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ABSTRACT
We analyze event abnormal returns when returns predict events. In fixed samples

we show that the expected abnormal return is negative and becomes more negative
as the holding period increases. Asymptotically, abnormal returns converge to zero
provided that the process of the number of events is stationary. Non-stationarity
in the process of the number of events is needed to generate a large negative bias.
We present theory and simulations for the specific case of a lognormal model to
characterize the magnitude of the small sample bias. We illustrate the theory by
analyzing long-term returns after initial public offerings (IPOs) and seasoned equity
offerings (SEOs).
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Since the pioneering research of Fama, Fisher, Jensen, and Roll (1967), event stud-

ies have been used to conclude that markets are semi-strong efficient and deviations

from market efficiency are small. In an influential paper, Ritter (1991) challenges this

view by focusing on the long-run performance of IPOs and argues that event returns

following IPOs over longer horizons are large and negative on a risk-adjusted basis.

Subsequently, Loughran and Ritter (1995) present results on the long-run underper-

formance of SEOs and IPOs; Loughran and Vijh (1997) examine underperformance

in stock returns following mergers; Michaely, Thaler, and Womack (1995) investigate

reactions of stock prices to dividend omissions; Ikenberry, Lakonishok, and Vermaelen

(1995) examine overperformance after open market share repurchases. Fama (1998)

surveys the large literature on long-run returns and argues that the power of these

tests of market efficiency is low [see also Brav (2000), Barber and Lyon (1997), and

Mitchell and Stafford (2000)].

More recently, Schultz (2003) argues that this long-run performance is spurious

when returns predict events. The assumption that returns predict events differs from

the traditional assumption in event studies. For example, in the standard textbook

discussion of event studies (see Campbell, Lo, and Mackinlay, 1997, page 157) this

issue is recognized: “Thus the methodology implicitly assumes that the event is ex-

ogenous with respect to the change in the market value of the security. · · ·There are
examples where an event is triggered by a change in the market value of the secu-

rity, in which case the event is endogenous. For these cases, the usual interpretation

is incorrect.” Following Schultz (2003), we believe that for a large class of events,

the event-generating process depends on the past history of event returns and thus

events are endogenous. One main result of this paper is to provide a fixed sample

and asymptotic theory for event studies with endogenous events.

This assumption of event endogeneity is reasonable given many theoretical models

in corporate finance. For example, Lucas and McDonald (1990) show that seasoned

equity issues are more likely to be preceded by stock price increases. Pastor and
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Veronesi (2005) predict that managers will time IPOs when the stock market is doing

well. Rhodes-Kropf and Viswanathan (2004) show that mergers occur when markets

are relatively overvalued. All these models suggest that corporate events occur more

often when event returns are higher.

Our small sample theory shows that when returns predict events, the long-run

event abnormal return will be negative. The intuition for the negative event abnor-

mal return is as follows. A priori, we expect that all event return histories that

are equally likely in the data will be weighted identically in event abnormal returns.

While calculating long-run event abnormal returns, we show that we overweight histo-

ries with a higher number of events and we underweight histories with a lower number

of events. When event returns are high, subsequently the number of events is greater,

hence the denominator of the event abnormal return, which is the total number of

events, is higher. This implies that we underweight the high returns. The opposite

argument holds when the number of events is lower; here, we overweight the subse-

quent low returns. Consequently, the event abnormal return has negative expectation.

With a longer holding period, the underweighting of return histories is exacerbated

because long-term event returns involve a sequence of returns; a sequence of high

returns implies even more events in the future. Thus a sequence of high returns is

underweighted much more compared to a sequence of low returns. This yields that

the negative expectation of event abnormal returns increases in absolute magnitude

with the holding period used to measure event returns, the negative bias is larger in

absolute magnitude with long-run event returns.

While this argument proves that the expected long-run event abnormal returns are

negative in a fixed sample, it says little about the asymptotic theory of long-run event

abnormal returns. Schultz (2003) suggests via an example that when market levels

predict the number of events, the long-run return averaged across all simulations

is negative. Because Schultz’s example consists only of a simulation, the condition

under which his results can be obtained is unclear. We fill in this gap by showing
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that asymptotically, post-event returns converge to zero under the following sufficient

condition: returns and event process are stationary and the cumulative number of

events converges to infinity. This argument suggests that the negative expected long-

run event abnormal return is a small sample problem unless one believes that the

process of the number of events is non-stationary.

The main intuition for our asymptotic result is as follows. Stationarity in the

event process implies that the shocks to the event process do not persist forever.

Consequently, the total number of events in a very large sample is not affected by the

shock to the number of events today. A higher return today implies more events in the

near future, but the long-run average number of events is not affected. Asymptotically

we do not underweight high returns and overweight low returns. Of course, this

argument is a large sample argument and in small samples the bias could be large.

The stationarity assumption is important. With a non-stationary process of the

number of events, a shock to the number of events today would persist forever, hence

the total number of events in a large sample would be affected by the shock to returns

today. Our asymptotic theory explains the simulations in Schultz (2003). We show

that Schultz’s motivating example implicitly assumes non-stationarity in the process

of the number of events and his empirical work is based on a unit root specification.

To understand the importance of the non-stationarity assumption, we study a

special case in which the log of the number of events is a linear function of the log

of the number of events in the previous period and the lagged excess return. In this

case, we show that when the autoregressive coefficient on the lagged log number of

events is less than one (i.e., the process is stationary), convergence to zero occurs

in theory and in simulation. In contrast, when the autoregressive coefficient on the

lagged log number of events is equal to 1 (i.e., the process contains a unit root), the

expected value converges to a negative number in theory and in simulation.1

Our exact small sample expected bias calculation shows that at the usual sample

size (400 observations), the negative bias is very sensitive to the presence of a unit
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root. Even small deviations from the unit root hypothesis lead to sharp drops in the

bias. With three-year returns, our unit root results are similar to that obtained in

Schultz (2003). With an autoregressive coefficient of 0.95, the magnitude of the bias is

around one-eighth of that obtained in Schultz (2003). Thus the bias is very sensitive

to the unit root hypothesis. We consider alternative weighting schemes that could

potentially reduce the bias. These schemes involve weighting the number of events

in a given period so as to make the adjusted number of events a more stationary

process. Our results suggest that these approaches do substantially reduce the bias

but increase the standard error, i.e., there is a trade-off.

We study whether the data generating process for the number of IPOs and SEOs

is non-stationary. With one lag in the autoregression, we can reject the unit root hy-

pothesis for both IPOs and SEOs. With more lags in the autoregression the evidence

is mixed. We are unable to reject the null hypothesis of unit root at the 1% level

but reject it at the 5% level. In general, it is more difficult to reject the unit root

hypothesis for IPOs. Since the null hypothesis is the unit root and the power of unit

root tests is low with higher lag lengths, we believe that the data cannot discriminate

between the unit root hypothesis and the near unit root alternative.

We also consider how confidence intervals are affected by the presence of endoge-

nous events. We consider an extension of our model that allows for correlations

between individual event abnormal returns. We find that even when the correlation

is small, the standard deviation of the long-run post-event abnormal return increases

dramatically. While Mitchell and Stafford (2000) have pointed out that the correla-

tion between event abnormal returns increases the standard deviation (in the context

of calendar time regressions), a second effect occurs with endogenous returns that

increases the standard deviation much further. Because the number of events is en-

dogenous, persistence in the number of events increases the standard deviation of

long-run event returns further. This suggests that the size of tests assumed in event

studies is incorrect and that inferences from long-run event abnormal returns are
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difficult.

Our paper is organized as follows. Section 1 presents the general model, studies the

bias for fixed sample sizes, and provides the asymptotic theory. Section 2 presents an

application of the theory to a lognormal model and considers an alternative weighting

scheme. Section 3 considers the prior work of Schultz (2003) and its relation to our

work. Section 4 allows for cross correlations between individual firm event abnormal

returns and derives the asymptotic standard errors. Section 5 considers related work

while Section 6 concludes.

1. The General Model

1.1 The setup

Consider the following model. Let rm,t be the market return and rIPO,t be the return

on an event (here IPOs) index. While our model is not specific to IPOs, we use IPOs

to be concrete. Let Nt be the number of IPOs in the end of period t. In our empirical

work, we consider both IPOs and SEOs and our time interval t is a month. Let It−1

be the information of an investor or an econometrician at the end of time t− 1. We
make the following assumptions:

Assumption 1 rm,t, rIPO,t are temporally independent withE [rm,t] = E [rIPO,t];

and Nt is conditionally independent (given the history) of rm,t, rIPO,t.

Note that Nt depends only on the market returns until time t − 1 and the IPO
index returns until time t−1. Hence Nt has no predictive power for current or future

market or IPO returns. This aspect of Assumption 1 states the null hypothesis of

market efficiency.

Assumption 2 The event process {Nt} is Markovian. To be more specific,

f(Nt|It−1) = f(Nt|Nt−1, rm,t−1, rIPO,t−1). f (Nt|It−1) denotes the conditional density
function of Nt given It−1. f(Nt|Nt−1, rm,t−1, rIPO,t−1) is similarly defined.

Assumptions 1 and 2 can be relaxed substantially. Correlations between market
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return and the IPO returns can be allowed. More complicated dependence than that

considered in Assumption 2 can be allowed. None of this would change our results,

the notation would be more cumbersome.

Assumption 3 f(Nt|Nt−1, rm,t−1, rIPO,t−1) satisfies the affiliation inequality or

generalized monotone likelihood ratio inequality.2 ,3

Affiliation is a stronger dependence concept than correlation. Affiliation requires

not only that two random variables, X and Y, are positively correlated, it requires

that all positive monotone transformations of X and Y are positively correlated condi-

tional on any history. Affiliation captures the idea of conditional positive dependence

in the sense that when we see higher values of a monotone function of X, we will see

higher values of monotone functions of Y conditional on any history. Generally, pos-

itively correlated random variables need not be affiliated, just as random variables

with zero correlation need not be independent. Since event returns are non-linear

transformations of the number of events and IPOs returns, we need a stronger no-

tion of dependence than correlation, affiliation is the appropriate concept of positive

dependence. A weaker notion than affiliation is association. As a matter of fact,

affiliation implies association conditional on any history.4

Assumption 3 states that higher values of lagged variables in the information set

(such as market returns, IPO returns, and lagged number of events) lead to a larger

number of events in the next period. From Milgrom and Weber (1982), we know that

this statistical restriction embodies the idea that the number of events is monotoni-

cally increasing in lagged IPO returns. Assumption 3 provides restrictions that do not

depend on specific distributional assumptions; these restrictions result in a negative

bias in long-run event studies.

Based on the three assumptions above, using the decomposition of joint probability

distributions into conditional and marginal probability distributions, we prove that

any subset of the histories of Nt, rm,t, and rIPO,t is affiliated.
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Theorem 1 The random variables (Nt, · · · , Nt+s, rm,t, · · · , rm,t+s, rIPO,t, · · · , rIPO,t+s)
are affiliated.

Proof. See Appendix.

The theorem states that higher values of returns today not only imply higher

events tomorrow but also higher events in the future, i.e., the returns predict events

not just tomorrow but also in the future. This fact has implications for the bias in

expected long-run returns in event studies.

1.2 Small sample theory

We first define in Equation (1) below the average cumulative abnormal return and

average buy-and-hold abnormal return of s holding periods as:

CART (s) =

PT
t=1Nt

³Ps
j=1 ((1 + rIPO,t+j)− (1 +E[rIPO,t+j]))

´
PT

t=1Nt

(1)

BHART (s) =

PT
t=1Ni

Ã
sQ

j=1

(1 + rIPO,t+j)−
sQ

j=1

(1 +E[rIPO,t+j])

!
PT

t=1Nt

where E[rIPO,t] is the expected return of a benchmark IPO index for period t. These

are the most standard definitions used in the literature [see Ritter (1991), Kothari

and Warner (1997), Campbell, Lo, and MacKinlay (1997), Barber and Lyon (1997),

Lyon, Barber, Tsai (1999), Schultz (2003), Li and Prabhala (2007), and Kothari and

Warner (2007)]. Thus, the specification considered here uses the return on an IPO

index.

Our first theorem shows that the expected cumulative abnormal return is nega-

tive in a fixed sample. In proving this theorem, we impose no assumption on the

stationarity of returns or number of events.

Theorem 2 E
£
CART (s)

¤
≤ 0 and E

£
BHART (s)

¤
≤ 0, ∀s.
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Proof. See Appendix.

This theorem makes precise the idea that the cumulative and buy-and-hold abnor-

mal returns have negative expectations even under the null hypotheses that returns

are independent or uncorrelated over time. As discussed in the introduction, the in-

tuition involves differential weighting of paths with high and low return sequences.

The fact that returns predict the number of events leads to the conclusion that, even

under the null hypothesis of market efficiency, the expectation of event abnormal

returns is negative. This makes transparent the intuition for the negative long-run

expected abnormal returns when returns predict events.

We next explore the effect of different holding periods on the expected cumulative

and buy-and-hold abnormal returns. If these expectations become more negative with

the length of holding periods, this makes long-run event studies more susceptible to

the issue of negative bias. We show for longer holding periods, both the expected

cumulative and buy-and-hold abnormal returns are more negative.5

Theorem 3 (1) E
£
CART (s+ 1)

¤
≤ E

£
CART (s)

¤
, ∀s ≥ 1;

(2) E[BHART+1(s+ 1)] ≤ (1 +E[rIPO])E[BHART (s)], ∀s ≥ 1.

Proof. See Appendix.

The intuition for this result is as follows. While looking at one-period returns, we

have shown that we underweight the high returns and overweight the low returns.

With a longer holding period, we are adding more returns to our sequence of returns.

From the affiliation assumption, a sequence of high returns is going to lead to even

a greater number of events in the future. Thus we will underweight a sequence of

high returns even more compared to a sequence of low returns. This leads to the

expectation of the event abnormal return being even more negative as we increase

the holding period.

These results show that, if returns predict the future number of events, the cu-

mulative and buy-and-hold average abnormal returns have negative expectations in a
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fixed sample. Further, these expected returns are more negative the longer the holding

period. The next subsection provides the asymptotic theory for post-event abnormal

returns.

1.3 Asymptotic theory

As a first step toward proving the asymptotic theory, we state an intermediate lemma.

Kronecker’s Lemma: Let St be a sequence converging to infinity (∞). IfPT
t=1Ntrt+1/St converges, then S−1T

PT
t=1Ntrt+1 converges to zero as T goes to ∞.

Note that the lemma places no restriction on Nt, which in our framework corre-

sponds to the number of events in each period. In our setup, St is the cumulative

number of events, i.e., St =
Pt

i=1Ni; the lemma requires that this cumulative number

of events is eventually large and positive. Note that for cumulative abnormal returns

(CAR), rt+s =
Ps

j=1 ((1 + rIPO,t+j)− (1 +E[rIPO,t+j])) and for buy-and-hold abnor-

mal returns (BHAR), rt+s =

Ã
sQ

j=1

(1 + rIPO,t+j)−
sQ

j=1

(1 +E[rIPO,t+j])

!
. Hence in the

future when we refer to returns, we mean excess returns over the appropriate horizon.

Essentially to prove that long-run event abnormal returns converge to zero, we use

Kronecker’s Lemma above and note that it suffices that
PT

t=1Ntrt+1/St converges.

Note that the sequence {Ntrt+1/St, Gt = σ(N1, · · · , Nt, S1, · · · , St, r1, · · · , rt)} is a
martingale difference sequence with respect to the history Gt, i.e., we have a valid

dynamic trading strategy. Using standard methods for dealing with martingale dif-

ference sequences [see Steele (2001), Theorem 2.6], the result of the theorem follows.6

Based on the intuition given by Kronecker’s Lemma, we derive the following theorem:

Theorem 4 Let ST =
PT

t=1Nt, if
P∞

t=1E (Nt/St)
2 <∞, then for any s, CART (s)

converges to zero almost surely as T goes to infinity.

Proof. We first provide a proof of the convergence of CART (s) for s = 1. Note

CART = S−1T

PT
t=1Ntrt+1, to show CART → 0, almost surely, by the Kronecker
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lemma we only need to show that
PT

t=1Ntrt+1/St converges, almost surely. Further,

note {
PT

t=1Ntrt+1/St} is a martingale, by the L2-bounded martingale convergence
theorem [see Theorem 2.6 in Steele (2001)], it suffices to show: ∃B <∞, such that

E
hPT

t=1Ntrt+1/St
i2
≤ B <∞ ∀t.

Since the returns {rt}∞t=1 are i.i.d., thus E
hPT

t=1Ntrt+1/St
i2
= σ2r

PT
t=1E (Nt/St)

2 <

∞, which completes the proof of the theorem.
For s > 1, CART (s) =

Ps
j=1

hPT
t=1Ntrt+1+j/

PT
t=1Nt

i
. For each term in the

square bracket, it converges to zero almost surely by a similar argument. Since

CART (s) is the sum of s such terms, it also converges to zero almost surely.

The moment condition that is imposed in Theorem 4,
P∞

t=1E (Nt/St)
2 < ∞, is

satisfied by most stationary processes that are considered in finance. However, many

non-stationary processes will not satisfy this moment condition. We study these issues

in greater detail in the next section.

2. The Log-Normal Model

2.1 Asymptotic theory

We now specialize our general model to the following lognormal model:

logNt+1 − μ = ρ (logNt − μ) + δrt + �t+1, (2)

where rt can be considered as some benchmark-adjusted IPO index return, or abnor-

mal return; ρ > 0, δ > 0 are assumed to capture the positive effect of previous Nt

and rt. We assume that {rt} and �t+1 are i.i.d. white noise processes with mean zero.
We note that in the empirical data, Nt could be discrete. In this section, we are using

a continuous specification.7
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The lognormal model ensures that the number of events is always positive and

allows us to consider both stationary and non-stationary models by varying ρ. The

specification in Equation (2) allows past returns to persistently impact the number

of events.8

We show that asymptotically the bias disappears when ρ < 1 because the lognor-

mal model satisfies the moment condition imposed in Theorem 4.

Corollary 1 If ρ < 1, the lognormal model for the number of events satisfies the

assumptions of Theorem 4 and hence the event abnormal return converges to zero as

the number of observations T goes to infinity.

Proof. In the Appendix, we show that the lognormal model in Equation (2) satisfies

the moment condition in Theorem 4.

We confirm the asymptotic theory we have just derived by simulation. Based on

the lognormal model in Equation (2), we choose the parameter ρ to be one of 0.2, 0.4,

0.6, 0.8, or 1.0 and the parameter δ as one of 0.2, 0.4, 0.6, or 0.8. Here rt is assumed

to be i.i.d. normally distributed with mean zero and standard deviation of 0.0824.

We set the standard deviation to 0.0824 to be consistent with the IPO data, which is

described in the next section. Further, we normalize the initial IPO number to one

(i.e., N0 = 1) and let r0 be randomly drawn from its unconditional distribution.

For a given pair, δ and ρ, we run five hundred rounds of simulations. At each

round, we simulate the data for a period of T = 100, 000 and save the abnormal

return for period of 1000, 2000, · · · , 100,000 respectively. Figure 1 presents these
results.

Insert Figure 1 Here

As can be seen from this simulation evidence from Figure 1 above, for ρ < 1.0, the

bias goes to zero asymptotically; for ρ = 1.0, the negative bias persists asymptotically

and gets more negative for bigger δ.
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When ρ = 1, the moment condition in Theorem 4 is violated. However, we can

show that the expected CAR asymptotically converges to a negative constant, as

opposed to zero for a stationary event process (see Corollary 1).

Corollary 2 When ρ = 1, E[CART ] converges to −δσ2r/2.

Proof. See Appendix.

From Corollary 2, the higher δ is, the bias becomes more negative. The intuition

is the following: with a higher δ, a shock to the return rt has a larger impact on

the number of events Nt, which makes the covariance between rt and Nt−1/ST more

negative, hence a larger bias. Similarly, with a larger σr, the return process is more

volatile and extreme values are more likely to occur, which implies a larger impact

on Nt and the more negative covariance, as well as the bias.

Overall, the results suggest that, if the process of the number of events is stationary,

the negative long-run expected abnormal return is essentially a small sample problem.

Non-stationarity in the process of the number of events is necessary for large long-run

negative abnormal returns.9

2.2 Small sample theory

We provide small sample theory for the lognormal model. Our approach is to use

Stein’s Lemma (1972) for the lognormal model we introduced in Equation (2). Using

Stein’s Lemma, we prove the following result that holds for all ρ.10

Theorem 5 Under the lognormal specification in Equation (2),

E[CART ] = −δσ2r
PT−2

t=1

PT
s=t+2 ρ

s−t−2E

∙
NtNs/

³PT
s=1Ns

´2¸
< 0. (3)

Proof. See Appendix.

We use simulation to evaluate the conditional expectation in Equation (3) using

the approach suggested above for a sample of size T = 400. In unreported reports,
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we considered T = 200 and 600 also. The results are very similar. We consider

parameter values ρ = 0.6, 0.8, 0.85, 0.9, 0.95, and 1.0 and δ = 0.5, 1.0, 1.5, and 1.75

(we discuss our choice of parameters in greater detail in the next section). We run

five hundred rounds of simulations and record the results in Table 1:11

Insert Table 1 Here

From these small sample simulations, we can see that the average abnormal returns

are negative and tend to get more negative, as ρ increases (the persistence of events

is higher), or as δ increases (the relation between returns and subsequent number of

events is stronger).12

At first cut, our approach does not support as large negative expected abnormal

returns as Schultz (2003) finds in his simulations, except in the case where ρ = 1 (the

unit root case). Schultz finds magnitudes of -0.12 (-12%) in Table VI in his paper for

three-year CARs, which is closer to our unit root magnitude of -0.09(-9%) that we

obtain with 400 observations (see Table 1 Panel B). For CARs when ρ = 0.95 and

δ = 1.75, we obtain a magnitude of -0.015 (-1.5%) for the expected event abnormal

return, which is much smaller.13 Figure 2 illustrates these numbers graphically for

the model without noise and shows that the exact small sample bias is very sensitive

to the assumption of a unit root; even a small deviation from the unit root hypothesis

leads to a dramatic decrease in the bias (making it much less negative). Hence sample

size and the stationarity of the process of the number of events play an important

role in determining the expected bias.

Insert Figure 2 Here

We next provide similar results for the average buy-and-hold abnormal return.

Because of the multiplicative nature of buy-and-hold returns, we cannot use the sim-

plification obtained from Stein’s formula. Instead, we simulate 300,000 times to find

the average buy-and-hold return. The results we obtain are shown in the Table 2.
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Insert Table 2 Here

The results are consistent in magnitude with that obtained for CARs. With T =

400 observations, ρ = 0.90 and δ = 1.75, we obtain magnitudes of -0.011 (-1.1%)

versus -0.095 (-9.55%), which is obtained when ρ = 1.0 and δ = 1.75 (see Table 2).

Again the magnitudes are much smaller. This suggests that, unless we have a unit

root (ρ = 1), the expected bias will not be of the same magnitude as that obtained

by Schultz (2003).

We also consider what happens when we add more lags to our model. We find

that it does not change the bias very much. We confirm this by our results of 300,000

rounds of simulations below (see Table 3). In particular, we study the following

two-lag model (with no noise):

log(Nt) = ρ1 log(Nt−1) + ρ2 log(Nt−2) + δrIPO,t−1. (4)

Insert Table 3 Here

What matters here is the sum of the coefficients ρ1 and ρ2. When the sum is unity,

we obtain significant negative returns. Away from unity, the expected returns are

negative but the magnitudes are not as large.14 The small sample simulations show

conclusively that the stationarity of the log number of events process and the sample

size play a large role in determining how large the magnitude of the small sample bias

is.

2.3 Empirical tests for unit roots

Until now, we have theoretically established the sensitivity of the negative bias to

the presence of a unit root in the lognormal autoregressive specification. We now

conduct an empirical analysis to see whether the data supports the hypothesis of a

unit root, this kind of non-stationarity would violate the moment condition required

in Theorem 4. Towards that end, we conduct both Augmented Dickey-Fuller and
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Phillips-Perron tests on the number of IPO and SEO offerings against the following

two nulls with or without time trend.

H0: constant term, without time trend, unit root

H 0
0: constant term, time trend, unit root

The sample is comprised of 9,190 IPOs ranging from February 1973 to December

2002. The selection criteria are the same as in Ritter (1991): (1) an offer price of

$1.00 per share or more, (2) gross proceeds, measured in terms of 1984 purchasing

power, of $1,000,000 or more, (3) the offering involved common stock only (unit offers

are excluded), (4) the company is listed on CRSP daily Amex-NYSE or NASDAQ

tapes within six months of the offer date, and (5) an investment banker took the

company public.

The numbers of IPOs and SEOs are retrieved from Securities Data Corporation

(SDC). Figure 3 depicts the time series of IPO and SEO numbers in the sample period.

To be consistent with Schultz (2003), we exclude all offerings by funds, investment

companies, and real estate investment trusts (SIC codes 6722, 6726, and 6792), as

well as offerings by utilities (SIC codes 4911 through 4941) and banks (6000 through

6081). The following table shows the distribution of the number of offerings each

month.

Insert Figure 3 Here

Insert Table 4 Here

These tests suggest that with one lag, one can reject the unit root hypothesis,

however we need to check their robustness to more lags. It is well known in the

literature that the power of tests falls with lag length, i.e., we are less likely to reject

the null. The Schwert (1989) criterion suggests the maximum lag of 16. Recent

work in the unit root literature suggests that the most powerful test is to use the

Eliott, Rotheberg, and Stock (ERS) test (1996) for the unit root hypothesis with the

lag length chosen by the Ng and Perron approach [see Ng and Perron (2001) for a
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comprehensive discussion]. The Ng-Perron test suggests an optimal lag of 14. We

conduct ADF and Elliott-Rothenberg-Stock(1996) tests and the results are listed in

Tables 5 and 6. In discussing our results, we focus on the ERS test (which is based

on the local root to unity approach) as this has the highest power.

Insert Tables 5 and 6 Here

From Tables 5 and 6, we can see that the test results for both IPOs and SEOs are

very similar, although it is harder to reject the unit root hypothesis for the number

of IPOs compared to the number of SEOs. When considering only one lag, we can

reject the null hypothesis of unit root process for log(Nt), the p-values are much less

than 1%. However, with more lag lengths, the test results are mixed – we cannot

reject the unit root hypothesis at the 1% level but reject it (with or without time

trend under the ERS test) at the 5% level. Since the null hypothesis is the unit root

and it is well known that the power of these tests becomes lower with more lags, we

believe that the unit root tests at higher lag lengths cannot discriminate between the

unit root hypothesis and its alternative (close to unit root).

2.4 An alternative weighting scheme

An alternative weighting scheme is to scale the event number in each event time by

the total number of all events that have happened. For example, in the case of IPOs

or SEOs, we can scale the number of IPOs or SEOs in any specific month by the

total number of all IPOs or SEOs until that point in time. With a highly persistent

process of numbers of events, such scaling should help reduce bias; we analyze this

intuition.

The traditional CAR, which weights events equally, is defined as:

CART =

PT
t=1Ntrt+1PT

t=1Nt

. (5)
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Being aware of potential concerns about the nonstationarity of IPO volume, some

authors have deflated the number of IPOs by the total number of firms in their IPO

studies, such as, Pastor and Veronesi (2005). Using a similar scaled weighting scheme,

we can define CAR in an alternative way:

[CART =

PT
t=1

bNtrt+1PT
t=1

bNt

, (6)

where bNt is defined as the ratio of the number of IPOs in time t, Nt to the total

number of IPOs until that point in time St ≡
Pt

u=1Nu. That is, bNt ≡ Nt/St.

Using Stein’s Lemma, we can derive the expression of the expectations of [CART ,

which parallels the one in Theorem 5 for the traditional measure CART . The proof

is in the Appendix.

Theorem 6 Under the assumption that log(Nt+1)− u = ρ(log(Nt)− u) + δrt + �t+1,

E[[CART ] = −δσ2r
PT−2

t=1

PT
s=t+2 ρ

s−t−2E

∙
f (s) bNt

bNs/
³PT

s=1Ns

´2¸
, (7)

where f (τ) = 1 −
Pτ

u=t+1 ρ
u−τNu/Sτ . In particular, when ρ = 1, then f (τ) =

1−
Pτ

u=t+1Nu/Sτ > 0, and thus:

E[CART ] < 0.

Proof. See Appendix.

From the theorem above, we can see that when ρ < 1, the sign of f (s) is un-

determined, so is E[CART ]. On the contrary, when ρ = 1, f (s) is always positive,

which leads to negative expectation E[[CART ] < 0. The simulation results reported

in Table 7 confirm it. The intuition for these results is the following. Without weight-

ing, when Nt goes up, so does Nt+1. With weighting, an increase in Nt results in a

smaller increase in bNt+1 because the denominator of bNt+1 = Nt+1/St+1 also goes up;

in fact, for low values of the persistence parameter ρ, bNt+1 may even decrease. This
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attenuates the negative bias, however the addition of another endogenous parameter

St generally increases the standard errors.

Insert Table 7 Here

Further, from Table 7, we can see that under the alternative weighting scheme,

E[[CART ] is much smaller in the absolute term than E[CART ] for most parameter

specifications. However, for a less persistent event process (such as, ρ = 0.6 or

0.8), its standard deviation becomes two or three times bigger than the latter, which

overshadows the benefit from reducing the bias. On the contrary, for a very persistent

event process (such as, ρ = 0.95 or 1.0), its standard deviation increases only a

bit because the scaled number of events is more stationary. Therefore, the scaled

weighting scheme is better for a very persistent event process, but worse for a less

persistent process.15

3. Relation to Schultz (2003)

Our analytical results can be used to understand better the examples and simulation

in Schultz (2003). Schultz presents an example showing that long-run event abnormal

returns are negative and become more negative the longer the horizon chosen. We

present an example that is in the same spirit and is consistent with the lognormal

model we have presented.

In his example, Schultz (2003) considers a binomial-tree process for the number of

events: Nt+1 = Nt (1 +∆It). In this set up, with probability 1, the number of events

goes to 0. Further the event process is a martingale that has expectation one but in

the limit with probability close to 1, there are zero events and with probability very

close to 0 there are infinitely many events. This suggests that this example is not

an appropriate description of the event process. A heuristic proof of this fact is as

follows.16 After taking logs of the equation determining the number of events, we can
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rewrite:

logNt+1 = logNt + log(1 +∆It) (8)

= logN0 + t

µ
1

t

tP
i=0

log(1 +∆Ii)

¶
.

From Jensen’s inequality, we know that E[log(1+∆It)] = k < logE[(1+∆It)] = 0,

so we know that E[logNt+1] drifts downwards. Further by the strong law of large

numbers, we can prove that 1
t

Pt
i=0 log(1 + ∆Ii)

a.s.→ k < 0. Hence it follows that

logNt+1
a.s.→ −∞, from which the result follows that the number of events goes to 0

with probability 1, though the mean number of events is always 1. Thus the event

process has fixed mean but with probability zero it takes infinite value and with

probability one it takes zero value in the limit. Further if we start with a positive

number of events, the event return is always negative.17

As in Schultz (2003), we consider an example where returns can go up or down

each period by 5%. The current stock price P0 is $100. Hence at the end of the

first period, the stock price can be $105 or $95 with equal probability. We allow the

number of events to be determined by the process:

log(Nt+1)− u = ρ(log(Nt)− u) + δrt. (9)

Our example is closely related to Schultz’s binomial example. The main difference

is that we replace his binomial variable It by a normal variable rt. As a result, ours

is a ARMA-type model, which is analytically tractable. Furthermore, by the central

limit theorem, our model (when ρ = 1) has similar asymptotic behavior.

We consider two examples: one where there is a unit root (ρ = 1.0) and one

where there is stationarity (ρ = 0.1). Figure 4 shows the example and computes the

expected CARs as we go forward in time. For the stationary case, the expected CAR

declines over time in absolute magnitude, while for the unit root case, the expected

CAR increases over time in absolute magnitude. The examples and simulation of

Schultz (2003) are closer to the unit root case, hence his results.
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Insert Figure 4 Here

4. Extension: Cross-Sectional Dispersion

Until this section, we have focused on the bias in mean returns caused by the endoge-

nous nature of events. We now consider the effect of endogenous events on inference,

especially on the size of statistical tests. Towards this end, we analyze the effect

of event endogeneity on the standard deviation of CARs. To find the asymptotic

standard deviation, we present a more general model that allows for cross-sectional

dispersion in event returns. Cross-sectional correlation between returns in calendar

time implies correlations across periods in event time — for example, the first month

event return on this month’s events is correlated with the second month event return

on yesterday’s events. This important aspect has been ignored in the prior litera-

ture on long-run event studies such as Barber and Lyon (1997) [Mitchell and Stafford

(2000) do account for this in the context of calendar time regressions]. Figure 5 shows

the timeline and explains the notation in the presence of cross-sectional dispersion.

Insert Figure 5 Here

In the tthperiod, event excess returns are given by:

r0i,t = βst + u0i,t, i = 1, 2, · · · , N0 (10)
...

rti,t = βst + uti,t, i = 1, 2, · · · , Nt

where st
iid∼ N(0, σ2s) and uki,j

iid∼ N(0, σ2u). Here r
k
i,t is the excess return at time t of

the ith firm that went through an IPO at time k and st is the common factor at time

t, like an industry common component or other common factor that affects all IPO
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returns in that period.18 Our specification allows for a single cross-section parameter

β, this can be relaxed. Therefore, σ2r , V ar(rki,j) = β2σ2s + σ2u.

We also maintain the assumption: log(Nt+1) − μ = ρ (log(Nt)− μ) + δst + �t+1.

Hence the number of IPOs is determined by the common factor in the prior period,

the lagged number of IPOs, and an error term. By definition,

CART (S) =

PT
t=1

PNt

i=1

PS
j=1 r

t
i,t+jPT

t=1Nt

. (11)

Theorem 7 For log(Nt+1)− μ = ρ (log(Nt)− μ) + δst + �t+1 and ρ < 1, then

(1) for the monthly CAR CART (i.e., CART (1)), we can show that

√
TCART

L→ N

µ
0,
σ2a
n2a

¶
, (12)

(2) for the S −month CAR CART (S), we can show that

√
TCART (S)

L→ N

µ
0,
σ2b
n2a

¶
, (13)

where σ2a ≡ σ2rna+β
2σ2s (n

4
a − na), σ2b ≡ Sσ2a+2

PS−1
i=1

PS−i
k=1 exp

µ¡
δ2σ2s + σ2�

¢ (1+ρk)
(1−ρ2)

¶
,

and na ≡ exp
³
δ2σ2s+σ

2
�

2(1−ρ2)

´
.

Proof. See the Appendix.

To evaluate how the cross-sectional dispersion affect the asymptotic variance, we

use the following parameter specification based on data: δ = 1.75, ρ = 0.95, σs =

0.0824, σ� = 0.6117. To find out σr, which is the standard deviation of the historical

IPO returns, we use σr = 0.2110 from the squared “average cross-sectional variance”

reported in Table II in Ritter (1991). We choose β to be 0, 0.1, 0.2, 0.3, 0.4, 0.5, or 1

and set the sample size to 200. The results are shown in Table 8.

Insert Table 8 Here

From comparing the first and fourth columns in Table 8, it is clear that with

mild correlation (say a correlation of 0.03, which corresponds to a beta of 0.5), the
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standard deviation increases sharply relative to the case where the number of events is

random (from 0.132 to 0.424). The persistence in the number of events interacts with

the correlation to increase the standard deviation and hence lowers the t-statistic.
19 While Mitchell and Stafford (2000) have pointed out the correlation between

event abnormal returns increases the standard deviation and reduces t-statistics in

calendar time, we present results with event abnormal returns and show that this

effect is compounded by the presence of a persistent event process. This suggests

that the size of tests in event studies is incorrect and that correct inferences based on

event studies do not suggest significant long-run event abnormal returns.

5. Related Work

Our paper is also related to recent work by Butler, Grullon, and Weston (2005),

Baker, Taliaferro, and Wurgler (2006), and Dejong and Dahlquist (2007). The paper

by Dejong and Dahlquist (2007) also studies the bias in long-run even abnormal

returns. Dejong and Dahlquist study the bias using a different model of events, they

also show that the bias disappears asymptotically with a stationary event process.

Our paper differs from theirs along several important dimensions: first, for a very

general class of models, we give a formal proof of the existence of negative bias in

the small sample case, and also derive explicit expressions of the bias and asymptotic

variance in a more specific model. We also provide these calculations for alternative

approaches to weighting the number of events. Second and most importantly, we point

out that the extent of the bias differs considerably for stationary and nonstationary

event process. Especially, we show that the negative bias persists when the event

process is non-stationary and thus highlight the important role of the nature of the

event process in event studies when events are endogenous.

Also related are papers on market timing of aggregate variables, for example, But-

ler, Grullon, and Weston (2005) and Baker, Taliaferro, and Wurgler (2006). These
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studies ask whether market timing of aggregate variables by managers can explain

why some aggregate managerial decision variables (such as the equity share in new

equity and debt issues, aggregate insider trading, corporate investment plans, etc.)

predict stock returns in sample. The approach is this literature is to run a time

series regression of returns on lagged aggregate managerial decision variables (that

are often highly persistent). If innovations in returns predict innovations in man-

agerial decisions and current managerial decisions are highly correlated with prior

managerial decisions, a small sample bias arises even though there is no relationship

between lagged managerial decisions and returns. While the intuition for this bias has

similarities to our paper (both use the relationship between returns and managerial

decisions), the time series regressions used in these papers differ considerably from

event studies and the exact intuition is very different.

6. Conclusion

Schultz (2003) has recently argued via simulation that, when returns predict events,

long-run event returns are downward biased. We provide the fixed sample and asymp-

totic theory for long-run event studies when returns predict events. In fixed samples,

we prove that expected abnormal returns are negative and become more negative the

longer the holding period. This implies that there is a small sample bias in the use

of long-run event returns. Asymptotically, we show that the bias disappears because

long-run event abnormal returns converge in probability to zero when the process of

the number of events is stationary. Thus the stationarity assumption on the process

of the number of events is sufficient to generate consistency of event abnormal returns

in large samples.

We consider a model where the log number of events follows an autoregressive

specification. In the stationary case, we show that convergence occurs while in the

non-stationary case convergence does not occur. To further analyze the small sample
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bias further, we use Stein’s Lemma and compute the small sample expected bias in

the lognormal model. We show that the sample size and the degree of persistence in

the event process determines whether the expected small sample bias is large or not

– a small deviation from the unit root hypothesis reduces the bias a lot. We consider

an alternative weighting scheme for the number of events that makes the modified

number of events process more stationary and show that this leads to lower bias

but higher standard errors. We then prove that the motivating example in Schultz

(2003) does have negative expected returns but the number of events converges to

zero. We show that the example does not satisfy our convergence theorem since it is

not stationary.

Our analysis of IPO and SEO data shows that unit root tests cannot discriminate

between the unit root and near unit root alternative. We also derive the asymptotic

distribution of long-run event abnormal returns and show that small correlations

between event abnormal returns interact with persistence in the process of the number

of events to increase the standard deviation. Our analysis suggests that with event

endogeneity, inference in long-run event studies is more complicated than generally

believed.
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Figure Legends

Figure 1 gives a graphical illustration of the estimates of the expected monthly CART for the
model without noise: log(Nt+1) = ρ log(Nt) + δrt. rt is assumed to be i.i.d. normal, with mean
zero and standard deviation of 0.0824. The standard deviation of rt is chosen to be 0.0824 to be
consistent with our sample. Given a pair of (ρ, δ), to estimate the expected monthly CART , we run
100 rounds of simulation and use the average of the 100 realizations of CART as the estimate of the
expectation. For each simulation, we draw 100,000 observations of the IPO return and the number
of IPOs, i.e. T = 100, 000. For each of the four plots, we first fix δ (which is fixed as 0.2, 0.4, 0.6,
and 0.8, respectively) and then draw the estimates for ρ = 0.2, 0.4, 0.6, 0.8.

Figure 2 plots the estimates of expected CART by simulations as ρ goes from 0.6 to 1.0 for a
given δ (which is chosen to be one of 0.5, 1.0, 1.5, or 1.75.) Based on the model without noise:
log(Nt+1) = ρ log(Nt) + δrt, we conduct 500 rounds of simulations assuming rt is assumed to be
i.i.d. normal, with mean zero and standard deviation of 0.0824. The standard deviation of rt is
chosen to be 0.0824 to be consistent with our sample of IPOs.

Figure 3 depicts the time series of IPO and SEO numbers from February 1973 to December 2002.
The solid (blue) line shows the number of IPOs while the dotted (red) line shows the number of
SEOs.

Figure 4 shows a three-period example. In the ith period, the return ri can be either 5% or -5%
with equal probabilities, i = 1, 2, 3. At time 0, there is only one new issue with price 100, N0 = 1.
The total number of IPOs at time t follows the model: logNt = ρ logNt−1 + rt, t = 1, 2, 3. We
consider both the unit root case where ρ = 1.0 and the stationary case where ρ = 0.1. E

£
CARt

¤
is

reported for both cases at the bottom of the figure.

Figure 5 shows the timeline and explains the notations in the presence of cross-sectional disper-
sion. Here rki,t is the return at time t of the ith firm that went through an IPO at time k and st
is the common factor at time t, such as the market return. In the tth period, rki,t = βst + uki,t, i =

1, 2, · · · ,Nk, k = 0, 1, · · · , t, where st iid∼ N(0, σ2s) and uki,j
iid∼ N(0, σ2u).
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Appendix
We state Stein’s Lemma, which is to be used in some proofs later on. Please refer to Stein (1972)

or Liu (1994).
Stein’s Lemma
Let X = (X1, · · · ,Xn) be multivariate normally distributed with arbitrary mean vector u and

covariance matrix Σ. For any function h(x1, · · · , xn) such that ∂h/∂xi exists almost everywhere and
E
¯̄̄
∂
∂xi

h(X)
¯̄̄
<∞, i = 1, · · · , n, we write ∇h(X) =

³
∂
∂x1

h(X), · · · , ∂
∂xn

h(X)
´T
. Then the following

identity is true:
cov[X,h(X)] = ΣE[∇h(X)].

Specifically,

cov[X1, h(X1, ...,Xn)] =
Pn

i=1 cov(X1,Xi)E

∙
∂

∂xi
h(X1, · · · ,Xn)

¸
.

We discuss the definition of affiliation when some random variables are discrete.
Affiliation
While affiliation as defined in Milgrom and Weber (1982) applies to both discrete and continuous

random variables, the usual definition of affiliation uses the existence of a probability density function
and is:

f(z0 ∨ z)f(z0 ∧ z) ≥ f(z0)f(z), (14)

where z is a vector of random variables. Here z0 ∨ z is the component wise maximum of the two
random variables and z0 ∧ z is the component wise minimum. We can extend this definition to the
case where some of variables in the vector z are discrete (the vector y) and the rest are continuous
(the vector x). Then the appropriate definition is:

p(y0 ∨ y|x0 ∨ x)f(x0 ∨ x)p(y0 ∧ y|x0 ∧ x)f(x0 ∧ x) ≥ p(y0|x0)f(x0)p(y|x)f(x), (15)

here p(y|x) is the probability of the discrete event y given the continuous variable x and f(x) is the
probability density of x.
Clearly, Equation (15) reduces to Equation (14) when a joint probability density exists. With

this, all the relevant theorems on affiliation go through.

Proof of Theorem 1. First, when s = 0, we already know that Nt, 1 + rm,t, 1 + rIPO,t are
affiliated. And when s = 1, Nt+1, Nt, 1 + rm,t+1,1 + rm,t, 1 + rIPO,t+1, 1 + rIPO,t are affiliated,
because

f(Nt+1, Nt, 1 + rm,t+1,1 + rm,t, 1 + rIPO,t+1, 1 + rIPO,t)

= f(1 + rm,t+1,1 + rIPO,t+1)f(Nt+1, Nt, 1 + rm,t, 1 + rIPO,t) (by assumptions 1 & 2)

= f(1 + rm,t+1,1 + rIPO,t+1)f(Nt+1|Nt, 1 + rm,t, 1 + rIPO,t)f(Nt, 1 + rm,t, 1 + rIPO,t).

Suppose, (Nt+s, · · · , Nt, 1 + rm,t+s, · · · , 1 + rm,t, 1 + rIPO,t+s, · · · 1 + rIPO,t) are affiliated. For
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(Nt+s+1, · · · , Nt, 1 + rm,t+s+1, · · · , 1 + rm,t, 1 + rIPO,t+s+1, · · · 1 + rIPO,t), we have

f (Nt+s+1, · · · , Nt, 1 + rm,t+s+1, · · · , 1 + rm,t, 1 + rIPO,t+s+1, · · · 1 + rIPO,t)

= f (Nt+s+1, · · · , Nt, 1 + rm,t+s, · · · , 1 + rm,t, 1 + rIPO,t+s, · · · 1 + rIPO,t)

f (1 + rm,t+s+1, 1 + rIPO,t+s+1)

= f (1 + rm,t+s+1, 1 + rIPO,t+s+1)

f (Nt+s+1|Nt+s, · · · , Nt, 1 + rm,t+s, · · · , 1 + rm,t, 1 + rIPO,t+s, · · · 1 + rIPO,t)

f(Nt+s, · · · , Nt, 1 + rm,t+s, · · · , 1 + rm,t, 1 + rIPO,t+s, · · · 1 + rIPO,t).

Hence, by induction, (Nt+s+1, · · · , Nt, 1 + rm,t+s+1, · · · , 1 + rm,t, 1 + rIPO,t+s+1, · · · 1 + rIPO,t)
are also affiliated.

Proof of Theorem 2. Throughout the proof below, let Et (·) be the expectation conditional on
information set It, E (· | It). For the CAR CART (s), we have:

E
£
CART (s)

¤
=

PT−1
t=0

Ps
j=1E

h
NtrIPO,t+j/

PT−1
t=0 Nt

i
−E

hPT−1
t=0

Ps
j=1NtE[rIPO,t+j ]/

PT−1
t=0 Nt

i
=

PT−1
t=0

Ps
j=1E

h
NtEt

h
rIPO,t+j/

PT−1
t=0 Nt

ii
−
Ps

j=1E[rIPO,t+j ].

Since (N1, · · · , NT , 1 + rm,1, · · · , 1 + rm,T , 1 + rIPO,1, · · · 1 + rIPO,T ) are affiliated, we use the
key implication of affiliation that monotone increasing functions of affiliated variables have positive
covariance conditional on any history [see the theorems in Milgrom and Weber (1982)] and obtain
that:

Et

h
rIPO,t+j/

PT−1
t=0 Nt

i
≤ Et [rIPO,t+j ]Et

h
1/
PT−1

t=0 Nt

i
= E [rIPO,t+j ]Et

h
1/
PT−1

t=0 Nt

i
.

Therefore,

E
£
CART (s)

¤
≤

PT−1
t=0

Ps
j=1E

h
NtE (rIPO,t+j)Et

³
1/
PT−1

t=0 Nt

´i
−
Ps

j=1E[rIPO,t+j ]

=
PT−1

t=0

Ps
j=1E (rIPO,t+j)E

h
Et

³
Nt/

PT−1
t=0 Nt

´i
−
Ps

j=1E[rIPO,t+j ]

=
Ps

j=1E (rIPO,t+j)
PT−1

t=0 E
h
Nt/

PT−1
t=0 Nt

i
−
Ps

j=1E[rIPO,t+j ]

= 0.

Similarly we can show E
£
BHART (s)

¤
≤ 0.

Proof of Theorem 3. Similarly, using the properties of affiliated random variables, we have:

E
£
CART (s+ 1)

¤
−E[CART (s)] =

PT−1
t=0 E

h
Nt(rIPO,t+s+1 −E[rIPO,t+s+1])/

PT−1
t=0 Nt

i
≤ 0.
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To prove the theorem, note that:

E[BHART+1(s+ 1)]

=
T−1P
t=0

E

"
Nt

s+1Q
j=1
(1 + rIPO,t+j)/

PT−1
t=0 Nt

#
−

T−1P
t=0

E

"
Nt

s+1Q
j=1

E[1 + rIPO,t+j ]/
PT−1

t=0 Nt

#

=
T−1P
t=0

E

"
Nt

sQ
j=1
(1 + rIPO,t+j)Et+s

Ã
1 + rIPO,t+s+1PT−1

t=0 Nt

!#
−

T−1P
t=0

E

"
Nt

Qs+1
j=1E (1 + rIPO,t+j)PT−1

t=0 Nt

#
.

By affiliation inequality again, we have Et+s

∙
(1 + rIPO,t+s+1)

³PT−1
t=0 Nt

´−1¸
is less than E[1 +

rIPO,t+s+1]Et+s

³PT−1
t=0 Nt

´−1
, therefore from the above equations, E[BHART+1(s + 1)] satisfies

the following inequality:

E[BHART+1(s+ 1)]

≤
T−1P
t=0

E

"
Nt

sQ
j=1

(1 + rIPO,t+j)E[1 + rIPO,t+s+1]Et+s

³PT−1
t=0 Nt

´−1#

−
T−1P
t=0

E

"
NtPT−1
t=0 Nt

s+1Q
j=1

E[1 + rIPO,t+j ]

#

= (1 +E[rIPO])
T−1P
t=0

E

"
NtPT−1
t=0 Nt

Ã
sQ

j=1
(1 + rIPO,t+j)−

sQ
j=1

E [1 + rIPO,t+j ]

!#
= (1 +E[rIPO])E[BHART (s)].

Proof of Corollary 1 Without loss of generality, we let μ = 0; otherwise, let N∗t = Nt exp(−μ)
Note that the scaling constant does not affect either cumulative- or buy-and-hold abnormal returns.

We make the same assumption from now on in the proofs. SinceNt = exp
³Pt−2

i=0 ρ
t−i−2 (δri + �i+1)

´
,

then:
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Pt
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30



Therefore, for ρ < 1,
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Hence,
P∞

t=1E (Nt/St)
2 <∞, which satisfies the condition in the theorem above. Therefore the

asymptotic bias is zero, for ρ < 1.

Proof of Corollary 2. Let λt = Nt/
³PT
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´
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We only need to prove that E
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converges to zero. In fact, first notice that given N0 = 0
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Without loss of generality, we only need to prove that for rt
iid∼ N(0, 1), as T goes to infinity,
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∙³
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We can prove that for a large enough T , say T ≥ T0, ∃�0 > 0, such that, ST ≤ T−1−�0 .
Notice that, f(x) = (1 + 1/x)−1 is a concave function, by Jensen’s inequality, we have for any
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δ > 0, x > 0,
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Furthermore, by the mean value theorem, we have, ∃ ln(an) ≤ x ≤ ln(an+1), such that,
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The inequality above holds for any a > 1. In particular, if we choose a = 1.1, then:
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≈ 0.52.

Note that 0.6(T − 1)−1.1 ≤ T−1.1 holds for large enough T and small �0 (for example �0 = 0.1,
T ≥ 3). Hence S3 ≤ T−1.1.

Proof of Theorem 5. First note, E
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Proof of Theorem 6. First note, E
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When ρ = 1, then f (τ) = 1−
Pτ

u=t+1Nu/Sτ > 0, and thus E[CART ] < 0.

To prove Theorem 7, we are going to use the two lemmas below. The proofs are omitted here,
which can be found in Corollary 5.26 and Theorem 3.57 in White (2001), respectively.
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Lemma 2 Let {Zt} be a scalar sequence with asymptotically uncorrelated elements20 with means
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Proof of Theorem 7. It’s easy to prove that {Nt} has asymptotically uncorrelated elements and
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It is easy to show 1
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Notes

1The asymptotic theory of functions of unit root processes depends on the exact function of the

integrated process that is considered. The sensitivity of the asymptotic theory to the nature of the

non-linear function is well known, see Park and Phillips (2001) for more details.

2With continuous random variables where a joint probability density exists, a vector z̃ is affiliated

if f(z0 ∨ z)f(z0 ∧ z) ≥ f(z)f(z0) where z0 ∨ z is the component wise maximum for the vector z and

z0 ∧ z is the component wise minimum for z. Affiliation is defined more generally in Milgrom and

Weber (1982) to allow for discrete and continuous variables. Since we may have discrete variables

(the number of events Nt), the definition needs to amended slightly. The Appendix provides more

details.

3From Assumptions 1 and 3, it follows that the joint density function f(Nt, Nt−1, rm,t−1, rIPO,t−1)

also satisfies the affiliation inequality.

4Variables X1, · · · , Xk are called to be associated if cov[f (X1, · · · ,Xk) , g (X1, · · · ,Xk)] ≥ 0

holds for each pair of bounded Borel measurable non-decreasing functions f and g.

5We can prove Theorem 2 and Theorem 3 (1) using the weaker notion of association. Some form

of association conditional on the event history is needed to prove Theorem 3 (2), affiliation is one

condition that is sufficient.

6A related approach is Chow’s theorem for martingale difference sequences [see White (2001)

page 60, Theorem 3.76].

7Also, Nt could be zero with positive probability in the data. We deal with this when we consider

the IPO and SEO data by adding 0.5 to each observation.

8Under this specification, the correlations between log (Nt) and rs are positive for any t and s,

thus these variables are associated by the theorem in Pitt (1982). Consequently, Theorem 2 and

Theorem 3 (i) hold for the lognormal model in Equation(2).
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9Our results can be extended to allow for deterministic time trends. Generally, a linear time

trend (Nt = t) will satisfy the moment condition of Theorem 4 while a geometric time trend (Nt =

et) will not satisfy the moment condition in Theorem 4.

10We can only use Stein’s Lemma for CARs as they are arithmetic. For BHARs, we cannot obtain

such a simple characterization.

11Using Theorem 5, simulated results converge to the true value very quickly. In fact, the results

based on 100 rounds of simulations are very close to the one from 10 rounds of simulations. Thus

the Stein’s method delivers very accurate estimates of the expected event abnormal return.

12In earlier drafts, we found that the bias becomes less negative when the number of sample

observations T increases except for the case of ρ = 1.0. This observation is consistent with our

asymptotic theory and our large sample simulation, from which the abnormal returns go to zero as

the sample size T goes to infinity for ρ < 1.0.

13We obtain higher numbers without the noise �t in the specification.

14Adding more lags to our model will not change the bias calculations that we undertake. In

earlier drafts, we also looked at the simulated three-year cumulative and buy-and-hold abnormal

returns. The results are similar to Table 3 and are not reported here.

15We also considered a version of the lognormal model where the parameter δ varies across indus-

tries, i.e., the relationship between returns and events is industry specific. Now, accounting for this

variation across industries and weighting as we have done in this section reduces the bias further.

These results are available from the authors.

16A prior draft provided a more formal proof that is available from the authors upon request.

17Our results here are robust to having asymmetrical shocks in the number of events process.

18Note that we suppress the IPO subscript and that rIPO,t = 1
Nt−1

PNt−1
i=1 rt−1i,t .

19By looking at the fourth column of Table 8, we see that correlation between event abnormal

returns increases the standard deviation from 0.081 to 0.132, persistence in the number of events
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further increases this to 0.424. With the usual mean abnormal return of -19% or 0.19, the t-statistics

are insignificant.

20See Definition 3.55 in White (2001). The scalar sequence {Zt} has asymptotically uncorre-

lated elements if there exists constants {ρτ , τ ≥ 0} such that 0 ≤ ρτ ≤ 1,
P∞

τ=0 ρτ < ∞ and

cov (Zt, Zt+τ ) ≤ ρτ (var (Zt) var(Zt+τ ))
1/2 for all τ > 0, where var(Zt) <∞ for all t.
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Table 1: Average Cumulative Abnormal Return

This table reports the estimates of the expected monthly CART (Panel A) and the estimates
of the expected three-year CART (Panel B) for T = 400 using 500 rounds of simulations based on
Theorem 5. All simulations are based on the model used: log(Nt+1) = ρ log(Nt) + δrt + �t+1, where

ρ = 0.6, 0.8, 0.85, 0.9, 0.95, or 1.0 and δ = 0.5, 1.0, 1.5, or 1.75, rt
iid∼ N(0, 0.0824). The standard

deviation of rt is chosen to be 0.0824 to be consistent with our sample.

Panel A: Average Monthly CAR of holding period T = 400
δ = 0.5 δ = 1.0 δ = 1.5 δ = 1.75

ρ = 0.6 -0.000004 -0.000050 -0.000075 -0.000080
ρ = 0.8 -0.000054 -0.000105 -0.000163 -0.000220
ρ = 0.85 -0.000094 -0.000191 -0.000264 -0.000294
ρ = 0.9 -0.000157 -0.000280 -0.000498 -0.000570
ρ = 0.95 -0.000376 -0.000711 -0.001091 -0.001271
ρ = 1.0 -0.001522 -0.002971 -0.004493 -0.005246
Panel B: Average 3-year CAR of holding period T = 400

δ = 0.5 δ = 1.0 δ = 1.5 δ = 1.75
ρ = 0.6 -0.000466 -0.001281 -0.001971 -0.002492
ρ = 0.8 -0.001233 -0.002933 -0.004205 -0.005113
ρ = 0.85 -0.002192 -0.003753 -0.005406 -0.006827
ρ = 0.9 -0.003145 -0.005884 -0.009383 -0.011469
ρ = 0.95 -0.006708 -0.012655 -0.019601 -0.022620
ρ = 1.0 -0.029250 -0.057739 -0.086117 -0.099253
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Table 2: Average Buy-and-Hold Abnormal Return

This table reports the estimates of the expected three-year BHART for T = 400 using 500 rounds
of simulations based on Theorem 5. All simulations are based on the model used: log(Nt+1) =
ρ log(Nt) + δrt + �t+1, where ρ = 0.6, 0.8, 0.85, 0.9, 0.95, or 1.0 and δ = 0.5, 1.0, 1.5 or 1.75,

rt
iid∼ N(0, 0.0824). The standard deviation of rt is chosen to be 0.0824 to be consistent with our

sample.

Average 3-year BHAR of holding period T = 400
δ = 0.5 δ = 1.0 δ = 1.5 δ = 1.75

ρ = 0.6 -0.000451 -0.001307 -0.002006 -0.002576
ρ = 0.8 -0.001246 -0.002947 -0.004242 -0.005171
ρ = 0.85 -0.002222 -0.003876 -0.005556 -0.007169
ρ = 0.9 -0.003110 -0.006002 -0.009682 -0.011769
ρ = 0.95 -0.006828 -0.012753 -0.019636 -0.022888
ρ = 1.0 -0.028800 -0.056493 -0.083469 -0.095988
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Table 3: Average Monthly Cumulative Abnormal Return

This table reports the estimates of monthly CART , for T = 200, 400, 600 by 300,000 rounds of
simulations using CART ’s definition after including one more lag into our model (without noise):
log(Nt) = ρ1 log(Nt−1) + ρ2 log(Nt−2) + δrIPO,t−1, where ρ1 = 0.6 or 0.7, ρ2 = 0.25 or 0.3 and

δ = 2.0, 2.3 or 2.5, rt
iid∼ N(0, 0.0824). The standard deviation of rt is chosen to be 0.0824 to be

consistent with our sample.

Average Monthly CAR of holding period T = 200
δ = 2.0 δ = 2.3 δ = 2.5

(ρ1, ρ2) = (0.6, 0.25) -0.000437 -0.000509 -0.000557
(ρ1, ρ2) = (0.6, 0.3) -0.000649 -0.000756 -0.000828
(ρ1, ρ2) = (0.7, 0.25) -0.001241 -0.001452 -0.001597
(ρ1, ρ2) = (0.7, 0.3) -0.005111 -0.005866 -0.006368
Average Monthly CAR of holding period T = 400

δ = 2.0 δ = 2.3 δ = 2.5
(ρ1, ρ2) = (0.6, 0.25) -0.000234 -0.000271 -0.000296
(ρ1, ρ2) = (0.6, 0.3) -0.000349 -0.000406 -0.000445
(ρ1, ρ2) = (0.7, 0.25) -0.000695 -0.000817 -0.000903
(ρ1, ρ2) = (0.7, 0.3) -0.005161 -0.005923 -0.006429
Average Monthly CAR of holding period T = 600

δ = 2.0 δ = 2.3 δ = 2.5
(ρ1, ρ2) = (0.6, 0.25) -0.000159 -0.000184 -0.000201
(ρ1, ρ2) = (0.6, 0.3) -0.000238 -0.000277 -0.000303
(ρ1, ρ2) = (0.7, 0.25) -0.000480 -0.000566 -0.000627
(ρ1, ρ2) = (0.7, 0.3) -0.005181 -0.005947 -0.006456

43



Table 4: The Distribution of the Number of Offerings per Month

The numbers of IPOs and SEOs are retrieved from Securities Data Corporation (SDC). To be
consistent with Schultz (2003), we exclude all offerings by funds, investment companies, and REITs
(SIC codes 6722, 6726, and 6792), as well as offerings by utilities (SIC codes 4911 through 4941) and
banks (6000 through 6081). The following table shows the distribution of the number of offerings
each month.

Monthly Number of Monthly Number of
Initial Public Seasoned Equity
Offerings Offerings

Mean 25.60 27.25
Median 20 22
Minimum 0 1
Maximum 106 105

First-order autocorrelation 0.85 0.81
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Table 5: Unit Root Testing of H0 without Time Trend

This table reports results of both Augmented Dickey-Fuller and Elliott-Rothenberg-Stock unit
root tests on the number of IPO and SEO offerings up to 16 lags against the null H0: unit root
process without time trend. The test statistics for IPOs and SEOs as well as critical values (1%,
5%, 10%) are reported. The first half of the table reports the test results using the Augmented
Dickey-Fuller test; while the second half is for the Elliott-Rothenberg-Stock test.

Augmented Dickey-Fuller Test Elliott-Rothenberg-Stock Test
Test Statistics Critical Value Test Statistics Critical Value

Lag IPO SEO 1% 5% 10% IPO SEO 1% 5% 10%
16 -2.223 -2.497 -3.451 -2.870 -2.571 -2.152 -2.390 -2.580 -1.951 -1.637
15 -2.322 -2.380 -3.451 -2.870 -2.571 -2.189 -2.245 -2.580 -1.955 -1.641
14 -2.208 -2.415 -3.451 -2.870 -2.571 -2.148 -2.346 -2.580 -1.958 -1.644
13 -2.302 -2.415 -3.451 -2.870 -2.571 -2.398 -2.354 -2.580 -1.962 -1.647
12 -2.430 -2.299 -3.451 -2.870 -2.571 -2.482 -2.246 -2.580 -1.965 -1.650
11 -1.989 -2.062 -3.451 -2.870 -2.571 -2.057 -2.035 -2.580 -1.968 -1.653
10 -2.069 -2.204 -3.451 -2.870 -2.571 -2.222 -2.190 -2.580 -1.972 -1.656
9 -2.172 -2.520 -3.451 -2.870 -2.571 -2.491 -2.567 -2.580 -1.975 -1.659
8 -2.056 -2.855 -3.451 -2.870 -2.571 -2.395 -2.834 -2.580 -1.978 -1.661
7 -2.068 -2.781 -3.451 -2.870 -2.571 -2.335 -2.785 -2.580 -1.981 -1.664
6 -2.147 -3.295 -3.451 -2.870 -2.571 -2.384 -3.300 -2.580 -1.984 -1.667
5 -2.212 -3.373 -3.451 -2.870 -2.571 -2.438 -3.282 -2.580 -1.986 -1.669
4 -2.159 -3.583 -3.451 -2.870 -2.571 -2.532 -3.591 -2.580 -1.989 -1.672
3 -2.081 -3.798 -3.451 -2.870 -2.571 -2.444 -3.816 -2.580 -1.992 -1.674
2 -2.701 -4.106 -3.451 -2.870 -2.571 -2.861 -4.130 -2.580 -1.994 -1.676
1 -3.571 -4.612 -3.451 -2.870 -2.571 -3.483 -4.663 -2.580 -1.997 -1.679
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Table 6: Unit Root Testing of H 0
0 with Time Trend

This table reports results of both Augmented Dickey-Fuller and Elliott-Rothenberg-Stock tests
on the number of IPO and SEO offerings up to 16 lags against the null H 0

0: unit root process with
time trend. The test statistics for IPOs and SEOs, as well as critical values (1%, 5%, 10%) are
reported. The first half of the table reports the test results using the Augmented Dickey-Fuller test;
while the second half is for the Elliott-Rothenberg-Stock test.

Augmented Dickey-Fuller Test Elliott-Rothenberg-Stock Test
Test Statistics Critical Value Test Statistics Critical Value

Lag IPO SEO 1% 5% 10% IPO SEO 1% 5% 10%
16 -1.676 -3.121 -3.988 -3.424 -3.135 -2.236 -2.861 -3.48 -2.817 -2.535
15 -1.749 -2.890 -3.988 -3.424 -3.135 -2.276 -2.685 -3.48 -2.823 -2.541
14 -1.671 -3.043 -3.988 -3.424 -3.135 -2.222 -2.800 -3.48 -2.829 -2.546
13 -2.138 -3.025 -3.988 -3.424 -3.135 -2.512 -2.803 -3.48 -2.834 -2.552
12 -2.267 -2.848 -3.988 -3.424 -3.135 -2.606 -2.672 -3.48 -2.840 -2.557
11 -1.330 -2.479 -3.988 -3.424 -3.135 -2.101 -2.423 -3.48 -2.846 -2.562
10 -1.700 -2.759 -3.988 -3.424 -3.135 -2.305 -2.606 -3.48 -2.851 -2.567
9 -2.174 -3.295 -3.988 -3.424 -3.135 -2.615 -3.040 -3.48 -2.856 -2.571
8 -2.057 -3.679 -3.988 -3.424 -3.135 -2.502 -3.345 -3.48 -2.861 -2.576
7 -1.886 -3.569 -3.988 -3.424 -3.135 -2.431 -3.275 -3.48 -2.866 -2.581
6 -1.903 -4.280 -3.988 -3.424 -3.135 -2.486 -3.867 -3.48 -2.871 -2.585
5 -1.896 -4.182 -3.988 -3.424 -3.135 -2.548 -3.825 -3.48 -2.876 -2.589
4 -2.169 -4.658 -3.988 -3.424 -3.135 -2.657 -4.176 -3.48 -2.880 -2.593
3 -2.132 -4.907 -3.988 -3.424 -3.135 -2.547 -4.419 -3.48 -2.884 -2.597
2 -3.211 -5.373 -3.988 -3.424 -3.135 -3.038 -4.759 -3.48 -2.889 -2.601
1 -4.325 -5.912 -3.988 -3.424 -3.135 -3.730 -5.342 -3.48 -2.893 -2.604
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Table 7: Average Monthly CART Under Equally Weighting Scheme

This table reports the estimates of the expectedmonthly CART and the expectedmonthly [CART

for T = 400 using 200,000 rounds of simulations. CART is defined by weighting events equally as in
Equation (5). [CART is defined under scaled weighting scheme as in Equation (6). All simulations
are based on the model log(Nt+1) = ρ log(Nt) + δrt + �t+1, where ρ = 0.6, 0.8, 0.85, 0.9, 0.95 or 1.0
and δ = 0.5, 1.0, 1.5 or 1.75. The simulation-based estimates of mean and standard deviation of
CART ([CART ) are reported in Panels A and B (C and D), respectively.

Panel A: Mean of CART (×10−4) with T = 400
δ = 0.5 δ = 1.0 δ = 1.5 δ = 1.75

ρ = 0.6 -0.2001 -0.2984 -0.7568 -0.7673
ρ = 0.8 -0.5224 -1.0743 -1.7521 -1.9906
ρ = 0.85 -0.5777 -1.8624 -2.6184 -3.3653
ρ = 0.9 -1.7879 -3.1278 -5.0328 -5.4113
ρ = 0.95 -3.5192 -7.1808 -11.0574 -13.1639
ρ = 1.0 -15.0864 -30.2697 -44.5558 -51.8022
Panel B: Std. Dev. of CART (×10−4) with T = 400

δ = 0.5 δ = 1.0 δ = 1.5 δ = 1.75
ρ = 0.6 54.9066 55.1574 55.3252 55.5463
ρ = 0.8 66.9126 67.3492 67.9923 68.4603
ρ = 0.85 74.8013 75.1170 76.2416 76.9925
ρ = 0.9 89.4798 90.2106 91.2480 91.9962
ρ = 0.95 117.0015 117.5599 118.7614 118.9192
ρ = 1.0 171.1819 172.0112 173.2287 173.7028

Panel C: Mean of [CART (×10−4) with T = 400
δ = 0.5 δ = 1.0 δ = 1.5 δ = 1.75

ρ = 0.6 -0.0025 0.5826 0.2684 -0.2312
ρ = 0.8 0.6706 0.5095 0.8015 -0.1072
ρ = 0.85 0.4510 -0.0333 -0.0517 0.4218
ρ = 0.9 0.4604 0.2896 0.1904 0.6934
ρ = 0.95 -0.3192 0.2648 0.0476 -0.1847
ρ = 1.0 -2.2153 -5.6278 -8.4805 -9.9124

Panel D: Std. Dev. of [CART (×10−4) with T = 400
δ = 0.5 δ = 1.0 δ = 1.5 δ = 1.75

ρ = 0.6 166.5494 166.7364 166.1989 166.7117
ρ = 0.8 165.7027 165.8637 165.9608 166.0384
ρ = 0.85 164.9011 164.8834 165.2495 165.0750
ρ = 0.9 162.6115 162.4133 162.9946 163.2824
ρ = 0.95 157.4607 157.4294 157.2405 157.4461
ρ = 1.0 172.1102 172.7707 174.1883 173.4290
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Table 8: Asymptotic Standard Deviation of 3-YEAR CART

This table reports the asymptotic standard deviation of three-year CART for T = 200 based on
the asymptotic distribution stated in Theorem 7 (2). To derive the asymptotic distribution, it is
assumed that log(Nt+1)− μ = ρ (log(Nt)− μ) + δst + �t+1. To be consistent with our data, we set
the variance of the common factor st, σ2s = 0.0824, and the variance of �t+1, σ

2
� = 0.6117. Further,

we use σr = 0.211, the cross-sectional standard deviation of the historical IPO returns from the
Table II in Ritter (1991). For each of four pairs of specification of (δ, ρ), we calculate the asymptotic
standard deviation of three-year CART for various values of β, which are 0.0, ..., 0.5, and 1.0. By
Theorem 7, the asymptotic standard deviation is: σb(na

√
T )−1. The explicit expressions of σa and

σb are given in Theorem 7. Note that the cross-correlation of IPO returns equals β2σ2s/σ
2
r.

Asymptotic Standard Deviation of 3-year CART (T = 200)
β (δ = 1.75, ρ = 0.95) (δ = 1.75, ρ = 0) (δ = 0, ρ = 0.95) (δ = 0, ρ = 0)
0.0 0.03251 0.08110 0.03429 0.08152
0.1 0.09062 0.08374 0.08511 0.08415
0.2 0.17227 0.09122 0.15953 0.09158
0.3 0.25584 0.10247 0.23620 0.10279
0.4 0.33991 0.11640 0.31348 0.11667
0.5 0.42419 0.13219 0.39101 0.13240
1.0 0.84651 0.22397 0.77977 0.22402
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Figure 1: Unit Root v.s. Stationary Event Process
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Figure 2: Small Sample Simulation
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Figure 3: Number of IPOs and SEOs
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Figure 4: Three-Period Example
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Figure 5: Timeline of IPOs and Returns
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