination that we have outlined. It requires no modification of the one-shot, 
independent choice rules of the game, or of methodological individualism, and it retains the 
standard common knowledge and rationality assumptions of orthodox game theory. Its 
distinctive assumption is that players choose strategies as if they believed that their co-players 
could anticipate their choices and invariably choose best replies to them, and that they maximize 
their own payoffs accordingly. In other words, players choose strategies according to standard 
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game-theoretic assumptions, but they behave as if choosing first in a sequential game with 
perfect information—a game in which the player moving second always knows the first player’s 
move, as in chess, for example. Game theory places no limitations on players’ beliefs, apart from 
technical assumptions of completeness and consistency, hence this theory would not require any 
nonstandard assumptions even if we stipulated that players using strong Stackelberg reasoning 
actually believed that their co-players could anticipate their choices. A related theory proposed 
by Weber, Camerer, and Knez (2004) applies to games in which players actually do choose 
strategies sequentially but the player moving second does not know the first player’s previous 
move. 

Players are assumed to generate strong Stackelberg strategies by identifying the strategies 
that maximize their own payoffs against invariably best-replying co-players, and they then play 
those strong Stackelberg strategies if they form Nash equilibria. Stackelberg reasoning thus 
involves a strong Stackelberg strategy generator (a mode of reasoning that generates Stackelberg 
strategies, provided that best replies are strong) followed by a Nash filter to check that the 
Stackelberg strategies are in Nash equilibrium.2 Games in which strong Stackelberg strategies 
form Nash equilibria are S-soluble. Games in which strong Stackelberg strategies are not well 
defined or are out of equilibrium are non-S-soluble, and in such games the theory makes no 
specific predictions. The theory is presented formally in Appendix B. 

The principal limitation of the earlier theory of Stackelberg reasoning (Colman & Bacharach, 
1997) is its failure to deal with the problem that Stackelberg strategies are not necessarily well 
defined if the co-player has a best reply that is not unique—if two or more replies are best and 
yield payoffs that are jointly optimal. An example of such a game is given in Figure 3. Suppose 
that I am Player 1 and you are Player 2. Using Stackelberg reasoning, I expect that any strategy 
choice of mine will be met by your best reply. But you have two jointly best replies to my A 
strategy, because you receive the same payoff (2) whether you reply with A or B. Although I am 
motivated to choose a payoff-maximizing strategy of my own, I cannot anticipate your response 
to my A strategy, and hence Stackelberg reasoning does not enable me to work out which of my 
own strategies is best for me: A would be best for me if you were to reply with A (my payoff 
would be 3, rather than 2 from choosing B), otherwise B would be best for me (my payoff would 
be 1, rather than 0 from choosing A). The Stackelberg strategy generator simply breaks down in a 
game such as this, and the earlier theory of Stackelberg reasoning provides no solution to this 
problem. 

 
  Player 2 
  A B 

Player 1 A 3, 2 0, 2 
B 2, 2 1, 1 

 
Figure 3. A game in which Player 2 does not have a strong best reply to Player 1’s A strategy. 

 
The theory of strong Stackelberg reasoning overcomes the problem by exploiting the strong 

best reply function, introduced by Harsanyi and Selten (1988), in which best replies are unique 
by definition. Although strong best replies in this sense obviate the problem of ill-defined 
Stackelberg strategies, we show that a slightly weaker condition, inspired by the concept of 
mutual ordinality (Howard, 1971, pp. 147–151), suffices to ensure that the Stackelberg generator 
always yields a unique best reply. The key assumption (see Appendix B) is that when a player 
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strictly prefers one outcome to another, the co-player is never indifferent between the same two 
outcomes. This ensures that strong Stackelberg strategies are invariably well defined. Our 
condition may appear, at first, to limit the applicability of the theory by arbitrarily excluding 
some (perhaps many) real-life strategic interactions from the scope of the theory, but that turns 
out not to be the case for two reasons. First, even in games in which our condition does not hold, 
strong Stackelberg strategies may nevertheless be well defined—all that is strictly necessary is 
that the maximum payoff to Player 1 in each column of the payoff matrix and the maximum 
payoff to Player 2 in each row is unique. Second and more important, our condition for strong 
best replies is violated only if players are completely indifferent to the payoffs of their co-
players, and that is never the case in real-life strategic interactions. In the game depicted in 
Figure 3, Player 2 is indifferent between the (A, A) to the (A, B) outcomes because 2 = 2, 
although Player 1 prefers (A, A) to the (A, B) because 3 > 0. This could arise in real life only if 
Player 2 were utterly indifferent to Player 1’s payoffs. 

It is widely acknowledged that other-regarding social value orientations such as 
cooperativeness, competitiveness, and altruism (Colman, Körner, Musy, & Tazdaït, 2011; 
Rusbult & Van Lange, 2003; Van Lange, 2000), and other-regarding considerations of fairness 
and reciprocity (e.g., Arnsperger & Varoufakis, 2003; Bolton & Ockenfels, 2000; Brosnan & de 
Waal, 2002; Fehr & Schmidt, 1999; Trivers, 2005) influence the preferences of humans and even 
nonhuman primates. We are never entirely indifferent to the payoffs of others with whom we 
interact. It is also worth noting that the condition that turns out to be sufficient to establish that 
best replies are strong does not imply any abandonment of methodological individualism, 
because the generic other-regarding preferences specified in Equations and Inequalities 4 and 5 
in Appendix B are fully integrated into the players’ own payoff functions, and players are 
motivated to maximize their individual payoffs in accordance with standard game-theoretic 
assumptions. 

Applying strong Stackelberg reasoning to the Hi-Lo game shown in Figure 1, Player 1 
chooses a strategy as though believing that H would be met by Player 2’s best reply H, and L 
would be met by Player 2’s best reply L. Player 1 receives a payoff of 2 in the first case and 1 in 
the second and therefore prefers the payoff-maximizing strategy H and, because the game is 
symmetric, Player 2 arrives at the same conclusion. Because (H, H) is in equilibrium, it is the 
strong Stackelberg solution of the game, and both players therefore choose H. In the Stag Hunt 
game shown in Figure 2, a similar analysis shows that both players choose C. 

It is not difficult to prove that every common interest game is S-soluble, and that, if a game 
with multiple Nash equilibria has one equilibrium that payoff-dominates the others, then its 
strong Stackelberg solution is its payoff-dominant Nash equilibrium (see Colman & Bacharach, 
1997, for proofs that apply with only minor modifications to strong Stackelberg reasoning). The 
theory of strong Stackelberg reasoning therefore appears to provide a comprehensive explanation 
of coordination in common interest games between players who care about one another’s 
payoffs, and it avoids the problems associated with the other theories that we have reviewed. 

Other theories discussed in this article appear also to explain coordination, at least in 
experimental games, although it is conceivable that none of the existing theories is satisfactory. 
We therefore tested the theories of cognitive hierarchy theory (Level-1 and Level-2 reasoning), 
team reasoning, and strong Stackelberg reasoning in two experiments specifically designed to 
compare their performance against one another. We did not use common interest games because 
the theories under investigation would all predict the same strategy choices, and we did not use 2 
× 2 games because they would not have been very useful for distinguishing between four 
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potentially different theoretical predictions. Instead, we designed 3 × 3 and 4 × 4 experimental 
games in which the theories generate conflicting predictions. 

 
Experiment 1 

Method 
Participants. The participants were 68 students and employees at the University of Leicester 

(45 female, 23 male), aged 18–52 years (M = 25.28, SD = 6.71) recruited from the School of 
Psychology’s participant panel, an approximate sample size of 70 having been determined in 
advance. They were remunerated according to the random lottery incentive system, a technique 
that avoids a number of problems associated with other payment schemes (Lee, 2008) and has 
been shown to elicit true preferences (Cubitt, Starmer, & Sugden, 1998; Starmer & Sugden, 
1991). We paid each participant a show-up fee of £3.00 ($5.00) plus an additional amount, up to 
£5.00 ($8.00) according to their payoffs in a single game randomly pre-selected from the 12 
games used in the experiment. To maximize the incentive value of the remuneration, we did not 
mention the show-up fee until the experiment was over: before and during the experiment the 
participants knew only that they could win up to £8.00 ($13), depending on their choices in a 
randomly chosen game. 

Materials. We devised eight S-soluble 3 × 3 games and four S-soluble 4 × 4 games capable 
of distinguishing between the various theories under investigation, namely cognitive hierarchy 
theory (Level-1 and Level-2 reasoning), team reasoning, and strong Stackelberg reasoning. The 
12 games used in the experiment are displayed in Figure 4. Seven of the eight 3 × 3 games (all 
apart from Game 3) and all four of the 4 × 4 games are asymmetric, and best replies are strong in 
the sense defined in Appendix B.3 There are no strongly or weakly dominant strategies in any 
game. We randomized the order of the 12 games and presented them in reverse order to half the 
players to check for possible order effects. We did not drop any variables, conditions, or games 
from our analyses in this experiment or in Experiment 2. 
 

 
Figure 4. S-soluble experimental games, with shaded cells indicating strong Stackelberg solutions and hence also 
Nash equilibria. Player labels (1 for row chooser and 2 for column chooser) are suppressed to save space. 
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The experimental participants were assigned to the role of Player 1 (row chooser). In each 
testing session, a single participant, whose responses were not included in our data analysis, 
served as Player 2 for all other players in the same testing session. Predictions derived for Player 
1 choices are unique in every game, in the sense that each theory predicts exactly one strategy 
choice. In Game 1, for example, the cognitive hierarchy Level-1 prediction for Player 1 is B, 
because a Player 1 who believes that Player 2 will choose randomly with uniform probability has 
the following expected payoffs: from choosing A, (3 + 1 + 0)/3; from choosing B, (1 + 2 + 3)/3; 
and from choosing C, (2 + 1 + 2)/3; and because the greatest expected payoff is from choosing B, 
a Level-1 cognitive hierarchy reasoner will choose B. The cognitive hierarchy Level-2 prediction 
for Player 1 is B, because a Level-2 Player 1 who believes that Player 2 will use Level-1 
reasoning will expect Player 2 to choose C, and the best reply to C is B. The team reasoning 
prediction is that Player 1 will choose C, because the collective payoff in the (C, C) outcome (2 + 
5 = 7) is greater than in any other outcome. The theory of strong Stackelberg reasoning predicts 
that Player 1 will choose A because a Player 1 who expects Player 2 to choose a best reply to any 
strategy expects A to elicit the reply A, paying 3 to Player 1, B to elicit the reply B, paying 2 to 
Player 1, and C to elicit the reply C, paying 2 to Player 1. Therefore, Player 1 will choose A 
(because 3 > 2), and a similar argument shows that Player 2 will also choose A. Finally, (A, A) is 
a Nash equilibrium, because these A strategies are best replies to each other, hence the game is S-
soluble, and Player 1 will therefore choose A. 

It is clearly impossible to have four distinct predictions in a game with only three strategies 
per player, hence in Game 1, cognitive hierarchy Level-1 reasoning, team reasoning, and strong 
Stackelberg reasoning make distinct predictions for Player 1’s choice, but cognitive hierarchy 
Level-2 reasoning predicts the same choice as cognitive hierarchy Level-1 reasoning. In the other 
3 × 3 games, there was always one strategy choice that was predicted by two theories. In each of 
our 4 × 4 games, cognitive hierarchy Level-1 reasoning, cognitive hierarchy Level-2 reasoning, 
team reasoning, and strong Stackelberg reasoning are fully separated, each yielding a different 
prediction for Player 1’s choice. 

Procedure. The experiment was conducted over four 35-minute testing sessions, with 
approximately 16–18 participants per session. The participants sat at computer monitors and 
logged on to the SurveyGizmo data-gathering website, where they were presented with the 
following on-screen instructions: 

 
You will be presented with a series of 12 grids. For some grids you will be asked to choose between A, B, 
and C, and for others you will be asked to choose between A, B, C, and D. You will be paired with another 
randomly selected participant in this room for each of your 12 decisions. In each case, the other participant 
will be presented with the identical grid and will also be choosing between A, B, and C, or A, B, C, and D. 
Your objective for each grid will be to maximize the number of points that you score. At the end of the 
experiment, one of the grids will be chosen randomly from the 12. The number of points that you and the 
other participant scored in that grid will be converted to pounds Sterling, and you will be paid that in cash 
at the end of today's session. When you are making your choices, you will not know who you are paired 
with or what choices they are making, and they will also not know what choices you are making. For each 
grid, please indicate your choice by selecting either A, B, C, or D. 

 
The participants were given the opportunity to seek clarification of anything they did not 

understand, after which the payoff matrices were presented in succession on their monitors, with 
Player 1’s labels and payoffs shown in blue and Player 2’s in red. In each session, the participant 
in the role of Player 2 was presented with similar material, but written from the perspective of 
the red player. For the participants in the role of Player 1, the following text was displayed below 
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each payoff matrix to help them interpret the game: “You are the Blue decision maker, choosing 
between the rows marked A, B, or C [or D]. The person you have been paired with is the Red 
decision maker, choosing between columns A, B, or C [or D]. Depending on what you and the 
other decision maker choose, you will get one of the blue payoffs, and the red decision maker 
will get one of the red payoffs.” This was followed by a full textual summary of the information 
shown in the payoff matrix, as follows (this example relates to Game 1): 

 
If you choose A, then: 
If Red chooses A, you will get 3, and Red will get 3 
If Red chooses B, you will get 1, and Red will get 0 
If Red chooses C, you will get 0, and Red will get 2 
[and so on . . . .] 

 
The participants then made one-off (unrepeated) strategy choices in each of the 12 games by 

clicking radio buttons marked A, B, C, or D. No feedback was provided. They were able to 
change their strategy choice at any time until they hit the Next button to move on to the following 
game (returning to previous games was not allowed). 

After the participants had indicated their decisions for all 12 games, they were presented with 
a list, with the order randomized separately for each participant, of eight possible reasons that 
may have influenced their decisions in choosing between A, B, C, and D, and they were asked to 
indicate on a 7-point Likert scale to what extent they agreed or disagreed with the reason 
(Strongly disagree; Moderately disagree; Slightly disagree; Neutral; Slightly agree; Moderately 
agree; Strongly agree). The eight reasons were based on an extensive pilot study (N = 127), in 
which participants were asked to state in their own words their reasons for choosing strategies; 
the eight items in our list represent the reasons most frequently cited by the participants in the 
pilot study. Below the list of eight reasons, participants were asked: “If you often used one 
reason followed by another in the same grid, please indicate here the reasons in the order in 
which you usually used them. If you tended to use only one reason, please select N/A.” Lastly, 
an open text box was provided for participants to type any additional reasons, not listed, that they 
might have used, but this did not elicit any new reasons, apart from a response from one 
participant who cited a purely altruistic reason for choice (“I chose the rows sometimes by 
maximizing the benefits of the other person”). 

Data were then downloaded from SurveyGizmo into a pre-programmed Microsoft Excel 
spreadsheet. In order to calculate the payoffs, data from the participant in the role of Player 2 
were matched to each Player 1, and their payoffs were then automatically computed for a 
randomly preselected game. Participants were paid what they had earned and thanked before 
they left the laboratory. Participants in the role of Player 2 were remunerated according to their 
payoffs in their pairing with the first Player 1 who happened to log on. 

 
Results4 and Discussion 

Strategy choices. Modal choices of players in all 12 S-soluble experimental games are 
shown in Table 1, together with unique predictions of Player 1’s strategy choices for each of the 
theories under investigation. In the eight 3 × 3 games, the modal choice was predicted by 
cognitive hierarchy Level-1 reasoning in five games, by cognitive hierarchy Level-2 reasoning 
and strong Stackelberg reasoning in three games, and by team reasoning in two games. In the 
four 4 × 4 games, the modal choice was predicted by cognitive hierarchy Level-1 reasoning in all 
four games, by team reasoning in one game, and by cognitive hierarchy Level-2 reasoning and 
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strong Stackelberg reasoning in none of the games. On this crude criterion, cognitive hierarchy 
Level-1 reasoning appears to have outperformed all of the other theories, especially in the 4 × 4 
games. 

 
Table 1 
Experiment 1: Modal choices of players in 12 S-soluble experimental games, and unique strategy choice predictions 
for Player 1 of cognitive hierarchy (CH) theory for Level-1 and Level-2 reasoning, strong Stackelberg reasoning, 
and team reasoning 

Games Modal choice CH Level-1 CH Level-2 S. Stack. Team R.  
3 × 3 games      

1 B B B A C 
2 A B B A C 
3 B B C C A 
4 B B C C A 
5 C C C B A 
6 C C C B A 
7 C A B C C 
8 C A B C C 

4 × 4 games      
9 C C D B A 

10 A/B B D C A 
11 B B C D A 
12 C C D B A 

 
Table 2 shows the choice data in more detail, with frequencies of Player 1 strategy choices 

for each experimental game and associated chi-square values indicating departures from a null 
hypothesis of equally likely expected frequencies, significance levels, and values of Cohen’s 
(1988, 1992) effect size index w = √(χ2/N). For the 3 × 3 games, all but one of the {A, B, C} 
strategy choice distributions deviate significantly from chance. The only exception is Game 1, in 
which the frequencies do not differ significantly and the effect size is small; in the other 3 × 3 
games, the deviations are significant, and the effect sizes are medium or large. For the 3 × 3 
games only, adjusted frequencies and associated statistics as explained below are shown in 
parentheses. For the 4 × 4 games, all strategy choice distributions deviate significantly from 
chance, and effect sizes are medium (Games 9 and 10) or large (Games 11 and 12). 

Order effects. To check for possible order effects, the games were presented to half the 
players in one randomized order and to the other half in the reverse order. A game-by-game 
analysis revealed that the distributions of choices do not differ significantly between presentation 
orders in any of the 12 experimental games, none of the chi-square values even approaching 
significance. 

Parametric analysis of strategy choices. Every player made 12 strategy choices, and each 
choice corresponded to a prediction of one of the theories under consideration or in some cases, 
in 3 × 3 games, to a prediction of two of the theories. In the 4 × 4 games, each Player 1 strategy 
was uniquely predicted by a different theory. These games provided us with a means of 
computing the number of times that each of the theoretical predictions was corroborated by 
players’ strategy choices. 

For 3 × 3 games, the mean percentages of Player 1 strategy choices predicted by each of the 
theories, in descending order, are as follows (based on the unadjusted raw frequencies in Table 
2): cognitive hierarchy Level-1 reasoning, 43%; strong Stackelberg reasoning, 38%; cognitive 
hierarchy Level-2 reasoning, 33%; and team reasoning, 29%. These percentages sum to more 
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than 100% because, in 3 × 3 games, two of the four theories invariably predict the same strategy 
choice. For example, in Game 1, both cognitive hierarchy Level-1 reasoning and cognitive 
hierarchy Level-2 reasoning predict the strategy choice B, and 28 players (41%) chose B; 
therefore, all we can infer is that these 28 strategy choices (41% of the choices made) confirm at 
least one of the two theories that predict B. It is unlikely that all 28 of the B choices in Game 1 
arose from players using cognitive hierarchy Level-2 reasoning, because that method of 
reasoning appears to have been used much less frequently than cognitive hierarchy Level-1 
reasoning in games in which these theories were alone in predicting a particular strategy choice. 
This suggests that the unadjusted percentages, in addition to summing to more than 100%, may 
be systematically biased. 

 
Table 2 
Experiment 1: Frequencies of Player 1 strategy choices in 12 experimental games, with chi-square values, significance levels, 
and effect sizes (N = 68). 
Games CH-L-1 CH-L-2 S. Stack. Team R. χ2 df p  Effect size 

w 
3 × 3 

games 
        

1 28 (21) 28 (7) 25 15 4.09 (10.82) 2 (3) .129 (.013) 0.25 (0.40) 
2 27 (20) 27 (7) 33  8 15.03 (26.24) 2 (3) .001 (.000) 0.47 (0.62) 
3 31 13 (4) 13 (9) 24 7.27 (28.12) 2 (3) .026 (.000) 0.33 (0.64) 
4 34 21 (6) 21 (15) 13 9.91 (25.29) 2 (3) .007 (.000) 0.38 (0.61) 
5 34 (25) 34 (9) 19 15 8.85 (8.00) 2 (3) .012 (.046) 0.36 (0.34) 
6 39 (29) 39 (10) 21  8 21.38 (17.06) 2 (3) .000 (.001) 0.56 (0.50) 
7 20 7 41 (26) 41 (15) 25.97 (11.41) 2 (3) .000 (.010) 0.62 (0.41) 
8 22 12 34 (22) 34 (12) 10.71 (5.88) 2 (3) .005 (.117) 0.40 (0.29) 

Mean 29.37 (25.25) 22.62 (7.75) 25.88 (21.25) 19.75 (13.75)     
4 × 4 

games 
 

   
    

9 25 9 10 24 13.29 3 .004 0.44 
10 23 3 19 23 16.00 3 .001 0.48 
11 42 8  4 14 52.00 3 .001 0.87 
12 35 4 17 12 30.47 3 .001 0.67 

Mean  31.25 6.00 12.50 18.25     
Note. For 3 × 3 games, adjusted frequencies and chi-square analyses for theories making overlapping predictions are shown 

in parentheses. For the effect size index, w ≥ 0.50 large, w ≥ 0.30 medium, w ≥ 0.10 small. 
 
To obtain unbiased estimates of the true relative frequencies across all eight 3 × 3 games, we 

began by examining strategy choices in those games in which one theory alone predicts a 
particular choice, ignoring games in which another theory makes the same prediction. For 
example, cognitive hierarchy Level-1 reasoning makes unique predictions in Games 3, 4, 7, and 
8, and in those games only, the predicted strategies were chosen by 26.75 players, on average, 
whereas cognitive hierarchy Level-2 reasoning makes unique predictions in Games 7 and 8, and 
in those games the predicted strategies were chosen by 9.50 players, on average. These means, 
and analogous means for the other theories, were used as weights to obtain adjusted relative 
frequencies for each theory wherever two theories predicted the same strategy choice in a 3 × 3 
game. Using these weights in Game 1, for example, the 28 choices confirming either cognitive 
hierarchy Level-1 reasoning or cognitive hierarchy Level-2 reasoning were adjusted to 28 × 
26.75/(26.75 + 9.50) = 20.66 for cognitive hierarchy Level-1 reasoning and 28 × 9.50/(26.75 + 
9.50) = 7.34 for cognitive hierarchy Level-2 reasoning. Adjusted figures relate to the relative 
frequencies with which the four theories or reasoning processes were chosen, whereas 
unadjusted data relate to the game strategies chosen from the set{A, B, C}. 
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The adjusted relative frequencies and associated statistics are shown in parentheses in Table 
2. Converting to percentages for ease of interpretation, the adjusted mean Player 1 strategy 
choices predicted by each of the theories in 3 × 3 games, in descending order, are: cognitive 
hierarchy Level-1 reasoning, 37%; strong Stackelberg reasoning, 31%; team reasoning, 20%; and 
cognitive hierarchy Level-2 reasoning, 11%. Analysis of variance performed on the adjusted 
frequencies reveals that these four means differ significantly: F(3, 28) = 17.03, p < .001, ηp

2 = 
.65 (large). Post hoc pairwise comparisons using the least significant difference (LSD) test reveal 
that players chose cognitive hierarchy Level-1 strategies significantly more frequently than team 
reasoning strategies (p < .001) and than cognitive hierarchy Level-2 strategies (p < .001), but not 
significantly more frequently than strong Stackelberg strategies. Players also chose strong 
Stackelberg strategies significantly more frequently than team reasoning strategies (p < .009) and 
than cognitive hierarchy Level-2 strategies (p < .001), and they chose team reasoning strategies 
significantly more frequently than cognitive hierarchy Level-2 strategies (p < .032). 

Relative frequencies for 4 × 4 games, for which no adjustments are required, are also shown 
in Table 2. For 4 × 4 games, converting again to percentages, the means for Player 1 strategy 
choices predicted by each of the theories, in descending order, were: cognitive hierarchy Level-1 
reasoning, 46%; team reasoning, 27%; strong Stackelberg reasoning, 18%; and cognitive 
hierarchy Level-2 reasoning 9%. Analysis of variance reveals that the four means differ 
significantly: F(3, 12) = 10.71, p < .001, ηp

2 = .73 (large). Post hoc pairwise comparisons using 
the LSD test reveal that players chose cognitive hierarchy Level-1 strategies significantly more 
frequently than team reasoning strategies (p = .016), than strong Stackelberg strategies (p = 
.002), and than cognitive hierarchy Level-2 strategies (p < .001). Players also chose team 
reasoning strategies significantly more frequently than cognitive hierarchy Level-2 strategies (p 
= .022). 

Reasons for choices. Results of the analysis of reasons for choices are presented in detail in 
online supplemental materials. In brief, the findings corroborate the analysis of choice data in 
revealing that, among the theories under investigation, players rated reasons associated with 
strong Stackelberg reasoning, team reasoning, and cognitive hierarchy Level-1 reasoning as most 
influential on their strategy choices, and that avoiding the worst payoff, equality-seeking, and 
cognitive hierarchy Level-2 reasoning also appear to have been influential. 

Avoiding the worst payoff was the most frequently chosen reason of all, and it is not 
immediately obvious why this is so. Cognitive hierarchy Level-1 reasoning was the most 
successful theory in explaining actual strategy choices, according to our choice data, but players 
rated the reason most closely matching that form of reasoning (I chose rows by working out or 
estimating the average payoff that I could expect if the other person was equally likely to choose 
any column, and then choosing the best rows for me on that basis) as less influential than several 
other reasons. However, it turns out that “Avoid the Worst” (ATW), a “fast and frugal” heuristic 
introduced by Gigerenzer and Goldstein (1996), approximates cognitive hierarchy Level-1 
choices in many of our experimental games (see also Ert & Erev, 2008). If players avoid any 
strategy that could yield a zero payoff to them, picking strategies randomly from those that are 
playable when more than one avoids a possible zero payoff and when none avoids a possible 
zero payoff, then almost half (47%) of their strategy choices correspond to the predictions of 
cognitive hierarchy Level-1 reasoning in our games. We infer from this that some, at least, of the 
cognitive hierarchy Level-1 choices may have been generated by the ATW heuristic. 

Our analysis of reasons for choices also revealed that 79% of players used two or more 
strategies in the same game. Reasons associated with avoiding the worst payoff, strong 
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Stackelberg reasoning, and team reasoning were used most frequently in conjunction with each 
other. Players sometimes began by reasoning strategically, using strong Stackelberg reasoning, 
but then switched to team reasoning or cognitive hierarchy Level-1 reasoning, presumably 
because these alternatives were easier and less demanding than strong Stackelberg reasoning. 

 
Experiment 2 

The principal aim of Experiment 2 was to check the robustness and replicability of the results 
of Experiment 1 with a fresh sample of 59 players. A secondary aim was to investigate the 
hypothesis that players use the simplest and easiest form of the ATW heuristic by merely 
avoiding any strategy that risks a possible zero payoff. We tested this hypothesis by means of a 
within-subjects comparison of strategy choices in 12 games identical to the games used in 
Experiment 1 with choices in versions of the same 12 games with three units added to every 
payoff, thus eliminating zero payoffs altogether. 

Full details of Experiment 2 are presented in online supplemental materials. Modal choices in 
the original versions of the games were almost identical to those observed in Experiment 1 
(Table 1), fully replicating our main findings. Comparing original and plus-3 versions of the 
games in Experiment 2, the modal choices were the same in eight of the 12 games, and in those 
in which they differed, the discrepancies were very small, suggesting that although players may 
have avoided the worst payoffs, they did not merely avoid zero payoffs. Self-reported reasons for 
choices were strikingly similar to those of Experiment 1, although the reason associated with 
Stackelberg reasoning was rated as fractionally more influential than avoiding the worst payoff, 
reversing the marginal lead of avoiding the worst payoff in Experiment 1. Most players (88%) 
reported considering more than one reason in the same game, and it is noteworthy that 28% of 
players who first used a reason associated with strong Stackelberg reasoning reported switching 
from it to either avoiding the worst payoff or a reason associated with cognitive hierarchy Level-
1 reasoning. 

 
General Discussion 

Results of the experiments reported here are highly consistent with each other, and they 
suggest that cognitive hierarchy Level-1 reasoning, strong Stackelberg reasoning, and team 
reasoning each played a part in explaining players’ strategy choices in 3 × 3 and 4 × 4 
experimental games. Cognitive hierarchy Level-1 reasoning was most influential, especially in 4 
× 4 games, but strong Stackelberg reasoning was also influential in 3 × 3 games, and team 
reasoning in both 3 × 3 and 4 × 4 games. It seems reasonable to infer that coordination is partly 
explained by all three theories. Most players reported that they considered two or more reasoning 
processes before making their choices. Furthermore, it is possible that social projection theory 
may also provide part of the explanation in symmetric games. Although it might have been 
satisfying, from the point of view of simplicity and clarity, if one theory had emerged as a single 
and sovereign explanation in all of the games that we studied, the picture turns out to be more 
complex. 

Our results also suggest that the Avoid the Worst (ATW) heuristic may have steered players 
toward cognitive hierarchy Level-1 choices in some cases, because ATW turns out to yield 
cognitive hierarchy Level-1 choices in a substantial proportion (almost half) of our games. Part 
of the motivation for Experiment 2 was to test the hypothesis that players used the most 
elementary version of ATW, simply avoiding strategies that entail a risk of a zero payoff. The 
results provided no clear evidence to support the “avoid zero” hypothesis, but that does not rule 
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out ATW as a possible explanation for some cognitive hierarchy Level-1 strategy choices. ATW 
can be implemented by avoiding strategies that entail the risk of the lowest payoff in a game, 
whatever it might be, and it is only marginally more difficult when the lowest payoff is 3 rather 
than 0, as it was in all the plus-3 games in Experiment 2. In the players’ self-reported reasons for 
choices, ATW emerged as one of the most popular reasons of all, and it seems reasonable to 
infer that it probably accounted for some cognitive hierarchy Level-1 strategy choices. 

Our results are consistent with the findings of Camerer, Ho, and Chong (2004) and others 
who reported evidence for cognitive hierarchy Level-1 and Level-2 reasoning, and also with 
those of Colman, Pulford, and Rose (2008a) and Butler (2012), who reported evidence for team 
reasoning, using very different types of games and experimental methods. Our results and our 
interpretation of them are also consistent with the findings of Bardsley et al. (2010), who 
reported the results of two separate experiments designed to compare cognitive hierarchy and 
team reasoning theories against each other, using experimental coordination games and research 
methodologies radically different from our own. The first of their experiments appeared to 
support team reasoning and the second cognitive hierarchy theory. Bardsley et al. discussed 
various ways in which this difference might be due to differences in the way the players 
approached the coordination tasks, but an examination of their test materials reveals that the 
games used in their first experiment all had five pure strategies, whereas those used in their 
second experiment averaged slightly over four (M = 4.36). Team reasoning is easier than 
cognitive hierarchy reasoning (Level-1 and above) in larger and more complicated games, and it 
is therefore possible that the difference is explained by Bardsley et al.’s players tending to use 
team reasoning more frequently in games that were slightly larger and more complicated. 

Our findings are also consistent with those of Colman and Stirk (1998), who reported 
evidence for Stackelberg reasoning in 2 × 2 games. In the experiments reported in this article, 
strong Stackelberg reasoning was abundantly evident in the strategy choice data in 3 × 3 games 
but much less so in 4 × 4 games. The players’ self-reported reasons for choices confirm that they 
were influenced by strong Stackelberg reasoning, but the choice data suggest that this influence 
was felt chiefly in the 3 × 3 games and less strongly in the 4 × 4 games. Taken together with the 
evidence of Colman and Stirk, this suggests that strong Stackelberg reasoning may be used quite 
frequently in relatively simple 2 × 2 and 3 × 3 games but tends to be abandoned in favor of team 
reasoning and especially cognitive hierarchy Level-1 reasoning in more complicated 4 × 4 
games. This is not difficult to understand because strong Stackelberg reasoning involves more 
complex computation and imposes greater demands than cognitive hierarchy Level-1 reasoning 
or team reasoning. From Player 1’s perspective, cognitive hierarchy Level-1 reasoning can be 
implemented by simply glancing along the rows of the payoff matrix and estimating which row 
contains the highest payoffs to Player 1, and it can be approximated in many games by simply 
avoiding the worst payoff. Team reasoning can be accomplished even more easily, especially in 
larger games, by scanning the payoff matrix for the cell with the greatest payoff sum, and then 
checking that it is unique. In contrast, strong Stackelberg reasoning by Player 1 involves noting 
and remembering Player 2’s best replies to every available strategy, earmarking the most 
profitable one for Player 1, then doing the same from Player 2’s perspective, and finally 
checking that neither player can benefit by deviating unilaterally from the resulting strategy pair 
or outcome. This requires sequential strategic thinking and is obviously more demanding in 
terms of mental computation and working memory capacity than cognitive hierarchy Level-1 
reasoning or team reasoning. 
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Orthodox game theory is incapable of explaining coordination, and several theories that have 
been proffered either fail to provide an adequate explanation or apply to symmetric games only, 
but cognitive hierarchy theory, strong Stackelberg reasoning, and theories of team reasoning 
offer potential explanations, even in asymmetric games. The major problems with cognitive 
hierarchy theory as an explanation of coordination are that it fails to explain coordination in 
some common interest games, such as the Stag Hunt game in Figure 2, and that it is vitiated by 
an implausible asymmetry—an assumption that players never credit their co-players with the 
same depth of strategic reasoning as they enjoy themselves. The main problem with theories of 
team reasoning is their abandonment of methodological individualism and consequently also of 
von Neumann–Morgenstern utilities. The theory of strong Stackelberg reasoning avoids these 
and other theoretical problems, and in that sense it seems preferable, but the results of our 
experiment suggest that all three theories provide part of the explanation, at least in experimental 
games. 

Taking into account Experiments 1 and 2, our experimental findings suggest that cognitive 
hierarchy Level-1 reasoning was used in 37–46% of choices in 3 × 3 games and 46–50% of 
choices in 4 × 4 games, whereas strong Stackelberg reasoning was used in 31–36% in 3 × 3 
games and 17–19% in 4 × 4 games. Team reasoning was used in 13–20% of choices in 3 × 3 
games and 26–27% in 4 × 4 games. These differences suggest that cognitive hierarchy Level-1 
reasoning, perhaps facilitated by the ATW heuristic, is influential in games of both sizes, that 
strong Stackelberg reasoning is influential especially in the smaller and simpler games, and that 
team reasoning becomes relatively more influential in the larger, more complex games. 
However, it is worth noting that people facing potentially life-changing strategic decisions may 
be willing and able to apply strong Stackelberg reasoning even in 4 × 4 and larger games. 

Are there features of interactive decisions that determine which theory will predominate in 
any particular case? In general, this is a question for later research, but a consideration of the 
relative ease or difficulty of the various psychological processes implied by the theories offers 
some clues. Strong Stackelberg reasoning requires relatively slow, deliberate, and effortful 
System 2 thinking (Kahneman, 2011) and tends to become prohibitively difficult and demanding 
in games that are larger and more complex than simple two-strategy and three-strategy games. 
Cognitive hierarchy Level-1 reasoning, especially if approximated by the fast and frugal Avoid 
the Worst (ATW) heuristic, provides a method of reasoning typical of automatic, relatively 
effortless System 1 thinking. For collectively motivated players, team reasoning provides a 
method of play that is also easy to perform, even in large games. 

It is generally acknowledged that strategy choices, like individual risky choices, are not 
strictly deterministic. If we assume that they are not merely error-prone but inherently 
probabilistic, such that decision processes map probabilistically into strategy sets, then it is 
conceivable that an intrinsically stochastic overarching theory may eventually emerge that fits 
the data well. 
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Footnotes 
1 Hausman (2003) was referring to a slightly different coordination game, but this does not affect the point that 

he was making or our rebuttal. 
2 We are grateful to Werner Güth for suggesting this terminology. 
3 An online strategy generator for cognitive hierarchy Level-1 and Level-2 reasoning, strong Stackelberg 

reasoning, and team reasoning can be found at http://hdl.handle.net/2381/27886 
4 Raw data are presented in the supplemental materials. 
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Appendix A 
 

A Simple Proof of Laplace’s Rule of Succession 
 

Theorem. An urn containing r red and N – r black balls is chosen at random from a 
collection of N + 1 urns containing r = 0, 1, …, N red balls respectively. From the chosen urn, a 
ball is drawn at random and replaced, and the process is repeated m times. If the m draws 
produce m red balls, then the probability that the next ball to be drawn will also be red is 
approximately (m + 1)/(m + 2). 

Proof. The probability of choosing a red ball on the first draw is r/N, and the joint probability 
of choosing a red ball on m successive draws is (r/N)m. Call the event of drawing m successive 
red balls A. Then 

( )
( )

1 2 .
1

m m m

m
NP A

N N
+ + +

=
+
  

If we call the event of drawing a red ball on the m + 1st draw B, then the probability of B is 
simply the probability of drawing m + 1 balls in succession, hence 

( )
( )

1 1 1

1
1 2 .

1

m m m

m
NP B

N N

+ + +

+
+ + +

=
+
  

The probability of drawing a red ball on the m + 1st draw is the probability of the event (B and 
A). According to a well-known rule of conditional probability, P(B | A) = P(B and A)/P(A). 
However, event B of drawing m + 1 red balls is equivalent to the event (B and A), hence P(B and 
A) = P(B) and P(B | A) = P(B)/P(A). For large N, we have 

( )
( ) 0

1 1 1 .
1 1 11

N
m

m
NP A x dx

N m mN N
≈ = × ≈

+ + ++
⌠
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Similarly, P(B) ≈ 1/(m + 2). Therefore, 

 ( ) ( )
( )

1| .
2

P B mP B A
P A m

+
= ≈

+
  

Remark. If just one ball is drawn from the urn and is found to be red, then m = 1, and the 
probability that a second ball drawn from the same urn would also be red is approximately 2/3. 
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Appendix B 
 

Strong Stackelberg Reasoning: Formal Development 
 

We begin by defining a two-player game 
1 2 1 2: , ; , ,G S S π π=  

where iS  is Player i’s strategy set and iπ  is Player i’s payoff function, i ∈{1, 2}. We assume that 

iS  is finite and contains at least two strategies. Player i’s payoff function is denoted by iπ  : S → 

. The possible outcomes of the game are members of the set 1 2 ,S S S= ×  and ( )1 2,s s S= ∈s  is 

a particular strategy profile determining an outcome. A strategy profile ( )1 2,s s′ ′ ′=s  is a Nash 
equilibrium if both 
 ( ) ( )1 1 2 1 1 2, , ,s s s sπ π′ ′ ′≥  (1) 

 ( ) ( )2 1 2 2 1 2, , ,s s s sπ π′ ′ ′≥  (2) 
hold for all 1 1s S∈  and all 2 2.s S∈  If s and t are two distinct outcomes of a game, then s strongly 
payoff-dominates t if ( ) ( )i iπ π>s t  for i ∈{1, 2}. 

We use the notation i iC s  to denote the event of Player i choosing strategy i. In a game 
involving Players i and j, the distinctive assumption of strong Stackelberg reasoning is then: 

 believes that  knows that i i i iC s i j C s⇒  
for all i is S∈  and for i, j∈{1, 2}. Both players act as though they believe that whatever strategy 
they choose will be anticipated by their co-player. The standard common knowledge and 
rationality assumptions of game theory apply, therefore each player chooses the strategy that 
yields the best payoff given the belief that the co-player will choose a best reply to any strategy. 

Given Player i’s belief that Player j will choose a best reply to any strategy that Player i 
might choose, Player i acts as though believing that Player j’s strategy choice depends on Player 
i’s. Thus, from Player i’s perspective, 
 ( ) ,j is sβ=  (3) 

where ( )isβ  is a correspondence assigning Player j’s best replies to .is  If ( )isβ  assigns a 

unique element js  to a particular strategy ,is  then ( )isβ  is a strong best reply to is  in the sense 
of Harsanyi and Selten (1988, p. 39), and if this holds for all i, then β is a function. We note the 
slightly weaker criterion of strong best replies defined when both of the following hold for every 
strategy pair ( ) ( )1 2 1 2, , , :s s t t= =s t  

 ( ) ( ) ( ) ( )1 1 2 2 ,π π π π> ⇒ ≠s t s t  (4) 

 ( ) ( ) ( ) ( )2 2 1 1 .π π π π> ⇒ ≠s t s t  (5) 
The condition defined by (4) and (5) means that if a player strictly prefers one outcome to 
another, then the co-player is not indifferent between those two outcomes, and it ensures that all 
best replies are strong. We define Player 1’s strong Stackelberg strategy as the strategy 1s  = 1s

∗  
that maximizes the payoff 

 
( )( )1 1 1, .s sπ β
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Similarly, we define a strong Stackelberg strategy for Player 2 as the strategy 2s  = 2s∗  that 
maximizes the payoff 

 
( )( )2 2 2, .s sπ β

 
 

In any game in which the condition defined by (4) and (5) for strong best replies is met, 
strong Stackelberg strategies is∗  are well defined. If the condition for strong best replies does not 

hold, it is still possible for strong Stackelberg strategies is∗  to be well defined, provided only that 
the maximum payoff to Player 1 in each column and the maximum payoff to Player 2 in each 
row is unique. 

Strong Stackelberg strategies may or may not form Nash equilibria. In any game in which 
strong Stackelberg strategies is∗  are well defined, if ( )1 2,s s∗ ∗ ∗=s  is a Nash equilibrium, we 
describe the game as being S-soluble. In every game that is S-soluble, the theory predicts that 
Stackelberg-reasoning players will choose and play their strong Stackelberg strategies, and we 
call ∗s the strong Stackelberg solution of the game. Games in which strong Stackelberg strategies 
are not well defined or are not in equilibrium are non-S-soluble, and in such games the theory is 
indeterminate. 
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Supplemental Material for 
 

Explaining Strategic Coordination: Cognitive Hierarchy Theory, Strong Stackelberg 
Reasoning, and Team Reasoning 

Andrew M. Colman, Briony D. Pulford, and Catherine L. Lawrence 
 

Experiment 1: Reasons for Choices 
Players’ self-reported reasons for strategy choices are shown in Table S1, together with their 

mean ratings on a scale of 1 (Strongly disagree) to 7 (Strongly agree) of the extent to which the 
reasons influenced their choices across all 12 games. The means differ significantly: F(7, 462) = 
40.96, p < .001, ηp

2 = .06 (medium). The most influential reasons, in descending order, were 
Reason 1 (avoiding the worst payoff: I chose rows with the aim of avoiding zero payoffs); 
Reason 2 (strong Stackelberg reasoning: I chose rows by trying to predict or anticipate the most 
likely choices of the other person and then choosing the rows that would give me the highest 
payoffs if my predictions were correct); and Reason 3 (team reasoning: I chose rows with the aim 
of maximizing the total payoff to both me and the other person). The effect of the order in which 
the games were presented on self-reported reasons for choices is non-significant, F(1, 66) < 1. 

 
Table S1 
Experiment 1: Reasons for strategy choices, with mean ratings of the extent to which each reason influenced 
players’ choices, ranging from 1 (Strongly disagree) to 7 (Strongly agree), and associated standard deviations (N = 
68) 
  M SD 
1 I chose rows with the aim of avoiding zero payoffs. 5.56 1.84 
2 I chose rows by trying to predict or anticipate the most likely choices of the other person and then 

choosing the rows that would give me the highest payoffs if my predictions were correct. 
5.44 1.69 

3 I chose rows with the aim of maximizing the total payoff to both me and the other person. 5.25 1.89 
4 I chose rows randomly, or with no particular reason in mind. 1.37 0.99 
5 I chose rows by working out or estimating the average payoff that I could expect if the other 

person was equally likely to choose any column, and then choosing the best rows for me on that 
basis. 

4.85 1.99 

6 I chose rows with the aim of trying to get higher payoffs than the other person. 3.35 2.22 
7 I chose rows with the aim of trying to ensure that the payoffs to me and the other person were the 

same or equal. 
4.87 1.81 

8 I chose rows by finding the highest possible payoff available to me in each grid and aiming for 
that payoff. 

3.97 2.23 

 
Pairwise comparisons using the least significant difference (LSD) test showed that Reason 1 

was significantly more influential than all other reasons apart from Reasons 2 and 3; Reason 2 
was significantly more influential than all other reasons apart from Reasons 1, 3, and 7 (equality-
seeking: I chose rows with the aim of trying to ensure that the payoffs to me and the other person 
were the same or equal); and Reason 3 was significantly more influential than all other reasons 
apart from Reasons 1, 2, 5 (cognitive hierarchy Level-1 reasoning: I chose rows by working out 
or estimating the average payoff that I could expect if the other person was equally likely to 
choose any column, and then choosing the best rows for me on that basis), and 7. Taken 
together, these findings tend to corroborate the analysis of choice data in suggesting that, among 
the theories under investigation, strong Stackelberg reasoning, team reasoning, and cognitive 
hierarchy Level-1 reasoning were most influential on the players’ strategy choices, and that 
avoiding the worst payoff, equality-seeking, and cognitive hierarchy Level-2 reasoning also 
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appear to have influenced strategy choices. We shall return to avoiding the worst payoff below; 
here, we note that equality-seeking, though a well-known tendency in strategic decision making, 
is not a potential explanation of coordination. 

It is not surprising that Reasons 2 and 3 were rated as being influential, because strong 
Stackelberg reasoning and team reasoning were the second and third most successful theories in 
our analysis of the players’ actual strategy choices, but it is not immediately obvious why 
avoiding the worst payoff was the most frequently chosen reason of all. Cognitive hierarchy 
Level-1 reasoning was the most successful theory in explaining actual strategy choices, 
according to our choice data, but Reason 5 (cognitive hierarchy Level-1 reasoning: I chose rows 
by working out or estimating the average payoff that I could expect if the other person was 
equally likely to choose any column, and then choosing the best rows for me on that basis) was 
rated by players as being less influential than Reasons 2 and 3. How can this apparent 
discrepancy be explained? 

First, according to Brandstätter, Gigerenzer, and Hertwig (2006) and Gigerenzer and 
Gaissmaier (2011), there are reasons to expect decision makers to avoid the worst payoff and to 
use this as their first reason for choice. Although a zero payoff is not strictly a loss, it may be 
construed by players as an opportunity loss, and loss aversion is a powerful and well-established 
feature of human decision making (Kahneman & Tversky, 1979; Tversky & Kahneman, 1991). 
Furthermore, the motive to avoid the worst possible payoff, whether it is zero or some other 
value, is incorporated into regret theory (Loomes & Sugden, 1982; Quiggin, 1994) and 
disappointment theory (Bell, 1985). “Avoid the Worst” (ATW) was first identified as a “fast and 
frugal” heuristic by Gigerenzer and Goldstein (1996). 

Second, the ATW heuristic approximates cognitive hierarchy Level-1 choices in many cases. 
Although it does not necessarily locate the strategy with the highest unweighted average payoff, 
it tends at least to avoid strategies with low average payoffs and thereby increases the probability 
of selecting the strategy with the highest. An examination of our 12 experimental games reveals 
that in two games (2 and 6), avoiding the worst payoff yields a unique strategy choice, and in 
both cases these correspond to the cognitive hierarchy Level-1 predictions; in five games (1, 4, 7, 
8, and 12) it yields two playable strategies, and in four of those five, one of the playable 
strategies corresponds to the cognitive hierarchy Level-1 prediction; and in two games (9 and 10) 
it yields three playable strategies, and in both cases one of them corresponds to the cognitive 
hierarchy Level-1 prediction. It turns out that if players were to avoid any strategy that could 
yield a zero payoff to them in all 12 games, picking strategies randomly from those that are 
playable when more than one is playable according to this heuristic, and picking randomly from 
all available strategies when none avoids a possible zero payoff, then almost half (46.53%) of 
their strategy choices would correspond to the predictions of cognitive hierarchy Level-1 
reasoning in our games. We infer from this that some, at least, of the cognitive hierarchy Level-1 
choices may have been generated by the ATW heuristic. 

In response to the question, “If you often used one reason, followed by another in the same 
grid, please indicate here the reasons in the order in which you usually used them,” 79% of the 
players reported that they had used two or more strategies in the games. Of the 25% who used 
Reason 1, 29% also used Reason 2, 29% Reason 3, 24% Reason 5, 12% Reason 7, and 6% 
Reason 8 as a second strategy. Of the 19% who used Reason 2, 38% also used Reason 3, 31% 
Reason 5, 15% Reason 7, and 15% Reason 8 as a second strategy. Of the 13% who used Reason 
3, 33% also reported using Reason 1, 33% Reason 7, 11% Reason 2, 11% Reason 6, and 11% 
Reason 8 as a second strategy. Reason 4 (random choosing) was not reported as being used in 



REASONS FOR CHOICES     30 
 

conjunction with any other strategies. From these data we conclude that Reasons 1 (avoiding the 
worst payoff), 2 (strong Stackelberg reasoning), and 3 (team reasoning) were used most 
frequently in conjunction with each other. 

In the players’ reasons for choices, Reason 2 (strong Stackelberg reasoning) was mentioned 
frequently, second only to Reason 1 (avoiding the worst payoff). Our sequential reasoning 
analysis revealed that players who reported using Reason 2 in conjunction with another reason 
most frequently followed it with Reason 3 (team reasoning) or Reason 5 (cognitive hierarchy 
Level-1 reasoning). This fits well with our suggestion that players sometimes began by reasoning 
strategically, using strong Stackelberg reasoning, but then switched to team reasoning or 
cognitive hierarchy Level-1 reasoning, presumably because these alternatives were easier and 
less demanding than strong Stackelberg reasoning. 
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Supplemental Material for 
 

Explaining Strategic Coordination: Cognitive Hierarchy Theory, Strong Stackelberg 
Reasoning, and Team Reasoning 

 
Andrew M. Colman, Briony D. Pulford, and Catherine L. Lawrence 

 
Experiment 2 

The principal aim of Experiment 2 is to determine, with a fresh sample of players, whether 
the results of Experiment 1 are robust and replicable. A secondary aim is to investigate the 
hypothesis that players use the simplest and easiest form of the ATW heuristic by merely 
avoiding any strategy that risks a possible zero payoff. We tested this hypothesis by comparing, 
within-subjects, strategy choices in 12 games identical to the games used in Experiment 1 with 
choices in versions of the same 12 games with three units added to every payoff, thus eliminating 
zero payoffs altogether. 
Method 

Participants. The participants were 59 students and employees at the University of Leicester 
(36 female, 23 male), aged 18–37 years (M = 21.14, SD = 3.07) recruited by an advertisement in 
an electronic university newsletter, from a predetermined target sample size of approximately 70 
(some participants failed to turn up on time). This sample is slightly smaller and younger than 
the sample used in Experiment 1, and it contains a slightly more balanced gender distribution. 
Participants were remunerated according to the random lottery incentive system, but in this 
experiment there was no show-up fee: participants were told simply that they would be paid an 
amount up to £8.00 ($13.00) according to their payoffs in a single game, randomly pre-selected 
from the 24 games used in the experiment. 

Materials. The 24 games included the 12 games used in Experiment 2 (displayed in Figure 
4) together with 12 “plus-3” versions of the same games constructed by adding three units to 
every payoff in the original games. From a game-theoretic point of view, the plus-3 versions are 
strategically equivalent to the original games; the addition of a constant to all payoffs has no 
effect on Nash equilibria, Stackelberg solutions, or any other strategic properties of a game. 

Because permutations of rows and columns produced no significant differences in 
Experiment 1, we presented all games in Experiment 2 in root position, as in Figure 4. We 
arranged the 24 games in random order and, to check for possible order effects, presented them 
to half the participants in the reverse random order. As in Experiment 1, the participants were 
assigned the role of Player 1, and a single participant was chosen in each testing session to serve 
as Player 2. 

Procedure. The experiment took place over two 50-minute testing sessions with around 30 
participants in each. The procedure was as in Experiment 1 apart from the inclusion of the 12 
plus-3 versions of the games, randomly interspersed with the original versions. 
Results1 and Discussion 

Strategy choices. Players’ modal choices in all 24 S-soluble experimental games, together 
with unique predictions of Player 1’s strategy choices for the theories under investigation, are 
shown in Table S2. The modal choices in the original versions of the games are almost identical 
to those observed in Experiment 1 (Table 2). The only differences are in Game 3, where the 
modal choice was B in Experiment 1 and A in Experiment 2 (but B in the plus-3 version), and 
Game 10, where the modal choice was tied A/B in Experiment 1 and A in Experiment 2. 
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According to this crude performance criterion, cognitive hierarchy Level-1 reasoning 
outperformed all the other theories in both the 3 × 3 and 4 × 4 games, in their original and plus-3 
versions, replicating the results of Experiment 1. Comparing original and plus-3 versions in 
Experiment 2, the modal choices were the same in eight of the 12 games, and in the games in 
which they differed (Games 1, 3, 8, and 9), the discrepancies are very small. 

 
Table S2 
Experiment 2: Modal choices of players in 12 original games and 12 plus-3 versions of the same games, and unique 
strategy choice predictions for Player 1 of cognitive hierarchy (CH) theory for Level-1 and Level-2 reasoning, 
strong Stackelberg reasoning, and team reasoning 

Games Modal choice 
Original 

Modal choice 
Plus-3 

CH Level-1 CH Level-2 S. Stack.  Team R. 

3 × 3 games       
1 B A B B A C 
2 A A B B A C 
3 A B B C C A 

4 B B B C C A 
5 C C C C B A 
6 C C C C B A 
7 C C A B C C 
8 C A A B C C 

4 × 4 games       
9 C A C D B A 

10 A A B D C A 
11 B B B C D A 
12 C C C D B A 

 
 
Order effects. No significant differences emerged between the two randomized orders in 

which the games were presented. In a game-by-game chi-square analysis, distributions of choices 
do not differ significantly between presentation orders in any of the 24 experimental games. 

Parametric analysis of strategy choices. Table S3 shows frequencies of Player 1 strategy 
choices, together with chi-square values, significance levels, and effect sizes. For 3 × 3 games, 
adjusted data for theories making overlapping predictions are shown in parentheses. The results 
are similar to those of Experiment 1: for the adjusted frequencies, distributions of strategy 
choices deviate significantly from chance in all 3 × 3 and 4 × 4 games, in both their original and 
plus-3 versions, and every single effect size is either large or (in just one case) medium. 

In the 3 × 3 games, converting adjusted frequencies to percentages, cognitive hierarchy 
Level-1 reasoning was most successful, accounting for 39 (in the plus-3 version, 46%) of 
strategy choices, followed by strong Stackelberg reasoning, 36% (36%), then team reasoning, 
15% (13%), and cognitive hierarchy Level-2 reasoning, 10% (6%). Analysis of variance 
performed on the adjusted frequencies reveals that there was a main effect of strategy: F(3, 56) = 
61.61, p < .001, ηp

2 = .77 (large). Post-hoc pairwise comparisons using the LSD test reveal that 
the four strategies all differed significantly from each of the others (p < .05). These results are 
very much in line with the results of Experiment 1. 
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Table S3 
Experiment 2: Frequencies of Player 1 strategy choices in 12 original games and 12 plus-3 versions, with chi-square values, 
significance levels, and effect sizes (N = 59). For 3 × 3 games, adjusted frequencies and associated statistics for theories making 
overlapping predictions are shown in parentheses. 

Games CH-L-1 CH-L-2 S. Stack. Team R. χ2 df p  Effect size 
w 

3 × 3 games         
1 (orig.) 26 (20) 26 (6) 20 13 4.31 (9.14) 2 

(3) 
.116 

(.028) 
0.27 (0.39) 

1 (plus-3) 25 (22) 25 (3) 28 6 14.48 (30.02) 2 
(3) 

.001 
(.000) 

0.50 (0.71) 

2 (orig.) 25 (20) 25 (5) 29 5 16.81 (28.53) 2 
(3) 

.000 
(.000) 

0.53 (0.70) 

2 (plus-3) 23 (20) 23 (3) 33 3 23.73 (43.17) 2 
(3) 

.000 
(.000) 

0.63 (0.86) 

3 (orig.) 18 20 (4) 20 (16) 21 0.24 (11.31) 2 
(3) 

.888 
(.010) 

0.06 (0.44) 

3 (plus-3) 26 15 (2) 15 (13) 18 3.29 (20.53) 2 
(3) 

.193 
(.000) 

0.24 (0.59) 

4 (orig.) 32 20 (4) 20 (16) 7 15.90 (32.19) 2 
(3) 

.000 
(.000) 

0.52 (0.74) 

4 (plus-3) 37 17 (2) 17 (15) 5 26.58 (51.03) 2 
(3) 

.000 
(.000) 

0.67 (0.93) 

5 (orig.) 31 (24) 31 (7) 22 6 16.31 (18.63) 2 
(3) 

.000 
(.000) 

0.53 (0.56) 

5 (plus-3) 34 (30) 34 (4) 18 7 18.75 (28.39) 2 
(3) 

.000 
(.000) 

0.56 (0.69) 

6 (orig.) 39 (31) 39 (8) 20 0 38.68 (37.61) 2 
(3) 

.000 
(.000) 

0.81 (0.80) 

6 (plus-3) 35 (31) 35 (4) 17 7 20.48 (30.15) 2 
(3) 

.000 
(.000) 

0.59 (0.71) 

7 (orig.) 14 8 37 (27) 37 (10) 23.83 (14.83) 2 
(3) 

.000 
(.002) 

0.64 (0.50) 

7 (plus-3) 22 4 33 (25) 33 (8) 21.80 (21.61) 2 
(3) 

.000 
(.000) 

0.61 (0.61) 

8 (orig.) 25 4 30 (22) 30 (8)  19.36 
(21.61) 

2 
(3) 

.000 
(.000) 

0.57 (0.61) 

8 (plus-3) 28 4 27 (20) 27 (7) 18.75 (25.68) 2 
(3) 

.000 
(.000) 

0.56 (0.66) 

Mean (orig.) 26.25 
(23.00) 21.62 (5.75) 

24.75 
(21.50) 14.88 (8.75) 

    

Mean (plus-
3) 

28.75 
(27.00) 19.62 (3.25) 

23.50 
(21.12) 13.25 (7.62) 

    

4 × 4 games         
9 (orig.) 27 3  7 22 27.17 3 .000 0.68 
9 (plus-3) 21 3  9 26 22.83 3 .000 0.62 
10 (orig.) 17 2 19 21 15.24 3 .002 0.51 
10 (plus-3) 20 2 13 24 18.90 3 .000 0.57 
11 (orig.) 45 2  4 8 83.98 3 .000 1.19 
11 (plus-3) 44 4  5 6 77.48 3 .000 1.15 
12 (orig.) 28 10 10 11 15.92 3 .002 0.52 
12 (plus-3) 32 3 17 7 33.95 3 .000 0.76 
Mean (orig.)  29.25 4.25 10.00 15.50     
Mean (plus-
3) 

29.25 3.00 11.00 15.75     

Note. For the effect size index, w ≥ 0.50 large, w ≥ 0.30 medium, w ≥ 0.10 small. 
 

In the 4 × 4 games, also shown in Table S3, cognitive hierarchy Level-1 reasoning was again 
most successful, accounting for 50% (50% in the plus-3 version) of strategy choices, followed by 
team reasoning, 26% (26%), strong Stackelberg reasoning, 17% (19%), and cognitive hierarchy 



REASONS FOR CHOICES     34 
 

Level-2 reasoning, 7% (5%). Analysis of variance reveals a main effect of strategy: F(3, 24) = 
14.76, p < .001, ηp

2 = .65 (large). Post-hoc pairwise comparisons using the LSD test reveal that 
players chose cognitive hierarchy Level-1 strategies significantly more frequently than team 
reasoning strategies (p = .002), than strong Stackelberg strategies (p < .001), and than cognitive 
hierarchy Level-2 strategies (p < .001). Players also chose team reasoning strategies significantly 
more frequently than cognitive hierarchy Level-2 strategies (p = .006). Choice frequencies for 
strong Stackelberg reasoning and cognitive hierarchy Level-2 reasoning did not differ 
significantly (p = .098). 

Original versus plus-3 versions. In both the 3 × 3 and the 4 × 4 games, there were no 
significant interactions between the strategy used and the original version of the game or the 
plus-3 version (p = .33 and p = .99 respectively). The plus-3 payoff transformation therefore had 
no significant effect on overall mean frequencies of strategy choices. 

Table S4 shows the results of a game-by-game analysis of switching to and from “Avoid the 
Worst” (ATW) strategies in the original and the plus-3 versions of the games. Comparisons are 
impossible in three games (3, 5, and 11), because there are no Player 1 strategies in those games 
that are guaranteed to avoid the worst payoff. In five of the remaining nine games (1, 2, 4, 6, and 
10), more players switched from ATW strategies in the original games to other strategies in the 
plus-3 versions, in line with our hypothesis; in two games (7 and 12), more players switched in 
the opposite direction; and in two games (8 and 9), equal (and small) numbers of players 
switched in both directions. Effect sizes are uniformly small, and in most games (apart from 1 
and 12), McNemar change statistics are nonsignificant or, in Games 8 and 9, cannot even be 
computed, because no change was observed. Although these results are not decisive, they are not 
inconsistent with a weak tendency, in several games, to avoid the worst payoff slightly more 
frequently in the original versions, in which zero payoffs were salient, than in the plus-3 
versions, where there were no zero payoffs. Game 12, in which a small but significant change in 
the opposite direction occurred, seems anomalous, for reasons that remain obscure. 

 
Table S4 
Experiment 2: Frequencies (out of 59) of switching between “Avoid the Worst” (ATW) strategy choices and other 
strategies in original games and plus-3 versions, with McNemar change test statistics, one-tailed significance levels, 
and effect sizes 

Games “Worst” ATW–
ATW 

ATW–
“Worst” 

“Worst”–
ATW 

“Worst”–
“Worst” 

McNemar 
χ2 

p  Effect 
size w 

3 × 3 
games 

        

1 A 28 11 3 17 4.57 .02 0.28 
2 A/C 18 7 5 29 0.33 .28 0.07 
4 B 16 11 6 26 1.47 .11 0.16 
6 A/B 12 8 5 34 0.69 .20 0.11 
7 B 48 3 7 1 1.60 .10 0.16 
8 B 53 2 2 2 – – – 

4 × 4 
games 

 
 

      

9 D 53 3 3 0 – – – 
10 A 27 11 8 13 0.47 .25 0.09 
12 A/D 32 6 17 4 5.26 .01 0.30 
Note. For the effect size index, w ≥ 0.50 large, w ≥ 0.30 medium, w ≥ 0.10 small. 
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Reasons for choices. Players’ self-reported reasons for strategy choices are shown in Table 
S5, together with their mean ratings on a scale of 1 (Strongly disagree) to 7 (Strongly agree) of 
the extent to which the reasons influenced their choices across all 24 games. The means differ 
significantly: F(7, 399) = 35.43, p < .001, ηp

2 = .38 (medium). The most influential reasons, in 
descending order, were Reason 2 (strong Stackelberg reasoning); Reason 1 (avoiding the worst 
payoff); and Reason 3 (team reasoning). The effect on self-reported reasons for choices of the 
order in which the games were presented is non-significant, F(1, 57) = 2.53, p = .118. These 
results are similar to those in Experiment 1, although in this experiment Reason 2 (strong 
Stackelberg reasoning) was rated as fractionally more influential than Reason 1 (avoid the 
worst), reversing the marginal lead of Reason 1 in Experiment 1. 

Pairwise comparisons using the LSD test showed that Reason 1 was significantly more 
influential than all other reasons apart from Reasons 2, 3 and 7 (equality-seeking); Reason 2 was 
significantly more influential than all other reasons apart from Reasons 1, and 3; and Reason 3 
was significantly more influential than all other reasons apart from Reasons 1, 2, 5 (cognitive 
hierarchy Level-1 reasoning) and 7. 

 
Table S5 
Experiment 2: Reasons for strategy choices, with mean ratings of the extent to which each reason influenced 
players’ choices, ranging from 1 (Strongly disagree) to 7 (Strongly agree), and associated standard deviations (N = 
59) 
  M SD 
1 I chose rows with the aim of avoiding zero payoffs. 5.36 2.07 
2 I chose rows by trying to predict or anticipate the most likely choices of the other person and then 

choosing the rows that would give me the highest payoffs if my predictions were correct. 
5.39 1.84 

3 I chose rows with the aim of maximizing the total payoff to both me and the other person. 5.12 1.75 
4 I chose rows randomly, or with no particular reason in mind. 1.39 1.11 
5 I chose rows by working out or estimating the average payoff that I could expect if the other 

person was equally likely to choose any column, and then choosing the best rows for me on that 
basis. 

4.68 1.96 

6 I chose rows with the aim of trying to get higher payoffs than the other person. 3.14 2.08 
7 I chose rows with the aim of trying to ensure that the payoffs to me and the other person were the 

same or equal. 
4.75 1.98 

8 I chose rows by finding the highest possible payoff available to me in each grid and aiming for 
that payoff. 

3.81 1.78 

 
 
In response to the question, “If you often used one reason, followed by another in the same 

grid, please indicate here the reasons in the order in which you usually used them,” 88% of 
players reported that they had used two or more strategies in the games. Of the 31% who used 
Reason 2, 11% also used Reason 1, 11% Reason 3, 17% Reason 5, 11% Reason 6 
(competitiveness), 33% Reason 7, and 17% Reason 8 (maximax) as a second strategy. Of the 
17% who used Reason 5, 60% also reported using Reason 2, 20% Reason 6, 10% Reason 3, and 
10% Reason 1 as a second strategy. Of the 15% of players who used Reason 1, 33% also used 
Reason 2, 44% Reason 3, 11% Reason 5, and 11% Reason 8 as a second strategy. Of the 12% 
who used Reason 3, 57% also reported using Reason 1, 14% Reason 6, and 29% Reason 7, as a 
second strategy. Reason 4 (random choosing) was not reported as being used in conjunction with 
any other strategies. 

From these data we conclude that Reasons 1 (avoiding the worst payoff), 2 (strong 
Stackelberg reasoning), 3 (team reasoning), and 5 (cognitive hierarchy Level-1 reasoning) were 
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used most frequently in conjunction with each other. Once again, the results are strikingly similar 
to those of Experiment 1. In particular, it is noteworthy that 28% of players who first used 
Reason 2 (required by strong Stackelberg reasoning) reported switching from it to either Reason 
1 (avoiding the worst payoff) or Reason 5 (required by cognitive hierarchy Level-1 reasoning). 
 

Footnote 
1 Raw data are presented in a separate file in the supplemental materials. 
 
NB: This article may not exactly replicate the final version published in the APA journal. It is not the copy of record. 
 


	Bacharach, M. (2006). Beyond individual choice: Teams and frames in game theory (N. Gold, & R. Sugden, Eds.). Princeton, NJ: Princeton University Press.
	Bacharach, M., & Stahl, D. O. (2000). Variable-frame level-n theory. Games and Economic Behavior, 33, 220-246. doi: 10.1006/game.2000.0796
	Bardsley, N., Mehta, J., Starmer, C., & Sugden, R. (2010). Explaining focal points: Cognitive hierarchy theory versus team reasoning. Economic Journal, 120, 40-79. doi: 10.1111/j.1468-0297.2009.02304.x
	Bolton, G. E., & Ockenfels, A. (2000). ERC: A theory of equity, reciprocity, and competition. American Economic Review, 90, 166-193. doi: 10.1257/aer.90.1.166
	Brosnan, S. F., & de Waal, F. B. M. (2002). A proximate perspective on reciprocal altruism. Human Nature, 13, 129-152. doi: 10.1007/s12110-002-1017-2
	Butler, D. J. (2012). A choice for “me” or for “us”? Using we-reasoning to predict cooperation and coordination in games. Theory and Decision, 73, 53-76. doi: 10.1007/s11238-011-9270-7
	Fehr, E., & Schmidt, K. M. (1999). A theory of fairness, competition, and cooperation. Quarterly Journal of Economics, 114, 817-868. doi: 10.1162/003355399556151
	Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the fast and frugal way: Models of bounded rationality. Psychological Review, 103, 650-669. doi: 10.1037/0033-295X.103.4.650
	Sugden, R. (1993). Thinking as a team: Towards an explanation of nonselfish behaviour. Social Philosophy and Policy, 10, 69-89. doi: 10.1017/S0265052500004027
	Bell, D. E. (1985). Disappointment in decision making under uncertainty. Operations Research, 33, 1-27. doi: 10.1287/opre.33.1.1
	Brandstätter, E., Gigerenzer, G., & Hertwig, R. (2006). The priority heuristic: Making choices without trade-offs. Psychological Review, 113, 409-32. doi: 10.1037/0033-295X.113.2.409
	Gigerenzer, G., & Gaissmaier, W. (2011). Heuristic decision making. Annual Review of Psychology, 62, 451-482. doi: 10.1146/annurev-psych-120709-145346

