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Est́ıbaliz Fraca ∗ Jorge Júlvez ∗ Cristian Mahuela ∗

Manuel Silva ∗

∗ Instituto de Investigación en Ingenieŕıa de Aragón (I3A),
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Abstract: Petri nets (PN) represent a well known family of formalisms for the modeling and
analysis of Discrete Event Systems (DES). As most formalisms for DES, PNs suffer from the
state explosion problem. A way to overcome this difficulty is to relax the original discrete model
and deal with a fully or partially continuous model. In contrast to continuous Petri nets that
consider a full continuous firing of transitions, what can lead to the loss some properties of
the original discrete model, this paper deals with Hybrid Adaptive Petri nets (HAPNs), that
consider partially continuous firings. In an HAPN, a threshold is associated with each transition:
if the load of the transition is higher than its threshold, it behaves as continuous; if it is lower, it
behaves as discrete. This way, transitions adapt dynamically to their load. The reachability space
and the deadlock-freeness property of HAPNs are studied and compared to those of discrete
and continuous Petri nets.
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1. INTRODUCTION

The state explosion problem is a crucial drawback in the
analysis of discrete event systems. An interesting technique
to overcome this difficulty is to relax the original discrete
model and deal with a continuous approximation. Such a
relaxation aims at computationally more efficient analysis
methods, at the price of losing some precision.

Unfortunately, the transformation to a continuous model
may not always preserve important properties of the
original discrete model. For instance, in the context of
Petri nets (PNs), the transformation from discrete to
continuous [1, 2, 3] does not preserve, in general, deadlock-
freeness, liveness, reversibility, etc [4].

This paper focuses on Hybrid Adaptive Petri nets (HAPNs)
[5], a Petri net based formalism in which the firing of
transitions is partially relaxed. The transitions of a HAPN
can behave in two different modes: continuous and dis-
crete. The continuous mode will be chosen when transition
workload is higher than a given threshold. This makes
sense because the higher the workload the better the con-
tinuous approximation. Consequently, it also makes sense
to commute to a discrete mode when the load becomes
low.

This way, a HAPN is able to adapt its behaviour to the net
workload, offers the possibility to represent more faithfully
the discrete model and simplifies analysis techniques by
behaving as continuous when the load is high. In contrast
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Fig. 1. A Petri net system that deadlocks as continuous but
is deadlock-free as hybrid adaptive with appropriate
thresholds.

to [5], HAPNs will be defined and studied in the untimed
framework. Notice that the introduction of time in a given
system would produce a particular system trajectory that
is also achievable in the untimed one. Thus, the results
for some properties as deadlock-freness in the untimed
framework can be almost straightforwardly applied on
timed systems. In the following it is assumed that the
reader is familiar with Petri nets (PNs) (see [6, 9] for a
gentle introduction).

Let us consider the PN system in Figure 1 [4] to introduce
the behaviour of HAPNs. Let the initial marking of the
system be m0 = (5, 0). If considered as a discrete system,
it is deadlock-free: from the initial marking m0 only t2
can fire, reaching m1 = (3, 1). From m1, both m0 and
m2 = (1, 2) can be reached by firing t1 and t2 respectively.
This behaviour is represented in the reachability graph and
reachability space in Figure 2 (a). None of the reachable
markings deadlocks the system, hence it is deadlock-free.
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Fig. 2. Reachability spaces of the Petri net in Figure 1 when considered Discrete (a), Adaptive (b) and Continuous (c).

Consider now that the system is continuous [8] , i.e., each
transition can be fired in any non-negative real amount less
than or equal to its enabling degree. Given that at m0 the
enabling degree of t2 is 2.5, t2 can fire in any amount in the
interval [0, 2.5]. Figure 2 (c) shows the reachability space
of the continuous PN. The firing of t2 in an amount lower
than 2.5 produces positive markings in both places and
both transitions are enabled. However, the firing of t2 in
2.5 from m0 leads to (0, 2.5) where no transition is enabled
and the system deadlocks. Consequently, deadlock-freeness
is not preserved by the continuous PN.

Let us finally assume that the net system is adaptive. For
these systems, a transition ti can have two different firing
modes: continuous and discrete. It behaves as continuous
when its enabling degree is higher than a given threshold
µi. Otherwise, ti behaves as discrete.

When a discrete system is considered as adaptive, appropi-
ate thresholds have to be defined. Let us define µ1 = 1 for
t1 and µ2 = 1.5 for t2 for the system of Figure 1. At
the initial marking m0 = (5, 0), t1 is not enabled, and
t2 behaves as continuous, and it can fire in real amounts
while it remains continuous. If t2 is fired in an amount
of 1, m1 = (3, 1) is reached. At m1, both t1 and t2 are
enabled as discrete. The firing of t1(t2) from m1 leads
to m0(m2 = (1, 2)). At m2 both transitions are discrete
but only t1 is enabled, whose firing leads to m1. Hence,
although the adaptive system still keeps some continuous
behaviour, it preserves the deadlock-freeness property of
the discrete system. Figure 2 (b) shows the reachability
space of the HAPN. The arrows of the reachability graph
below the reachability space are solid for the continuous
firings and dotted for the discrete ones.

In summary, deadlock-freeness property of a discrete sys-
tem might not be preserved by the continuous aproxi-
mation; nevertheless, it could be preserved by the hybrid
adaptive approximation.

The rest of the paper is organised as follows: In Section
2, HAPNs are formally defined. Section 3 studies the
reachability space of HAPNs and relates it to those of the
discrete and continous Petri nets. Section 4 presents some

preliminary results about deadlock-freeness in HAPNs.
Finally, conclusions and future work are presented in
Section 5.

2. HYBRID ADAPTIVE PETRI NETS

This section defines the basic concepts related to HAPNs.

Definition 1. A HAPN is a tuple N = 〈P, T,Pre,Post, µ〉
where:

• P = {p1, p2, ..., pn} and T = {t1, t2, ..., tm} are
disjoint and finite sets of places and transitions.

• Pre and Post are |P | × |T | sized, natural valued,
incidence matrices.

• µ ∈ (R≥0 ∪∞)|T | is the vector of thresholds.

Definition 2. A HAPN system is a tuple 〈N, m0〉, where
m0 ∈ (N ∪ {0})|P | is the initial marking.

Given a place (transition) v ∈ P (T ), its preset, •v, is
defined as the set of its input transitions (places), and
its postset v• as the set of its output transitions (places).

As in continuous PNs, the enabling degree of ti at m is
defined as:

enab(ti, m) = minp∈•ti

{

m[p]

Pre[p, ti]

}

(1)

The threshold µi of a transition ti determines the values
of the enabling degree for which the transition behaves in
continuous (C) or in discrete (D) mode:

mode(ti, m) =

{

C if enab(ti, m) > µi

D otherwise
(2)

If a transition ti is in continuous mode then enab(ti, m) >
µi what implies that ti is enabled as continuous. On the
other hand, if ti is in discrete mode then it is enabled
iff enab(ti, m) ≥ 1. This two conditions together imply
that ti is enabled (either as discrete or continuous) iff the
following expression is true:

mode(ti, m) = C ∨ (mode(ti, m) = D ∧ enab(ti, m) ≥ 1)
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Fig. 3. Example of a Hybrid Adaptive Petri net (a) and
the behaviour of its transitions (b).

This expression is equivalent to:

enab(ti, m) > µi ∨ (enab(ti, m) ≤ µi ∧ enab(ti, m) ≥ 1)

what simplifies to:

enab(ti, m) > µi ∨ enab(ti, m) ≥ 1

Figure 3 (b) explains the behaviour of the transitions of
the HAPN in Figure 3 (a), with any µ = (µ1, µ2, µ3). It
shows the regions in which t1, t2 and t3 behave as discrete
(regions D1, D2, D3) or continuous (C1, C2, C3). In the
triangular region of the center of Figure 3 (b), the PN
behaves as continuous, and in the other regions, it has a
partially discrete behaviour.

Notice that if µ = 0, all transitions will behave as
continuous, and if µ = ∞ all transition will behave as
discrete. Hence, the HAPN formalism includes both the
continuous and discrete PN formalisms.

A transition ti that is enabled can fire. The admissible
firing amounts depend on its mode. If mode(ti, m) = C,
ti can fire in any real amount α ∈ R≥0 that does not
make the enabling degree cross the threshold µi, i.e.,
0 < α ≤ enab(ti, m) − µi. If mode(ti, m) = D, ti can
fire as a usual discrete transition in any natural amount
α ∈ N such that 0 < α ≤ enab(ti, m).

The firing of t in a certain amount α ≤ enab(t, m) leads

to a new marking m′, and it is denoted as m αt
−→m′. It

holds m′ = m + α · C[P, t], where C = Post − Pre is

the token flow matrix (incidence matrix if N is self-loop
free). Hence, as in discrete systems, m = m0 + C ·σ, the
state (or fundamental) equation summarizes the way the
marking evolves, where σ is the firing count vector of the
fired sequence. Right and left natural annullers of the token
flow matrix are called T- and P-semiflows, respectively. As
in discrete systems, when y · C = 0, y > 0 the net is said
to be conservative, and when C · x = 0, x > 0 the net is
said to be consistent.

A discrete, continuos or hybrid adaptive Petri net is choice
free[9] if each place has at most one output transition,
i.e., ∀p |p•| ≤ 1. A Petri net is said to be ordinary iff:
∀p ∈ P ∀t ∈ T, Pre[p, t] ∈ {0, 1} and Post[p, t] ∈ {0, 1}.

The set of all the reachable markings of a given HAPN
system 〈N, m0〉 is denoted as reachability space, RS(N ,
m0):

Definition 3. RS(N , m0) = {m | ∃ σ = α1tγ1
. . . αktγk

such that m0

α1tγ1−→ m1

α2tγ2−→ m2 · · ·
αktγk−→ mk =

m where αi ∈ R+ if mode(tγi
, mi−1) = C, and αi ∈

N+ if mode(tγi
, mi−1) = D}

Liveness and deadlock-freeness properties are defined in a
similar way to those of discrete systems.

Definition 4. Let 〈N, m0〉 be a HAPN system.

• 〈N, m0〉 deadlocks iff a marking m ∈ RS (N , m0)
exists such that ∀t ∈ T , t is not enabled.

• 〈N, m0〉 is live iff for every transition t and for any
marking m ∈ RS (N , m0) there exists m’ ∈ RS(N ,
m) such that t is enabled at m’.

• N is structurally live iff ∃ m0 such that 〈N , m0〉 is
live.

3. REACHABILITY SPACE OF HAPNS

In this section, the reachability space (RS) of HAPN
systems is studied and compared to the RS of discrete
and continuous systems.

The following definitions will be used in the rest of the pa-
per: ND denotes a discrete Petri net with a given structure
〈P, T,Pre,Post〉, NC denotes the continuous net with the
same structure, and NA denotes the hybrid adaptive Petri
net with the same structure and an arbitrary µ. In order to
compare the reachability spaces, the same initial marking
m0 ∈ N|P | is considered for all three types of Petri nets
(discrete, continuous or adaptive).

For the study of the RS we will focus on ordinary PNs.
Notice that although ordinary PNs are a subclass of
general PNs, any non-ordinary Petri net can be converted
to an equivalent ordinary PN[10]. It will be proved that,
under rather general conditions, the RS of a HAPN NA

contains the RS of ND, and that the RS of NC contains
the RS of NA. This is a straightforward consequence of
the fact that, in contrast to continuous nets, HAPNs are
a partial, non-full, relaxation of discrete nets.

Theorem 5. RS(ND, m0) ⊆ RS(NA, m0) for any ordinary
HAPN NA with µ ∈ N|T |.



Fig. 4. A net whose reachability space as discrete is not
contained in the reachability space as adaptive with
with µ = (1.5, 1.5), see Figure 5.

Proof. Let m ∈ RS(ND, m0). Then, there exists

σd = tγ1
. . . tγk

such that m0

1tγ1−→ m1

1tγ2−→ m2 · · ·
1tγk−→

mk = m in 〈ND, m0〉. We will prove that there exists a

sequence σa = β1tγ1
. . . βktγk

such that m0

β1tγ1−→ m1

β2tγ2−→

m2 · · ·
βktγk−→ mk = m in 〈NA, m0〉.

Let us start with tγ1
, and let us check if β1 = 1 can be

chosen. Two cases must be considered.

a) enab(tγ1
, m0) ≤ µtγ1

. From the definition of HAPN,

tγ1
behaves as discrete, i. e., mode(tγ1

, m0) = D.
Given that tγ1

is enabled in 〈ND, m0〉, it holds that
enab(tγ1

, m0) = minp∈•tγ1
{m0[p]} ≥ 1. Hence, it is

also enabled in 〈NA, m0〉 in the same amount.
Therefore, β1 = 1 can be chosen, and the same m1

of the discrete system is reached.
b) enab(tγ1

, m0) > µtγ1
. From the definition of HAPN,

tγ1
behaves as continuous, i. e., mode(tγ1

,m0) = C.
Since µtγ1

∈ N and enab(tγ1
, m0) > µtγ1

, it holds

that enab(tγ1
, m0) − µtγ1

≥ 1. Therefore, β1 = 1 ≤
enab(tγ1

) - µtγ1
can be chosen and m1 is reached.

The same reasoning can be applied to the rest of the
transitions in the sequence tγ2

. . . tγk
. 2

If non ordinary PNs or non natural thresholds are
considered, RS(ND, m0) is in general not contained in
RS(NA, m0). Let us show both cases through examples.

When non natural thresholds, µ 6∈ N|T |, are considered,
RS(ND, m0) is in general not contained in RS(NA, m0)
for ordinary HAPN. Let us show it with the following
example. Consider the net of the Figure 4 as discrete, ND,
with the initial marking m0 = (3,4). Both t1 and t2 can
be fired until the place p1 is empty (when enabling degree
is 0). Its reachability space RS(ND, m0) is represented
in Figure 5 (a). Let us consider now the net as adaptive,
with µ = (1.5, 1.5) Thus, t1 can fire as continuous while
m[p1] > 1.5. And t2 can fire as continuous while m[p1] >
1.5 and m[p2] > 1.5. When m[p1] = 1.5, t1 changes from
continuos to discrete, and it can fire a discrete amount.
Analogously, t2 changes to discrete and can fire as discrete
when m[p1] = 1.5. Its reachability space is shown in Figure
5 (c). Notice that RS(ND, m0) contains some markings
that are not reachable in 〈NA, m0〉. For example, the
marking m2 = (1, 4) ∈ RS(ND, m0), but m2 6∈ RS(NA,
m0).

If non-ordinary PN are considered, RS(ND) is in general
no contained in RS(NA), with µ ∈ N|T |. This can be shown
through an example. The reachability space of the HAPN
in Figure 1 with µ = (1, 1) is shown in Figure 6. Transition

t2 is enabled as continuous from marking (5, 0) to (2, 1.5),
where it changes to discrete. If t2 is fired as discrete
(from (2, 1.5)), (0, 2.5) is reached. In (0, 2.5) none of the
transitions are enabled (and the net deadlocks). Transition
t1 is enabled as continuous from (2, 1.5) to (3, 1), where it
is enabled as discrete. When t1 is fired as discrete from
(3, 1), (5, 0) is reached and t1 becomes not enabled.

The marking m = (1, 2) is reachable in the discrete Petri
net, but not in the adaptive one with ∀µ, µ = 1. Therefore,
RS(ND, m0) is not, in general, included in RS(NA, m0)
with µ ∈ N|T | for non ordinary HAPNs.

On the other hand, it is straightforward to prove that,
given that HAPNs allow real-valued markings, the RS
of 〈NA, m0〉 is not, in general, included in RS(NA, m0).
Nonetheless, if µ = ∞, the HAPN always behaves as
discrete and its RS is trivially identical to that of the
discrete PN.

Let us finally compare the RS of the HAPN to the RS of
its associated continuous PN.

Theorem 6. RS(NA, m0) ⊆ RS(NC , m0) with µ ∈ R|T |
≥0

.

Proof. Let m ∈ RS(NA, m0). Therefore, there exists

σa = β1tγ1
. . . βktγk

such that m0

β1tγ1−→ m1

β2tγ2−→

m2 · · ·
β3tγk−→ mk = m where βi ∈ R+ if mode(tγi

, mi−1)
= C and βi ∈ N+ if mode(tγi

, mi−1) = D

For any of the βi of σa, if mode(tγi
, mi-1) = C, then tγi

will be also enabled in 〈N , mi-1, 〉 and the same βi ∈ T
can be chosen. If mode(tγi

, mi−1) = D, then tγi
will be

also enabled in 〈N , mi-1, 〉 and also the same βi ∈ N+ can
be chosen because βi ∈ R. Consequently, the same firing
sequence σa of the HAPN system can be chosen in the
continuous system and the same marking m is obtained.

The following Corollary is straightforwardly obtained from
Theorems 5 and 6.

Corollary 7. RS(ND, m0) ⊆ RS(NA, m0) ⊆ RS(NC , m0)
for ordinary nets with µ ∈ N|T |.

Furthermore, let us show through an example that the RS
of the continuous system is, in general, not contained in the
RS of the HAPN system, i.e., RS(NC , m0) * RS(NA, m0)

with µ ∈ R|T |. In the PN system of Figure 1 (with µ
= (1.5, 1.5)), the marking m = (0.5, 2) is included in
RS(NC , m0), but cannot be reached by the HAPN, i.e., it
is not included in RS(NA, m0). Both spaces are trivially
equal if all the transitions of the HAPN always behave as
continuous, i.e., when µ = 0.

4. DEADLOCK-FREENESS IN HAPNS

This section studies the deadlock-freeness property of
HAPNs, and relates it to deadlock-freeness of the equiv-
alent discrete PNs. Although for arbitrary µ deadlock-
freeness of the discrete PN is, in general, not preserved
by the HAPN, it is shown that the appropriate selection
of µ can preserve the property for a large class of nets.

Let us first show, by considering the net in Figure 1, that:

〈ND, m0〉 is deadlock-free 6⇒ 〈NA, m0〉 is deadlock-free.
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The system in Figure 1 with m0 = (5, 0) is deadlock-free
if considered as discrete. However, if considered as HAPN
with µ = (1, 1) it deadlocks after firing t2 as continuous
in an amount of 1.5, and again t2 as discrete, see Fig. 6.

Furthermore, in general, deadlock-freeness of a HAPN sys-
tem does not guarantee deadlock-freeness of the equivalent
discrete system:

〈NA, m0〉 is deadlock-free 6⇒ 〈ND, m0〉 is deadlock-free.

The system in the Figure 1 with m0 = (4, 0) deadlocks as
discrete. If considered as HAPN, it is deadlock-free with
m0 = (4, 0) and µ = (1.5, 1.5) because t2 commutes from
continuous to discrete when m[p1] = 3, and m[p1] never
empties.

Although the deadlock-freness property of discrete systems
is not preserved in general by HAPNs with arbitrary µ, it
will be proved that for choice free nets with µ ∈ N|T |

deadlock-freness of the HAPN system is necessary and
sufficient for deadlock-freeness of the discrete system. Let
us first prove that it is a sufficient condition.

Theorem 8. Let 〈NA, m0〉 be an ordinary deadlock-free
HAPN system with µ ∈ N|T |. Then, the discrete system
〈ND, m0〉 is deadlock-free.

Proof. Let us assume that the discrete 〈ND, m0〉 dead-
locks at a marking m. According to Theorem 5, marking
m can be reached by 〈NA, m0〉. Given that the net is
ordinary, for every transition t, there exists p ∈ •t such
that m[p] = 0, i.e., m is a deadlock for 〈NA, m0〉. 2

For the necessary condition, two technical lemmas are
introduced before stating the final result. The first one
states that if a sequence σ is fireable in the adaptive
system, its ceil sequence ⌈σ⌉ is also fireable in the discrete
one.

Definition 9. Let σ = α1tγ1
α2tγ2

. . . αktγk
be a firing

sequence of a given HAPN 〈NA, m0〉. The ceil sequence,
⌈σ⌉ of σ is defined as: ⌈σ⌉ = α′

1tγ1
α′

2tγ2
. . . α′

ktγk
where

α′
i =









∑

1≤j≤i|tγi
=tγj

αj









−
∑

1≤j<i|tγi
=tγj

α′
j

For example, for the sequence σ1 = 0.1 t1 0.8 t2 0.1 t1 0.2 t1
0.8 t2 in the HAPN of Figure 3 (a), the ceil sequence ⌈σ1⌉
is defined as ⌈σ1⌉ = 1 t1 1 t2 0 t1 0 t1 1 t2.

Lemma 10. Let 〈NA, m0〉 be an ordinary choice-free
HAPN system with µ ∈ N|T |. If σ is a fireable sequence in
〈NA, m0〉 then ⌈σ⌉ is fireable in 〈ND, m0〉.

Proof. Let us assume without loss of generality that σ =
α1tγ1

. . . αktγk
and 0 < αj ≤ 1 for every j ∈ {, 1 . . . , k}.

Induction on the length of σ: |σ| = k.

• Base case (|σ| = 1). Let σ = α1tγ1
, then ∀p ∈

•tγ1
, m0[p] ≥ α1 and given that m0[p] ∈ N, it holds

that m0[p] ≥ ⌈α1⌉. Thus ⌈σ⌉ = ⌈α1⌉tγ1
can be fired

in 〈ND, m0〉.
• Inductive step. Assume that the Lemma holds for
|σ| = k. Let us consider the k + 1 firing, i.e., tγk+1

fires in αk+1. Two cases can occur:
a) α′

k+1
= 0. In this case, the Lemma trivially

holds.
b) α′

k+1
= 1. Let mi and σi (m′

i
and σ′

i) be the
marking and firing count vector obtained just after



the firing of tγi
in an amount αi (α′

i). If tγk+1
fires in

the HAPN system, it means that mk[p] > 0 for every
p ∈ •t. Notice that, by definition of ceil sequence, after
the kth firing the following inequalities are satisfied:
σ′

k[t] ≥ σk[t] and σ′
k[tq] ≥ σk[tq] for every tq ∈ •(•t).

Given that the net is choice-free, for every place p
it holds that |•p| = 0 or |•p| ≥ |p•| = 1. If for
p ∈ •t, it holds that |•p| ≥ |p•| = 1, then the previous
inequalities ensure m′

k
[p] ≥ 1. If p has no input

transitions, then it must hold that σ′
k+1

[t] ≤ m0[p].
Therefore tγk+1

can fire from m′
k

an amount of 1.

2

The second lemma states that if a certain sequence σ
deadlocks a HAPN, then its firing count vector is in the
naturals.

Lemma 11. Let 〈NA, m0〉 be an ordinary choice-free
HAPN system with µ ∈ N|T |. If σ is a fireable sequence

m0

σ
−→ m, such that 〈NA, m0〉 deadlocks at m, then

σ ∈ (N ∪ {0})|T |, where σ is the firing count vector of σ.

Proof. Let us first prove that if m is a deadlock marking
then for every transition t there exists p ∈ •t such that
m[p] = 0. Notice that just after the last firing of t in
the sequence σ, which is necessarily discrete firing given
that µ ∈ N|P |, at least one place p ∈ •t becomes empty.
Assume that after such a firing, a transition t′ ∈ •p fires.
If the firing of t′ is discrete then t would become enabled
again; if it is continuous then t′ is sufficiently enabled to
fire also as discrete what would enable t. Hence, after the
last firing of t, no transition t′ ∈ •p can fire and p remains
empty.

Assume that σ[t] > 0 is not a natural number and that
m[p] = 0 for a given p ∈ •t. Then, there exists t′ ∈ •p such
that σ[t′] is not a natural number and σ[t′] ≤ σ[t]−m0[p].
Notice that there also exists p′ ∈ •t′ such that m[p′] = 0,
hence t′′ ∈ •p′ exists such that σ[t′′] is not a natural
number and σ[t′′] ≤ σ[t′] − m0[p

′] ≤ σ[t] − m0[p] −
m0[p

′]. This reasoning can be repeated until a transition
t∗ is found such that it deadlocked with σ[t∗] < 1.
Contradiction since natural thresholds do not allow σ[t∗]
to be less than 1. 2

Therefore, because of Lemmas 10 and 11, if a deadlock
marking m is reachable in 〈NA, m0〉 when σ is fired,
the same deadlock marking m′ is reachable in 〈NA, m0〉,
when ⌈σ⌉ is fired. Thus, if 〈ND, m0〉 is deadlock-free, then
〈NA, m0〉 is deadlock-free too.

Theorem 12. Let 〈ND, m0〉 be an ordinary choice-free and
deadlock-free discrete system. Then, the HAPN system
〈NA, m0〉 is deadlock-free for any µ ∈ N|T |.

The following Corollary is straightforwardly obtained from
Theorems 8 and 12.

Corollary 13. Let N be an ordinary choice-free net.
〈ND, m0〉 is deadlock-free iff 〈NA, m0〉 is deadlock-free
with µ ∈ N|T |.

5. CONCLUSIONS

As most formalisms for discrete event systems, Petri nets
suffer from the state explosion problem. Such a problem

renders enumerative analysis techniques unfeasible for
large systems. The hybrid adaptive Petri nets considered
here aim at alleviating the state explosion problem by
partially relaxing the firing of transitions. More precisely,
a transition can fire in real amounts when its load is
higher than a given threshold, and it is forced to fire
in discrete amounts when its load is lower than that
threshold. This partial relaxation offers the chance of
preserving important properties of discrete event systems,
as deadlock-freeness, that are not always retained by fully
continuous approximations.

This paper focused on the reachability space and the
deadlock-freeness property of hybrid adaptive nets. For
a rather general class of nets, an inclusion relationship
was proved for the reachability spaces of the discrete,
hybrid adaptive and continuous nets. With respect to
deadlock-freeness, although this property is not preserved
in general for arbitrary real thresholds, it was shown that it
is necessary and sufficient for deadlock-freeness of choice-
free nets with arbitrary natural thresholds.

Future work will focus on the definition of µ for deadlock-
freeness preservation of more general net structures.
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