
ABM: Looping Reference-Aware Cache
Management Scheme for Media-on-Demand

Server

K.W. Cho1, Y.S. Ryu2, Youjip Won3, and Kern Koh1

1 School of Computer Science & Engineering, Seoul National University, Korea
2 Dept. of Computer Science, Hallym University, Korea

3 Division of Electrical and Computer Engineering, Hanyang University, Korea

Abstract. Legacy buffer cache management schemes for multimedia
server are grounded at the assumption that the application sequentially
accesses the multimedia file. However, user access pattern may not be
sequential in some circumstances, for example, in distance learning
application, where the user may exploit the VCR-like function(rewind
and play) of the system and accesses the particular segments of
video repeatedly in the middle of sequential playback. Such a loop-
ing reference can cause a significant performance degradation of
interval-based caching algorithms. And thus an appropriate buffer
cache management scheme is required in order to deliver desirable
performance even under the workload that exhibits looping reference
behavior. We propose Adaptive Buffer cache Management(ABM)
scheme which intelligently adapts to the file access characteristics.
For each opened file, ABM applies either the LRU replacement or the
interval-based caching depending on the Looping Reference Indicator,
which indicates that how strong temporally localized access pattern
is. According to our experiment, ABM exhibits better buffer cache
miss ratio than interval-based caching or LRU, especially when the
workload exhibits not only sequential but also looping reference property.

Keywords: Buffer Cache, Multimedia, File System, Interval Caching,
LRU, Looping reference, ABM

1 Introduction

1.1 Motivation

In this paper, we focus our efforts on developing the buffer cache management
scheme for multimedia streaming server. Recent advances in computer and com-
munication technology enable the user to enjoy on-line multimedia data service
anytime and anywhere. Deployment of third generation wireless service[12] fur-
ther accelerates the proliferation of on-line multimedia service. With this growth
in service volume, multimedia server is required to maintain larger and larger
amount of data and is required to service more number of concurrent service

A.B. Chaudhri et al. (Eds.): EDBT 2002 Workshops, LNCS 2490, pp. 484–500, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357406926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABM: Looping Reference-Aware Cache Management Scheme 485

sessions. Particular care needs to be taken to elaborately capture the character-
istics of the multimedia workload and to incorporate the findings in designing
various parts of the system components.
The speed of CPU and the capacity of RAM have been doubling every 18

months for last couple of decades as indicated by Moore’s Law. However, this
increase unfortunately has not been accompanied by the increase in the disk
bandwidth. Thus, the performance of the application which requires frequent
disk access, e.g. On-Line Transaction Processing, On-Line Analytical Processing,
Web Server, and Streaming Server, greatly depends on the performance of I/O.
It is important to avoid any disk accesses if possible and subsequently the role
of the buffer cache replacement scheme is becoming increasingly important.
We argue that multimedia workload may exhibit the characteristics other

than sequential access pattern. Further, if the access pattern is not sequential,
the legacy interval-based caching strategy may not work properly. We carefully
believe that non-trivial fraction of streaming workload actually does belong to
this category, i.e. the one which does not exhibit sequential access pattern. Along
with entertainment, education is the emerging area for multimedia application.
In distance learning environment where the user accesses the lecture materials
remotely, it is possible that the user accesses the particular segment of video
repeatedly rather than simply scans the file from beginning to the end.
In this paper, we propose novel buffer cache management scheme algorithm

referred to as Adaptive Buffer cache Management (ABM). ABM periodically
monitors the workload characteristics and system behavior and dynamically
switches between interval-based caching or LRU replacement scheme. It intelli-
gently applies an appropriate policy per-file basis.

1.2 Related Works

There have been a lot of works on the buffer management in continuous media
file system [8,7,14,2,10]. Interval caching policy was proposed in [8] which caches
intervals formed by pairs of consecutive streams accessing to the same movie
object. This idea was extended in order to support caching short video clips as
well as large video objects [7]. Özden et al. [14] presented two buffer replacement
algorithms — BASIC and DISTANCE. DISTANCE scheme is an approximation
of maintaining free buffers in separate MRU lists per client and replaces the
caches in an order which depend on the distance of clients accessing the same
media file. Recently, there have been several works on buffer cache management
algorithm for streaming server for Internet environment. Hofmann et al. [10]
proposes a solution for caching multimedia streams by integrating segmentation
of streaming objects, dynamic caching and self-organizing cooperative caching.
Matthew et al. [2] shows analytically that the interval caching scheme is optimal
for caching multimedia streams in the Internet and that the maximum number
of simultaneous cache misses is a more important factor rather than the total
number of cache misses. Also buffer management schemes based on user level
hints such as application controlled file caching [3] and informed prefetching and
caching [16] have been proposed. Recently adaptive buffer management scheme

486 K.W. Cho et al.

is presented in [5] which automatically detects the block reference patterns of
applications and applies different replacement policies to different applications
based on the detected reference pattern.
Most existing buffer management policies mentioned above exploit only se-

quential file access pattern not considering looping references. The idea proposed
in our work bears some similarity with the one which is recently proposed by
Smaragdakis et al. [19]. They proposed Early Eviction LRU algorithm which
evicts either least recently used page or relatively recently used pages depend-
ing on the system states. In EELRU algorithm, they maintain the information
about the recently evicted pages. If it detects that larger fraction of recently
fetched pages are evicted, it applies early eviction strategy instead of applying
LRU. This algorithm behaves particularly well when there are large loops in the
workload.
Recently, a number of research results have been released regarding the work-

load analysis of streaming and/or educational media server[17,1,4,15,9]. [15] an-
alyzes the client access to MANIC system audio content. [1,4] analyze access
logs of their educational media servers, eTeach and Classroom 2000, respec-
tively. Rowe et al. [17] addressed that students access the video clips to review
the materials they were not able to understand properly during the class. These
works deliver insightful information on the usage of the educational media server
and the user behavior, e.g. access frequency distribution, file popularity, aging of
file access popularity, etc. Unfortunately, these works do not effectively address
the access characteristics in small time scale, e.g. frame level or block offset.
However, we carefully believe that a certain segment of the video clips can be
accessed repeatedly by the same user exhibiting looping reference pattern.
The remainder of this paper is organized as follows. Section 2 describes our

modeling approach for multimedia workload. Section 3 provides the explanation
of a interval-based replacement scheme and possible anomalies under looping
reference workload. In section 4, we describe the proposed buffer caching algo-
rithms. Section 5 presents performance results and validates our algorithm and
finally section 6 summarizes our results.

2 Workload Modeling in Continuous Media Server

Data reference patterns can be categorized into four different categories: (i) se-
quential, (ii) looping, (iii) temporally localized and (iv) probabilistic reference.
In sequential reference pattern, the application sequentially scans the file and
once the data block has been accessed, it is not accessed again. In looping ref-
erence, application accesses a set of consecutive data blocks repeatedly. Most
Recently Used (MRU) buffer cache replacement is usually preferred in sequential
workload. It is known that Least Recently Used (LRU) replacement scheme is
appropriate for handling temporally localized access pattern.
Multimedia technology is being applied in various fields, e.g. entertainment,

education, medical study, tele-collaboration to list a few. Among them, enter-
tainment and education are typical fields where video streaming technology pro-

ABM: Looping Reference-Aware Cache Management Scheme 487

liferates at a tremendous rate. In entertainment arena, typical video clip is news,
movie clips, etc. where data block access pattern is sequential. It is well known
that LRU does not behave well under sequential workload. Under sequential
access pattern, it was shown that interval-based caching delivers better cache
performance than the legacy LRU based buffer cache replacement scheme[7,14,
2].
However, this commonly accepted assumption that data access pattern is

sequential in streaming environment may not hold in a certain situation and we
may overlook its implication on the system performance. In on-line education
field, the user watches lecture on-line with the lecture materials and instructor’s
annotation appears on the same screen synchronized what the speaker is saying.
We carefully suspect that the users may exhibit more than sequential behavior
in this environment. According to the report by Rowe et al. [17], students use
education media server mostly to review what instructor has said about a par-
ticular topic since the students have difficulty in understanding it in the class.
In this situations, it is possible that the user accesses particular segment of the
video repeatedly than sequentially scans the file from the beginning to the end.

b3 b4 b2 b3 b6 b7 b8 b9 b8 b9b1 b2 b5 b11b10

t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16t1 t2

b4

mark request release
loop length

interval
between

loops

time

LR1 LR2

Fig. 1. Looping Reference

When the workload bears looping reference characteristics, we need a sys-
tematic way of representing or characterizing the workload and the respective
degree of looping reference. We introduce three metrics for this purpose: loop
length, loop count, and interval between loops. Loop length is the number of
data blocks within single scan of the loop. Loop count is the number of iter-
ations. Interval between loops are the distance between the consecutive loops
in terms of number of blocks. It would be better to explain each of these at-
tributes via example. Fig. 1 illustrates the user reference pattern which may be
generated by exploiting the VCR-like function or another designated facility for
iterative playback. bi denotes the ith referenced data block. Consecutive data
blocks b2b3b4 and b8b9 are viewed repeatedly. When b2 is referenced at t2, that
block is marked as the beginning position of the loop and then the offset of the
playback will be adjusted in order to access blocks b2b3b4 repeatedly just after
loop request is issued at t4. Block access patterns during two intervals – from
t2 to t7 and from t11 to t14 build looping references, which may be represented

488 K.W. Cho et al.

such as (bkbk+1 . . . bl)m that loop length and loop count of the looping reference
are l − k+ 1 and m respectively. Sequential playback can be resumed by releas-
ing looping references. In addition to these intra-loop attributes, logical distance
between LR1 and LR2 can specify inter-loop relationships and will be defined as
interval between loops(IBL). The workload concerned in this paper is sequential
user access pattern mixed with looping references. Such a model can be charac-
terized with three loop parameters(loop length, loop count, IBL). In Fig. 1, Loop
length and loop count of the looping reference LR1 are 3 and 2. And IBL formed
by two looping references LR1 and LR2 is 3.

3 Looping Reference

3.1 Interval Based Replacement vs. LRU Scheme

Interval-based scheme[8,7,14] maintains information about intervals of consecu-
tive playbacks accessing the same file. In order to maximize the number of play-
backs accessing data from buffer cache, interval-based schemes sort intervals with
an increasing order and cache data blocks from the shortest intervals. When data
blocks are accessed sequentially and playback rates are same, the event when a
playback is newly launched or terminated can change the intervals formed be-
tween neighboring playbacks. However, if there exist looping references, intervals
may be changed, merged, splitted, created and/or removed when loop request is
issued.
Fig. 2 illustrates data block access pattern for individual sessions. S2 exhibits

looping reference. Let Ii,j be the distance between Si and Sj in terms of the data
blocks. During the first phase, P1, the distance between S1 and S2, i.e. I1,2 are
2 and I2,3 is 6. Thus, to minimize the disk bandwidth utilization with minimum
overhead, the system maintains the data blocks used by S1 so that they can be
used by S2 later. When the data blocks are viewed by S2, they can be replaced
out from the buffer cache. During the second phase, P2, S2 views the block 10
to block 12 repeatedly(looping reference) and thus I1,2 and I2,3 changes to 5
and 3, respectively. During P2, it is better to maintain the data blocks viewed
by S2 rather than the data blocks used by S1. This is because the playback
distance between S1 and S2 becomes 5 while the playback distance between S2
and S3 is 3. After intervals changes due to occurrence of loop, the interval-based
cache management scheme is going to change contents of cache space gradually.
That is, when new block needs to read into the buffer cache, the interval-based
scheme must determine which blocks to cache and which blocks to replace using
the newly created (or modified) interval sets.
Depending on the time scale of interest, looping reference pattern can be

thought as temporally localized workload or sequential workload. The time scale
of interest depends on the buffer cache size. If the buffer cache is large enough to
hold the entire data blocks in the loop, we can think that the workload exhibits
temporal locality. Otherwise, it is regarded as sequential workload. The LRU
policy is known optimal in temporal localized reference pattern [6].

ABM: Looping Reference-Aware Cache Management Scheme 489

S 1

S 2

S 3

P1P2P3

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

12 11 10 9 8 7 6 5 4 3 2 1

12 11 10 12 11 10 12 11 10 9 8 7 6 5 4 3 2 1

time

=2=5=81,2
=0 =3

1,2

2,32,3 =62,3

1,2
I
I I

I I
I

Fig. 2. Interval based replacement scheme with looping reference

3.2 Interval-Based Caching Anomaly

Fig. 3 illustrates the situation that intervals between the playbacks dynamically
changes due to looping reference. From the aspect of interval-based replacement
algorithms, data blocks belonging to I12 have higher priorities than those be-
longing to I23. After S2 goes backward to the beginning point of the loop, the
playback distances between S1 and S2 and between S2 and S3 changes to I ′

12
and I ′

23. More interesting thing is shown in Fig. 4. Looping reference may reverse
the orders of streams so that S2 follows S3 after loop request was issued by S2.

I23 I12

S1S2S3

Media File
loop

(a) Before S2 issues loop request

I23 I12

S1S2S3

Media File

loop

’ ’

(b) I12,I23 are modified

Fig. 3. Intervals are changed due to looping reference

490 K.W. Cho et al.

S3 2S 1S

I12

Media File
loop

I23

(a) Before S2 issues loop request

2S S3 1S

Media File
I I32 13

loop

(b) I12,I23 are merged into I13 and I32 is created

Fig. 4. Intervals are merged and a new interval is created

Interval-based buffer cache replacement scheme mainly exploits the sequen-
tiality of data reference pattern. Buffer cache replacement scheme first estimates
the future access probability of the data blocks and performs replacement based
on it. In interval-based buffer cache replacement scheme, the future access prob-
ability is estimated by the logical distance to the most recently used preceding
block in the same file. This way of computing the future access probability does
not perform well when the playback distance dynamically changes especially via
looping reference. Let us visit Fig. 3 again. Comparing Fig. 3(a) and Fig. 3(b),
I23 becomes smaller than I12 in Fig. 3(b). Thus, at some point between the
transition from Fig. 3(a) to Fig. 3(b), it become better to select the data block
in I12 than in I23 as a victim for replacement. Given all these characteristics of
looping reference and interval caching, we carefully conjecture the interval-based
caching for multimedia streaming may not work properly when the application
exhibits looping reference. To verify our conjecture, we examine the buffer cache
miss ratio under various different legacy buffer cache replacement algorithms:
OPT, DISTANCE[14], LRU, LRU-k[13] and MRU. Throughout simulations in
Section 5, DISTANCE exhibits the lowest miss ratio while LRU and MRU miss
ratios is larger than 90% with sequential reference only. Interestingly, however,
when the workload bears some degree of looping reference characteristics, LRU
is better than DISTANCE. This result confirms our conjecture that looping ref-
erence may be handled properly using LRU in some cases. On the other hand, if
the buffer cache is large enough to hold the entire data blocks referenced in the
looping area, workload can be said to exhibit temporal locality characteristics.
Henceforth, LRU based scheme may be the right choice in this situation.
Modern server system is required to handle a number of concurrent sessions.

Even though the type of requested data may be homogenous, e.g. video file,
individual users may exhibit widely different access characteristics which is either

ABM: Looping Reference-Aware Cache Management Scheme 491

sequential or looping. In this article, we propose novel buffer cache management
algorithm which effectively incorporate the various access characteristics in single
framework and selects the right victim for replacement.

4 Adaptive Buffer Management (ABM)

4.1 Looping Reference Indicator

In this work, we propose a metric called Looping Reference Indicator, δ, to denote
whether there exists looping reference for a given file and how strong it is. δ is
maintained for each opened file.
Let s and St(i) be the user id and the set of users who accesses the file i

at time t. Let |St(i)| be the number of members in St(i). Let Ni(Rt(s)) be the
logical block number of file i which is accessed by the user s at t. Let SRt(i) be
the set of users in St(i) who sequentially accesses the file i at t. That is, SRt(i)
= { s | Ni(Rt(s)) = Ni(Rt−1(s)) + 1 and s ∈ St(i) }. And the set of users who
do not sequentially access the file i at t is denoted by SRt(i)c. Let Bt(i) be the
number of data blocks of file i in the buffer cache at time t. When s is accessing
the file in looping reference at t, let Lt(s) denote the loop length in terms of
the number of data blocks. If the looping reference pattern is represented as
(bkbk+1 . . . bl)m, the loop length corresponds to l − k+1. When the loop request
is issued, it is called as effective if the number of buffer cache blocks allocated
to user s is greater than the loop length, Lt(s). Otherwise, that loop request is
regarded as non-effective.

ERt(i) = {s| Lt(s) ≤ Bt(i)
|St(i)| and s ∈ SRt(i)c} (1)

NERt(i) = {s| Lt(s) >
Bt(i)
|St(i)| and s ∈ SRt(i)c} (2)

If it is possible to maintain data blocks of the loop area in the buffer cache,
LRU scheme can achieve higher cache hit rate. Finally, ERt(i) is a set of users
in St(i) whose loop request is effective at t and their subsequent I/O requests
can be most likely serviced from the buffer cache.
Given all these, we can define the looping reference indicator(LRI) δt(i) as in

Eq. 3. θ in the equation is the update window for δ. LRI is calculated with only
past θ samples to limit overheads to maintain ERt(i), NERt(i) and SRt(i). But
too small θ may cause LRI too sensitive to workload fluctuation.

δt(i) =
∑t

t−θ |ERt(i)|
∑t

t−θ |ERt(i)|+
∑t

t−θ |NERt(i)|+
∑t

t−θ |SRt(i)|
(3)

Large δt(i) means that there are many effective loop requests and thus blocks
in loop area can be served from buffer cache if temporal locality is exploited such
as LRU. On the other hand, smaller LRI implies that relatively larger fraction
of the users are accessing the file in sequential fashion or non-effective loop

492 K.W. Cho et al.

requests are often occurred. The objective is to determine which of the buffer
cache management algorithm is to be used for file i: DISTANCE or LRU. We
use the threshold value δ∗ as a selection criteria for buffer cache management
algorithm. If the LRI of a file is smaller than δ∗, DISTANCE is applied to that
file. Otherwise, LRU scheme is applied.

4.2 Buffer Management Method

ABM manages two separate buffer pools and different replacement policies are
applied to each pool: LRU pool and DISTANCE pool. Assigning a cache block
of each file to LRU pool or DISTANCE pool is determined based on per-file
reference characteristic. Looping reference indicator, δ of the each accessed file
is maintained and appropriate buffer pool is selected with comparison between
δ and δ∗. If δ of a file is greater than or equal to δ∗ which means that there are
sufficient effective loop requests, whole buffers of the file belong to LRU pool.
Otherwise, they become parts of DISTANCE pool. When the file access behavior
changes according to workload pattern change such as effective loop request is
increased, buffers of the file may be transferred to other buffer pool.
As buffer replacement is required, ABM firstly checks per-stream amount of

the each buffer pool. Selected buffer pool which has higher buffer usage should
choose a victim buffer in its pool, which is is determined by its own replacement
policy. The number of buffers allocated to each pool has highly impacted the
cache performance. The basic idea of the proposed buffer allocation to each pool
is to evenly allocate the data blocks to individual streaming sessions.

5 Simulation Results

In this section, we present the results from simulation of existing buffer replace-
ment schemes, such as DISTANCE, LRU, LRU-k and MRU, and also show the
effectiveness of the proposed ABM scheme. In our experiments, synthetic data
reference pattern of clients is used because it is hard to get real workload traces.
In all the experiments, clients arrive randomly. Inter-arrival times of clients

are exponentially distributed and loop parameters are generated from gaussian
distribution. The number of media files is 20 and each file has a length of 3600
blocks. Every stream consumes one block per service round with same playback
rate. The performance metric considered is the cache miss ratio and is measured
through 43200 service rounds simulation.

5.1 Comparison of Legacy Algorithms

We examine the performance of existing schemes such as DISTANCE, LRU,
LRU-k and MRU when clients generate the looping access pattern. In these
experiments, LRU-k takes into account knowledge of the last two references. We
vary the average IBL of each client to assess the effect of frequency of looping
accesses. System parameters used in this simulation are listed in Table 1.

ABM: Looping Reference-Aware Cache Management Scheme 493

Table 1. System Parameters used in IBL performance comparison

System Parameter Value
Cache size 6000 blocks

Interval between loops No looping references, 1000, 500, 200, 100
Loop length 40 blocks
Loop count 5

0%

20%

40%

60%

80%

100%

SEQ 1000 500 200 100

H
it

R
at

io

Interval Between Loops(IBL)

OPT
DISTANCE

LRU
LRU-K

MRU

Fig. 5. Effects of varying IBL on the cache hits

Fig. 5 illustrates the effects of varying IBL on the cache hits under different
buffer replacement schemes. OPT in the figure just gives explanatory informa-
tion for optimal algorithm. With only sequential reference pattern, LRU and
MRU yield much lower hit ratio while DISTANCE gets close to optimal buffer
replacement. DISTANCE’s hit rate is much higher than other policies as the
cache size increases. Hence, DISTANCE is a suitable candidate for buffer re-
placement scheme under only sequential reference pattern in multimedia data
retrieval. When sequential and looping references co-exist, LRU’s hit rate is
highly dependent on IBL. The shorter IBL is, the higher the hit ratio of LRU
is. When IBL is long, for example IBL is 500 and 1000 in Fig. 5, the hit ratio of
LRU is yet lower than that of DISTANCE. But, when IBL is 100 and loop length
is 40, LRU shows higher hit ratio at about 30% compared to DISTANCE and
almost reaches OPT. From this figure, LRU policy is best among other replace-
ment algorithms for looping reference pattern in continuous media streams. Hit
ratios of DISTANCE and MRU tend to remain regularily regardless of IBL. On

494 K.W. Cho et al.

the contrary, performances of the LRU and LRU-k are largely concerned with
IBL.

Fig. 6 illustrates the effects of varying the loop length on the cache hit ra-
tio. The loop length is changed from 20 blocks to 100 blocks. Detailed system
parameters used in this simulation are described in Table 2. The figure shows
that loop length has little impact on the hit ratios of MRU and DISTANCE,
but has much effects on LRU and LRU-K. This is because the longer loop length
incurs more sequential references and buffer space to hold data blocks in loop
area exceeds the number of the buffer. Shorter loop length such as 20 may lead
to under-utilization of buffers.

Table 2. System Parameters used in loop length comparison

System Parameter Value
Cache size 6000 blocks

Interval between loops(IBL) 100
Loop length 20, 40, 60, 80, 100 blocks
Loop count 5

0%

20%

40%

60%

80%

100%

20 40 60 80 100

H
it

R
at

io

Loop Length

OPT
DISTANCE

LRU
LRU-K

MRU

Fig. 6. Effects of varying the loop length on the cache hits

ABM: Looping Reference-Aware Cache Management Scheme 495

Both Fig. 5 and Fig. 6 also show that the size of cache has much impact
on LRU. Given a loop length, LRU has better hit rate if the size of cache is so
large that we can have more effective loop requests. That is, when the cache
space is sufficient to hold the blocks in loop, LRU’s hit rate can be decreased
dramatically.
Fig. 7 represents hit ratios with varying the loop count such as 3, 5, 7, 9 and

11 times. As the loop count increases, hit ratios of the all policies except MRU
get higher. But DISTANCE ratio grows a little smoothly as compared to LRU
and LRU-K. LRU algorithm shows best hit ratio in all experiments with various
loop counts.

Table 3. System Parameters used in loop count comparison

System Parameter Value
Cache size 6000 blocks

Average interval between loops(IBL) 100
Loop length 20 blocks
Loop count 3, 5, 7, 9, 11

0%

20%

40%

60%

80%

100%

3 5 7 9 11

H
it

R
at

io

Loop Count

OPT
DISTANCE

LRU
LRUK
MRU

Fig. 7. Effects of varying the loop count on the cache misses

496 K.W. Cho et al.

5.2 Performance of ABM

In order to investigate the performance of ABM, we need to define looping ref-
erence pattern of each file differently. We use 20 files and assign them integer
number from 1 to 20. And we define four Loop Distribution Type (LDTs) de-
scribed in Table 4. In the Table 4, IBL(i) is the average IBL of clients accessing
file i. In all LDTs, the average loop length and the loop count are fixed at 20
blocks and 5 times, respectively.

Table 4. Description of LDTs used in experiments

LDT Description
LDT1 IBL(i) = 100, for all file (1 ≤ i ≤ 20)
LDT2 IBL(i) = 1000, for all file (1 ≤ i ≤ 20)
LDT3 IBL(1) = 50

IBL(i) = IBL(1) ∗ 1.1(i−1)

LDT4 Let N be the number of files and L(i) be the length
of file i in terms of the number of blocks, respectively.

IBL(1) = 50 and L(i) = 3600
If i ≤ N

2 , IBL(i) = IBL(1) ∗ 1.1(i−1)

Otherwise, IBL(i) = L(i)
1.1(N−i)

In LDT1, all files has many looping references. Note that if IBL is 100, LRU
performs better than DISTANCE. Fig. 8(a) summarizes the result of experiment
with LDT1. This figure shows that the miss rate of ABM moves between LRU
and DISTANCE with varying the threshold of looping reference indicator, δ∗.
Consider the size of cache is 4000. If δ∗ is smaller than 0.02, ABM applies LRU
policy to all files. Hence, the miss ratio of ABM equals that of LRU. If δ∗ is
greater than 0.03, ABM applies DISTANCE policy to all files and thus, the
miss ratio of ABM equals that of DISTANCE. It is also noted that the miss
rate of ABM changes rapidly when δ∗ is changing between 0.02 and 0.03. This
phenomenon appears in other buffer sizes.
Fig. 8(b) shows the results of experiment with LDT2. In LDT2, IBL(i) for

all file is set to 1000. Hence, clients access files in sequential fashion and some-
times access some blocks repeatedly. In this case, ABM should apply DISTANCE
policy to all files because DISTANCE outperforms LRU as shown in Fig. 5.
In LDT3, we assign IBL(i) to file i decreasing value as file number i increases.

In this case, ABM applies LRU to files whose looping reference indicator is
greater than threshold value δ∗ and DISTANCE to files whose looping reference
indicator is smaller than δ∗. Fig. 8(c) shows the result of LDT3. In this figure
and 8(d), LD3000 and LD6000 in legend means the miss ratio of better policy
between LRU and DISTANCE. Consider the size of cache is 6000. ABM can
slightly outperform than both LRU and DISTANCE if it uses 0.01 as δ∗.

ABM: Looping Reference-Aware Cache Management Scheme 497

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.005 0.010 0.015 0.020 0.025 0.030

M
is

s
R

at
io

δ∗

A2000
A4000
A6000

(a) Miss ratios of ABM with LDT1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.002 0.004 0.006 0.008 0.010

M
is

s
R

at
io

δ∗

A2000
A4000
A6000

(b) Miss ratios of ABM with LDT2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.01 0.02 0.03 0.04 0.05

M
is

s
R

at
io

δ∗

A3000
LD3000
A6000
LD6000

(c) Miss ratios of ABM with LDT3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.01 0.02 0.03 0.04 0.05

M
is

s
R

at
io

δ∗

A3000
LD3000
A6000
LD6000

(d) Miss ratios of ABM with LDT4

Fig. 8. Miss Ratios of ABM

Finally, we investigate the case when LDT4 is used. In LDT4, media files are
partitioned into two groups. Files in the first group are assigned small IBL and
second group files are assigned large IBL. In this case, ABM tries to apply LRU
policy to the first group’s files and DISTANCE policy to the second group’s files.
ABM performs better than both LRU and DISTANCE when δ∗ is 0.01 or 0.02.

498 K.W. Cho et al.

5.3 Adjusting δ∗ Value

In practical system, we need for a mechanism that dynamically adjusts δ∗ accord-
ing to the workload and a given system configuration to get the best performance
results. To address this issue we propose a method adjusting δ∗ periodically de-
pending on whether the hit rate has improved during the last θ period.1 For
example, if the hit rate of period p is better than that of period p-1 and the
δ∗ value for period p is larger than the δ∗ value for period p-1, the δ∗ value is
incremented. On the other hand, if the hit rate of period p is worse than that
of period p-1 and the δ∗ value for period p is larger than the δ∗ value for period
p-1, the δ∗ value is decremented.

6 Conclusion

We observed that LRU policy yields lower cache miss rate than DISTANCE pol-
icy when the workload exhibits looping reference pattern. This brought us some
evidence that legacy interval-based caching schemes like DISTANCE algorithm
may not work properly when the workload carries looping behavior. On the
other hand, since LRU selects victim based on the interval from the last usage of
the block, it may not exploit the sequential characteristics of the workload. The
server is required to handle a number of concurrent sessions whose behaviors are
widely different. Neither DISTANCE nor LRU policy alone is not able to deliver
desirable system performance.
In this work, we develop the novel buffer cache replacement algorithm which

effectively incorporates the dynamically changing workload characteristics and
which adaptively applies the proper replacement algorithm based on the system
states. We carefully argue that multimedia workload may exhibit the character-
istics other than sequential access pattern. In distance learning application, for
example, the user may exploit the VCR-like function(rewind and play) of the
system and access the particular segments of video repeatedly while scanning
a file. If the access pattern is not sequential, the legacy interval-based caching
strategy does not work properly.
We propose buffer replacement scheme called Adaptive Buffer Management

(ABM) adaptively applies the appropriate replacement policy. The objective of
ABM is to apply DISTANCE policy to files whose reference pattern is mainly
sequential and LRU policy to files that have many looping references. In order
to properly characterize the workload behavior, e.g. if there exists the looping
reference for a given file and how strong it is, we propose a metric called looping
reference indicator. In ABM, the server regularly monitors the system and up-
dates the looping reference indicator for individual files. This mechanism enables
the server to adaptively change the buffer cache replacement algorithm based on
the dynamically changing workload characteristics. The results of the simulation
based experiments show that ABM algorithm exhibits superior cache hit rate
than both LRU and DISTANCE depending on the threshold value of looping
1 Similar problem and its solution was discussed in [11], too.

ABM: Looping Reference-Aware Cache Management Scheme 499

reference indicator. We strongly believe that ABM(Adaptive Buffer Cache Man-
agement) algorithm proposed in this article is very suitable candidate for buffer
replacement scheme in next generation streaming system. ABM will manifest it-
self particularly when the workload exhibits not only sequential but also looping
access characteristics.

References

1. Jussara M. Aimeida, Jeffrey Krueger, Derek L. Eager, and Mary K. Vernon. Anal-
ysis of educational media server workloads. In Proceedings of International Work-
shop on Network and Operating System Support for Digital Audio and Video, Port
Jefferson, NY, USA, June 2001.

2. Matthew Andrews and Kameshwar Munagala. Online algorithms for caching mul-
timedia streams. In European Symposium on Algorithms, pages 64–75, 2000.

3. P. Cao, E. Felten, and K. Li. Implementation and performance of application-
controlled file caching. In Proceedings of the First Symposium on Operating Sys-
tems Design and Implementation, 1994.

4. M. Chesire, A. Wolman, G. Voelker, and H. Levy. Measurement and analysis of
a streaming media workload. In Proceedings of 3rd USENIX Symp. on Internet
Technologies and Systems, San Francisco, CA, USA, March 2001.

5. J. Choi, S. Noh, S. Min, and Y. Cho. An implementation study of a detection-based
adaptive block replacement scheme. In USENIX Annual Technical Conference,
pages 239–252, 1999.

6. E. G. Coffman, Jr. and P. J. Denning. Operating Systems Theory. Prentice–Hall,
Englewood Cliffs, New Jersey, 1973.

7. A. Dan, Y. Heights, and D. Sitaram. Generalized interval caching policy for mixed
interactive and long video workloads. In Proc. of SPIE’s Conf. on Multimedia
Computing and Networking, 1996.

8. A. Dan and D. Sitaram. Buffer management policy for a on-demand video server.
Technical Report RC 19347, IBM.

9. N. Harel, V. Vellanki, A. Chervenak, G. Abowd, and U. Ramachandran. Work-
load of a media-enhanced classroom server. In Proceedings of IEEE Workshop on
Workload Characterization, Oct. 1999.

10. M. Hofmann, E. Ng, K. Guo, S. Paul, and H. Zhang. Caching techniques for stream-
ing multimedia over the internet. Technical Report BL011345-990409-04TM, Bell
Laboratories, 1999.

11. D. Lee, J. Choi, J. Kim, S. Noh, S. Min, Y. Cho, and C. Kim. On the existence
of a spectrum of policies that subsumes the least recently used (lru) and least
frequently used (lfu) policies. In ACM SIGMETRICS Conference, 1999.

12. Nobuo Nakajima. The path to 4g mobile. IEEE Communications, 39(3):38–41,
March 2001.

13. E. O’Neil, P. O’Neil, and G. Weikum. Page replacement algorithm for database
disk buffering. SIGMOD Conf., 1993.

14. Banu Özden, Rajeev Rastogi, and Abraham Silberschatz. Buffer replacement algo-
rithms for multimedia storage systems. In International Conference on Multimedia
Computing and Systems, pages 172–180, 1996.

15. J. Padhye and J. Kurose. An empirical study of client interactions with a
continuous-media courseware server. In Proceedings of International Workshop on
Network and Operating System Support for Digital Audio and Video, July 1998.

500 K.W. Cho et al.

16. R. Patterson, G. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka. Informed
prefetching and caching. In Proc. 15th Symposium on Operating Systems Princi-
ples, 1995.

17. Lawrence A. Rowe, Diane Harley, and Peter Pletcher. Bibs: A lecture webcasting
system. Technical report, Berkeley Multimedia Research Center, UC Berkeley,
June 2001.

18. Youjip Won and Jaideep Srivastava. ”smdp: Minimizing buffer requirements for
continuous media servers”. ACM/Springer Multimedia Systems Journal, 8(2):pp.
105–117, 2000.

19. S. Kaplan Y. Smaragdakis and P. Wilson. Eelru: Simple and effective adaptive
page replacement. In Proceedings of the ACM SIGMETRICS Conference on Mea-
surement and Modeling of Computer Systems, pages 122–133, 1999.

	Introduction
	Motivation
	Related Works

	Workload Modeling in Continuous Media Server
	Looping Reference
	Interval Based Replacement vs. LRU Scheme
	Interval-Based Caching Anomaly

	Adaptive Buffer Management (ABM)
	Looping Reference Indicator
	Buffer Management Method

	Simulation Results
	Comparison of Legacy Algorithms
	Performance of ABM
	Adjusting $delta ^*$ Value

	Conclusion

