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ABSTRACT
We analyze event abnormal returns when returns predict events. In �xed samples we show that

the expected abnormal return is negative and becomes more negative as the holding period increases.
Asymptotically, abnormal returns converge to zero provided that the process of the number of events
is stationary. Non-stationarity in the number of events process is needed to generate a large negative
bias. We present theory and simulations for the speci�c case of a lognormal model to characterize
the magnitude of the small sample bias. We illustrate the theory by analyzing long-term returns
after IPOs and SEOs.
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Since the pioneering research of Fama, Fisher, Jensen, and Roll (1967), event studies have been

used to conclude that markets are semi-strong e¢ cient and deviations from market e¢ ciency are

small. In an in�uential paper, Ritter (1991) challenges this view by focusing on the long run

performance of IPOs and argues that event returns following initial public o¤erings over longer

horizons are large and negative on a risk adjusted basis. Subsequently, Loughran and Ritter (1995)

present results on the long run underperformance of SEOs and IPOs; Loughran and Vijh (1997)

examine underperformance in stock returns following mergers; Michaely, Thaler and Womack (1995)

investigate reactions of stock prices to dividend omissions; Ikenberry, Lakonishok, and Vermaelen

(1995) examine overperformance after open market share repurchases. Fama (1998) surveys the

large literature on long run returns and argues that the power of these tests of market e¢ ciency is

low (see also Brav (2000), Barber and Lyon (1997), and Mitchell and Sta¤ord (2000)).

More recently, Schultz (2003) argues that this long run performance is spurious when returns

predict events. The assumption that returns predict events di¤ers from the traditional assumption in

event studies. For example, in the standard textbook discussion of event studies (see Campbell, Lo

and Mackinlay, 1997, page 157) this issue is recognized: �Thus the methodology implicitly assumes

that the event is exogenous with respect to the change in the market value of the security....There are

examples where an event is triggered by a change in the market value of the security, in which case

the event is endogenous. For these cases, the usual interpretation is incorrect.� Following Schultz

(2003), we believe that for a large class of events, the event generating process depends on the past

history of event returns and thus events are endogenous. One main result of this paper is to provide

the �xed sample and asymptotic theory for event studies with endogenous events.

This assumption of event endogeneity is reasonable given many theoretical models in corporate

�nance. For example, Lucas and McDonald (1990) show that seasoned equity issues are more likely

to be preceded by stock price increases. Pastor and Veronesi (2005) predict that managers will

time initial public o¤erings when the stock market is doing well. Rhodes-Kropf and Viswanathan

(2004) show that mergers occur when markets are relatively overvalued. All these models suggest

that corporate events occur more often when event returns are higher.

Our small sample theory shows that when returns predict events, the long run event abnormal

3



return will be negative. The intuition for the negative event abnormal return is as follows. A

priori, we expect that all event return histories that are equally likely in the data will be weighted

identically in event abnormal returns. While calculating long-run event abnormal returns, we show

that we overweight histories with a higher number of events and we underweight histories with a

lower number of events. When event returns are high, subsequently the number of events is greater,

hence the denominator of the event abnormal return which is the total number of events is higher.

This implies that we underweight the high returns. The opposite argument holds when the number

of events is lower; here, we overweight the subsequent low returns. Consequently, the event abnormal

return has negative expectation. With a longer holding period, the underweighting of return histories

is exacerbated because long term event returns involve a sequence of returns; a sequence of high

returns implies even more events in the future. Thus a sequence of high returns is underweighted

much more compared to a sequence of low returns. This yields that the negative expectation of event

abnormal returns increases with the holding period used to measure event returns, the negative bias

is larger with long run event returns.

While this argument proves that the expected long-run event abnormal returns are negative in a

�xed sample, it says little about the asymptotic theory of long run event abnormal returns. Schultz

(2003) suggests via an example that when market levels predict the number of events, the long

run return averaged across all simulations is negative. Because Schultz�s example consists only of

a simulation, the condition under which his results can be obtained is unclear. We �ll in this gap

by showing that asymptotically, post-event returns converge to zero under the following su¢ cient

condition: returns and events are stationary and the cumulative number of events converges to

in�nity. This argument suggests that the negative expected long-run event abnormal return is a

small sample problem unless one believes that the number of events process is non-stationary.

The main intuition for our asymptotic result is as follows. Stationarity in the event process

implies that the shocks to the event process do not persist forever. Consequently, the total number

of events in a very large sample is not a¤ected by the shock to the number of events today. A higher

return today implies more events in the near future, but the long run average number of events

is not a¤ected. Asymptotically we do not underweight high returns and overweight low returns.
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Of course, this argument is a large sample argument and in small samples the bias could be large.

The stationarity assumption is important. With a non-stationary process of the number of events, a

shock to the number of events today would persist forever, hence the total number of events in a large

sample would be a¤ected by the shock to returns today. Our asymptotic theory explains Schultz�s

simulations. We show that Schultz�s motivating example implicitly assumes non-stationarity in the

number of events process and his empirical work is based on an unit root speci�cation.

To understand the importance of the non-stationarity assumption, we study a special case in

which the log of the number of events is a linear function of the log of the number of events in a

previous period and the lagged excess return. In this case we show that when the autoregressive

coe¢ cient on the lagged log number of events is less than one (i.e., the process is stationary) conver-

gence to zero occurs in theory and in simulation. In contrast when the autoregressive coe¢ cient on

the lagged log number of events is equal to 1 (i.e., the process contains an unit root), the expected

value converges to a negative number in theory and in simulation.1

Our exact small sample expected bias calculation shows that at the usual sample size (400

observations) the negative bias is very sensitive to the presence of an unit root. Even small deviations

from the unit root hypothesis lead to sharp drops in the expected bias. With three year returns our

unit root results are similar to that obtained in Schultz (2003). With an autoregressive coe¢ cient

of 0.95, the magnitude of the bias is around 1/8th of that obtained in Schultz (2003). Thus the bias

is very sensitive to the unit root hypothesis. We consider alternative weighting schemes that could

potentially reduce the bias. These schemes involve weighting the number of events in a given period

so as to make the adjusted number of events a more stationary process. Our results suggest that

these approaches do reduce the bias but increase the standard error, i.e., there is a tradeo¤.

We study whether the data generating process for the number of IPOs and SEOs is non-stationary.

With one lag in the autoregression, we can reject the unit root hypothesis for both IPOs and

SEOs. With more lags in the autoregression the evidence is mixed. We are unable to reject the null

hypothesis of unit root at the 1% level but reject it at the 5% level. In general, it is more di¢ cult to

1The asymptotic theory of functions of unit root processes depends on the exact function of the integrated process
that is considered. The sensitivity of the asymptotic theory to the nature of the non-linear function is well known,
see Park and Phillips (2001) for more details.

5



reject the unit root hypothesis for IPOs. Since the null hypothesis is the unit root and the power of

unit root tests is low with higher lag lengths, we believe that the data cannot discriminate between

the unit root hypothesis and the near unit root alternative.

We also consider how con�dence intervals are a¤ected by the presence of endogenous events. We

consider an extension of our model that allows for correlations between individual event abnormal

returns. We �nd that even when the correlation is small, the standard deviation of the long-run

post-event abnormal return increases dramatically. While Mitchell and Sta¤ord (2000) have pointed

out that the correlation between event abnormal returns increases the standard deviation (in the

context of calendar time regressions), a second e¤ect occurs with endogenous returns that increases

the standard deviation much further. Because the number of events is endogenous, persistence in the

number of events increases the standard deviation of long run event returns further. This suggests

that the size of tests assumed in event studies is incorrect and that inferences from long-run event

abnormal returns are di¢ cult.

Our paper is organized as follows. Section 1 presents the general model, studies the expected

bias for �xed sample sizes and provides the asymptotic theory. Section 2 presents an application of

the theory to a lognormal model and considers an alternative weighting scheme. Section 3 considers

the prior work of Schultz (2003) and its relation to our work. Section 4 allows for cross correlations

between individual �rm event abnormal returns and derives the asymptotic standard errors. Section

5 considers related work while Section 6 concludes.

1 The General Model

Consider the following model. Let rm;t be the market return and rIPO;t be the return on an event

(here initial public o¤erings or IPOs) index. While our model is not speci�c to IPOs, we use IPOs

to be concrete. Let Nt be the number of IPOs in the end of period t. In our empirical work, we

consider both IPOs and SEOs and our time interval t is a month. Let It�1 be the information of

the investor or the econometrician at the end of time t� 1. We make the following assumptions:

Assumption 1 rm;t, rIPO;t are temporally independent with E [rm;t] = E [rIPO;t]; and Nt is
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conditionally independent (given the history) of rm;t, rIPO;t.

Note that Nt depends only on the market returns until time t � 1 and the IPO index returns

until time t � 1. Hence Nt has no predictive power for current or future market or IPO returns.

This aspect of Assumption 1 states the null hypothesis of market e¢ ciency.

Assumption 2 The event process fNtg is Markovian. To be more speci�c, f(NtjIt�1) =

f(NtjNt�1; rm;t�1; rIPO;t�1). f (NtjIt�1) denotes the conditional density function of Nt given It�1.

f(NtjNt�1; rm;t�1; rIPO;t�1) is similarly de�ned.

Assumptions 1 and 2 can be relaxed substantially. Correlations between market return and the

IPO returns can be allowed. More complicated dependence than that considered in Assumption 2

can be allowed. None of this would change our results, the notation would be more cumbersome.

Assumption 3 f(NtjNt�1; rm;t�1; rIPO;t�1) satis�es the a¢ liation inequality or generalized

monotone likelihood ratio inequality.2

A¢ liation is a stronger dependence concept than correlation. A¢ liation requires not only that

two random variables X and Y are positively correlated, it requires that all positive monotone trans-

formations of X and Y are positively correlated conditional on any history. A¢ liation captures the

idea of conditional positive dependence in the sense that when we see higher values of a monotone

function of X, we will see higher values of monotone functions of Y conditional on any history. Gener-

ally, positively correlated random variables need not be a¢ liated, just as random variables with zero

correlation need not be independent. Since event returns are non-linear transformations of the num-

ber of events and IPOs returns, we need a stronger notion of dependence than correlation, a¢ liation

is the appropriate concept of positive dependence. A weaker notion than a¢ liation is association.

Variables X1, � � � , Xk are called associated if the inequality cov [f (X1; � � � ; Xk) ; g (X1; � � � ; Xk)] � 0

holds for each pair of bounded Borel measurable non-decreasing functions f and g. Thus a¢ liation

implies association conditional on any history.

Assumption 3 states that higher values of lagged variables in the information set (such as market

2With continuous random variables where a joint probability density exists, a vector ~z is a¢ liated if f(z0_z)f(z0^z)
� f(z)f(z0) where z0 _ z is the component wise maximum for the vector z and z0 ^ z is the component wise minimum
for z. A¢ liation is de�ned more generally in Milgrom and Weber (1982) to allow for discrete and continuous variables.
Since we may have discrete variables (the number of events Nt), the de�nition needs to amended slightly. The appendix
provides more details.
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returns, IPO returns and lagged number of events) lead to a larger number of events in the next

period. From Milgrom and Weber (1982) we know that this statistical restriction embodies the idea

that the number of events is monotonically increasing in lagged IPO returns. Assumption 3 provides

restrictions that do not depend on speci�c distributional assumptions; these restrictions result in a

negative bias in long run event studies.

Based on the three assumptions above, it is very easy to prove that histories of Nt, rm;t, and

rIPO;t are a¢ liated.

Theorem 1 (Nt+s; � � � ; Nt; rm;t+s; � � � ; rm;t; rIPO;t+s; � � � rIPO;t) are a¢ liated.

Proof. See Appendix.

The theorem states that higher values of returns today not only imply higher events tomorrow

but also higher events in the future, i.e., the returns predict events not just tommorow but also in

the future. This fact has implications for the bias in expected long run returns in event studies.

1.1 Small Sample Theory

We �rst de�ne in Equation (1) below the average cumulative abnormal return and average buy-and-

hold abnormal return of s holding periods as

CART (s) =

PT
t=1Nt

�Ps
j=1 ((1 + rIPO;t+j)� (1 + E[rIPO;t+j ]))

�
PT

t=1Nt
(1)

BHART (s) =

PT
t=1Ni

 
sQ
j=1

(1 + rIPO;t+j)�
sQ
j=1

(1 + E[rIPO;t+j ])

!
PT

t=1Nt

where E[rIPO;t] is the expected return of a benchmark IPO index for period t. These are the most

standard de�nitions used in the literature (see Ritter (1991), Kothari and Warner (1997), Campbell,

Lo and MacKinlay (1997), Barber and Lyon (1997), Lyon, Barber, Tsai (1999), Schultz (2003), Li

and Prabhala (2007), and Kothari and Warner (2007).) Thus, the speci�cation considered here uses

the return on an IPO index.

8



Our �rst theorem shows that the expected cumulative abnormal return is negative in a �xed

sample. In proving this theorem, we impose no assumption on the stationarity of returns or number

of events.

Theorem 2 E
�
CART (s)

�
� 0 and E

�
BHART (s)

�
� 0, 8s.

Proof. See Appendix.

This theorem makes precise the idea that the usual cumulative abnormal returns and buy and

hold returns have negative expectations even under the null hypotheses that returns are independent

or uncorrelated over time. As discussed in the introduction, the intuition involves di¤erential weight-

ing of paths with high and low return sequences. The fact that returns predict the number of events

leads to the conclusion that even under the null hypothesis of market e¢ ciency the expectation of

event abnormal returns is negative. This makes transparent the intuition for the negative long-run

expected abnormal returns when returns predict events.

We next explore the e¤ect of di¤erent holding periods on the expected cumulative abnormal

return and expected buy and hold return. If these expectations become more negative with the

length of holding periods, this makes long run event studies more susceptible to the issue of negative

bias. We show for longer holding periods, both the expected cumulative abnormal returns and buy-

and-hold abnormal returns are more negative.3

Theorem 3 (1) E
�
CART (s+ 1)

�
� E

�
CART (s)

�
, 8s � 1;

(2) E[BHART+1(s+ 1)] � (1 + E[rIPO])E[BHART (s)], 8s � 1.

Proof. See Appendix.

The intuition for this result is as follows. While looking at one period returns, we have shown

that we underweight the high returns and overweight the low returns. With a longer holding period,

we are adding more returns to our sequence of returns. From the a¢ liation assumption a sequence

of high returns is going to lead to even a greater number of events in the future. Thus we will

underweight a sequence of high returns even more compared to a sequence of low returns. This

3We can prove Theorem 2 and Theorem 3 (1) using the weaker notion of association. Some form of association
conditional on the event history is needed to prove Theorem 3 (2), a¢ liation is one condition that is su¢ cient.
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leads to the expectation of the event abnormal return being even more negative as we increase the

holding period.

These results show that if returns predict the future number of events, the buy and hold and

cumulative average abnormal returns have negative expectations in a �xed sample. Further these

expected returns are more negative the longer the holding period. The next section provides the

asymptotic theory for post-event abnormal returns.

1.2 Asymptotic Theory

As a �rst step toward proving the asymptotic theory, we state an intermediate lemma.

Kronecker�s Lemma: Let St be a sequence converging to in�nity (1). If
PT

t=1Ntrt=St converges

to zero, then S�1T
PT

t=1Ntrt converges to zero as T goes to 1.

Note that the lemma places no restriction on Nt which in our framework corresponds to the

number of events in each period. In our setup, St is the cumulative number of events, i.e., St =Pt
i=1Ni; the lemma requires that this cumulative number of events is eventually large and positive.

Note that for cumulative abnormal returns (CAR), rt =
Ps

j=1 ((1 + rIPO;t+j)� (1 + E[rIPO;t+j ]))

and for buy and hold abnormal returns (BHAR), rt =

 
sQ
j=1

(1 + rIPO;t+j)�
sQ
j=1

(1 + E[rIPO;t+j ])

!
.

Essentially to prove that long-run event abnormal returns converge to zero, we use Kronecker�s

Lemma above and note that it su¢ ces that
PT

t=1Ntrt=St converges to zero. Note that the sequence

fNtrt=St; Gt = �(N1; � � � ; Nt+1; S1; � � � ; St+1; r1; � � � ; rt)g is a martingale di¤erence sequence with

respect to the history Gt, i.e., we have a valid dynamic trading strategy. Using standard methods

for dealing with martingale di¤erence sequences, the result of the theorem follows.4 Based on the

intuition given by Kronecker�s lemma, we derive the following theorem:

Theorem 4 Let ST =
PT

t=1Nt, then if
P1

t=1E (Nt=St)
2
< 1, then, 8s, CART (s) ! 0 as T !

1, almost surely.
4We could have followed the argument in Chow�s theorem for martingale di¤erence sequences (see White (2001)

page 60, Theorem 3.76), but the theorems we provide impose slightly di¤erent conditions.
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Proof. We �rst provide a proof of the convergence of CART (s) for s = 1. Note CART =

S�1T
PT

t=1Ntrt+1, to show CART ! 0, almost surely, by the Kronecker lemma we only need to

show that
PT

t=1Ntrt+1=St converges, almost surely. Further, note f
PT

t=1Ntrt+1=Stg is a martin-

gale, by the L2-bounded martingale convergence theorem (see Theorem 2.6 in Steele (2001)), it

su¢ ces to show: 9B <1, such that

E
hPT

t=1Ntrt+1=St

i2
� B <1 8t

Since the returns frtg1t=1 are i.i.d., thus E
hPT

t=1Ntrt+1=St

i2
= �2r

PT
t=1E (Nt=St)

2
< 1 which

completes the proof of the theorem.

For s > 1, CART (s) =
Ps

j=1

hPT
t=1Ntrt+1+j=

PT
t=1Nt

i
. For each term in the square bracket,

it converges to zero almost surely by a similar argument. Since CART (s) is the sum of s such terms,

it also converges to zero almost surely.

The moment condition that is imposed in Theorem 4,
P1

t=1E (Nt=St)
2
<1, is satis�ed by most

stationary processes that are considered in �nance. However, many non-stationary processes will

not satisfy this moment condition. We study these issues in greater detail in the next section.

2 The Log-Normal Model

2.1 Asymptotic Theory

We now specialize our general model to the following lognormal model:

logNt+1 � � = � (logNt � �) + �rt + �t+1 (2)

where rt can be considered as some benchmark-adjusted IPO index return, or abnormal return;

� > 0, � > 0 are assumed to capture the positive e¤ect of previous Nt and rt. We assume that frtg

follows a zero mean random walk process and that �t+1 is i.i.d. white noise. We note that in the

empirical data Nt could be discrete, in this section we are using a continuous speci�cation.5

5Also, Nt could be zero with positive probability in the data. We deal with this when we consider the IPO and
SEO data by adding 0:5 to each observation.
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The lognormal model ensures that the number of events is always positive and allows us to

consider both stationary and non-stationary models by varying �. The speci�cation in Equation (2)

allows past returns to persistently impact the number of events.6

We show that asymptotically the bias disappears when � < 1 because the lognormal model

satis�es the moment condition imposed in Theorem 4.

Corollary 1 If � < 1, the lognormal model for the number of events satis�es the assumptions of

Theorem 4 and hence the event abnormal return converges to zero as the number of observations T

goes to in�nity.

Proof. In the Appendix, we show that the lognormal model in Equation (2) satis�es the moment

condition in Theorem 4.

We con�rm the asymptotic theory we have just derived by simulation. Based on the lognormal

model in Equation (2), we choose the parameter � to be one of 0.2, 0.4, 0.6, 0.8 or 1.0 and the

parameter � as one of 0.2, 0.4, 0.6 or 0.8. Here rt is assumed to be i.i.d. normal, with mean zero

and standard deviation of 0.0824. We set the standard deviation to 0.0824 to be consistent with

the IPO data, which is to be described shortly in the next section. Further, we normalize the initial

IPO number to one (i.e., N0 = 1) and let r0 be randomly drawn from its unconditional distribution

N(0; 0:0824).

For a given pair, � and �, we run 500 rounds of simulations. At each round, we simulate the

data for a period of T = 100; 000 and save the abnormal return for period of 1000, 2000, ..., 100000

respectively. Figure 1 presents these results.

Insert Figure 1 Here

As can be seen from this simulation evidence from Figure 1 above, for � < 1:0, the bias goes to

zero asymptotically; for � = 1:0, the negative bias persists asymptotically and gets more negative

for bigger �.

6Under this speci�cation, the correlations between log (Nt) and rs are positive for any t and s, thus these variables
are associated by the theorem in Pitt (1982). Consequently, Theorem 2 and Theorem 3 (i) hold for the lognormal
model in Equation(2).
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When � = 1, the moment condition in Theorem 4 is violated. However, we can show that the

expected CAR asymptotically converges to a negative constant, as opposed to zero for a stationary

event process (see Corollary 1).

Corollary 2 when � = 1, E[CART ] converges to ���2r=2.

Proof. See Appendix.

From Corollary 2, the higher � is, the bias becomes more negative. The intuition is the following:

with a higher �, a shock to the return rt has a larger impact on the number of events Nt, which

makes the covariance between rt and Nt�1=ST more negative, hence a larger bias. Similarly with

a larger �r the return process is more volatile and extreme values are more likely to realize, which

implies a larger impact on Nt and the more negative covariance as well as the bias.

Overall, the results suggest that if the number of events process is stationary, the negative long-

run expected abnormal return is essentially a small sample problem. Non-stationarity in the number

of events process is necessary for large long-run negative abnormal returns.7

2.2 Small Sample Theory

We provide small sample theory for the lognormal model. Our approach is to use Stein�s lemma

(1972) for the lognormal model we have just introduced in Equation (2). Using Stein�s lemma, we

prove the following result that holds for all �.8

Theorem 5 Under the lognormal speci�cation in Equation (2),

E[CART ] = ���2r
PT�2

t=1

PT
s=t+2 �

s�t�2E

�
NtNs=

�PT
s=1Ns

�2�
< 0 (3)

Proof. See Appendix.

We use simulation to evaluate the conditional expectation in Equation (3) using the approach

suggested above for samples of size T = 400 respectively. In unreported reports we considered
7Our results can be extended to allow for deterministic time trends. Generally, a linear time trend (Nt = t) will

satisfy the moment condition of Theorem 4 while a geometric time trend (Nt = et) will not satisfy the moment
condition in Theorem 4.

8We can only use Stein�s lemma for CARs as they are arithmetic. For BHARs, we cannot obtain such a simple
characterization.
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T = 200 and 600 also. The results are very similar. We consider the parameter values � =

0:6; 0:8; 0:85; 0:9; 0:95 and 1:0 and � = 0:5; 1:0; 1:5 and 1:75 (we discuss our choice of parameters

in greater detail in the next section). We run 500 rounds of simulations and record the results in

Table 1 below9 :

Insert Table 1 Here

From these small sample simulations, we can see that the average abnormal returns are negative

and tend to get more negative, as � increases (the persistence of events is higher), or as � increases

(the relation between returns and subsequent number of events is stronger)10 .

At �rst cut, our approach does not support as large negative expected abnormal returns as

Schultz �nds in his simulations except in the case where � = 1 (the unit root case). Schultz (2003)

�nds magnitudes of -0.12 (-12%) in Table VI in his paper for 3 year cumulative abnormal returns

which is closer to our unit root magnitude of -0.09(-9%) that we obtain with 400 observations (see

Table 1 Panel B for this). For cumulative abnormal returns when � = 0:95 and � = 1:75, we obtain

a magnitude of -0.015 (-1.5%) for the expected event abnormal return which is much smaller.11

Figure 2 illustrates these numbers graphically for the model without noise and shows that the exact

small sample bias is very sensitive to the assumption of an unit root; even a small deviation from

the unit root hypothesis leads to a dramatic decrease in the bias (making it much less negative).

Hence sample size and the stationarity of the number of events process play an important role in

determining the expected bias.

Insert Figure 2 Here

We next provide similar results for the average buy and hold abnormal return. Because of the

multiplicative nature of buy and hold returns, we cannot use the simpli�cation obtained from Stein�s

9Using Theorem 5, simulated results converge to the true value very quickly. In fact, the results based on 100
rounds of simulations are very close to the one from 10 rounds of simulations. Thus the Stein�s method delivers very
accurate estimates of the expected event abnormal return.
10 In earlier drafts, we found that the bias becomes less negative when the number of sample observations T increases

except for the case of � = 1:0. This observation is consistent with our asymptotic theory and our large sample
simulation, from which the abnormal returns go to zero as the sample size T goes to in�nity for � < 1:0.
11We obtain higher numbers without the noise �t in the speci�cation.
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formula. Instead, we simulate 300,000 times to �nd the average buy and hold return. The results

we obtain are shown in the following table.

Insert Table 2 Here

The results are consistent in magnitude with that obtained for CARs. With T = 400 observations,

� = 0:90 and � = 1:75; we obtain magnitudes of -0.011 (-1.1%) versus -0.095 (-9.55%) which is

obtained when � = 1:0 and � = 1:75 (See Table 2). Again the magnitudes are much smaller. This

suggests that unless we have an unit root (� = 1) or a near unit root (� = 0:99), the expected bias

will not be of the same magnitude as that obtained by Schultz (2003).

We also consider what happens when we add more lags to our model. We �nd that it does not

change the bias very much. We con�rm this by our results of 300,000 rounds of simulations below

(see Table 3). In particular, we study the following two-lag model (with no noise):

log(Nt) = �1 log(Nt�1) + �2 log(Nt�2) + �rIPO;t�1

Insert Table 3 Here

What matters here is the sum of the coe¢ cients �1 and �2. When the sum is unity, we obtain

signi�cant negative returns. Away from unity, the expected returns are negative but the magnitudes

are not as large.12 The small sample simulations show conclusively that the stationarity of the

log number of events process and the sample size play a large role in determining how large the

magnitude of the small sample bias is.

2.3 Empirical Tests For Unit Roots

Until now, we have theoretically established the sensitivity of the negative bias to the presence of

an unit root in the lognormal autoregressive speci�cation. We now conduct an empirical analysis to

see whether the data supports the hypothesis of an unit root, this kind of non-stationarity would

violate the moment condition required in Theorem 4. Towards that end, we conduct both Augmented

12Adding more lags to our model will not change the bias calculations that we undertake. In earlier drafts, we also
looked at the simulated 3-year cumulative and buy-and-hold abnormal returns. The results are similar to Table 4 and
are not reported here.
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Dickey-Fuller and Phillips-Perron tests on the number of IPO and SEO o¤erings against the following

two nulls with or without time trend.

H0: constant term, without time trend, unit root

H 0
0: constant term, time trend, unit root

The sample is comprised of 9,190 initial public o¤erings ranging from February 1973 to December

2002. The selection criteria are the same as in Ritter (1991): (1) an o¤er price of $1.00 per share or

more, (2) gross proceeds, measured in terms of 1984 purchasing power, of $1,000,000 or more, (3) the

o¤ering involved common stock only (unit o¤ers are excluded), (4) the company is listed on CRSP

daily Amex-NYSE or NASDAQ tapes within 6 months of the o¤er date, and (5) an investment

banker took the company public.

The numbers of IPOs and SEOs are retrieved from Securities Data Corporation (SDC). Figure 3

depicts the time series of IPO and SEO numbers in the sample period. To be consistent with Schultz

(2003), we exclude all o¤erings by funds, investment companies, and REITs (SIC codes 6722, 6726,

and 6792) as well as o¤erings by utilities (SIC codes 4911 through 4941) and banks (6000 through

6081). The following table shows the distribution of the number of o¤erings each month.

Insert Figure 3 Here

Insert Table 4 Here

These tests suggest that with one lag one can reject the unit root hypothesis, however we need

to check their robustness to more lags. It is well known in the literature that the power of tests falls

with lag length, i.e., we are less likely to reject the null. The Schwert (1989) criterion suggests the

maximum lag of 16. Recent work in the unit root literature suggests that the most powerful test

is to use the Eliott, Rotheberg and Stock (ERS) test (1996) for the unit root hypothesis with the

lag length chosen by the Ng and Perron approach (see Ng and Perron (2001) for a comprehensive

discussion). The Ng-Perron test suggests an optimal lag of 14. We conduct ADF and Elliott-

Rothenberg-Stock(1996) tests and the results are listed in Tables 5A & 5B. In discussing our results

we focus on the ERS test (which is based on the local root to unity approach) as this has the highest

power.
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Insert Tables 5A and 5B Here

From Tables 5A and 5B, we can see that the test results for both IPOs and SEOs are very

similar, although it is harder to reject the unit root hypothesis for the number of IPOs compared to

the number of SEOs. When considering only one lag we can reject the null hypothesis of unit root

process for log(Nt), the p-values are much less than 1%. However, with more lag lengths the test

results are mixed � we cannot reject the unit root hypothesis at the 1% level but reject it (with or

without time trend under the ERS test) at the 5% level. Since the null hypothesis is the unit root

and it is well known that the power of these tests becomes lower with more lags, we believe that the

unit root tests at higher lag lengths cannot discriminate between the unit root hypothesis and its

alternative (close to unit root).

2.4 An Alternative Weighting Scheme

An alternative weighting scheme is to scale the event number in each event time by the total number

of all events that have happened. For example, in the case of IPOs or SEOs, we can scale the number

of IPOs or SEOs in any speci�c month by the total number of all IPOs or SEOs until that point in

time.

The traditional cumulative abnormal return which weights events equally is de�ned as:

CART =

PT
t=1Ntrt+1PT
t=1Nt

(4)

Being aware of potential concerns about nonstationarity of IPO volume, some authors have

de�ated the number of IPOs by the total number of �rms in their IPO studies, such as, Pastor and

Veronesi (2005). Using a similar scaled weighting scheme, we can de�ne cumulative abnormal return

in an alternative way

[CART =
PT

t=1
bNtrt+1PT

t=1
bNt (5)

where bNt is de�ned as the ratio of the number of IPOs in time t, Nt to the total number of IPOs
until that point in time St �

Pt
u=1Nu. That is, bNt � Nt=St.
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Using Stein�s lemma, we can derive the expression of the expectations of [CART , which parallels

the one in Theorem 5 for the traditional measure CART , the proof is in the appendix.

Theorem 6 Under the assumption that log(Nt+1)� u = �(log(Nt)� u) + �rt + �t+1,

E[[CART ] = ���2r
PT�2

t=1

PT
s=t+2 �

s�t�2E

�
f (s) bNt bNs=�PT

s=1Ns

�2�
(6)

where f (�) = 1�
P�

u=t+1 �
u��Nu=S� . In particular, when � = 1, then f (�) = 1�

P�
u=t+1Nu=S� >

0, and thus

E[CART ] < 0.

Proof. See Appendix.

From the theorem above, we can see that when � < 1, the sign of f (s) is undetermined, so is

E[CART ]. On the contrary, when � = 1, f (s) is always positive which leads to negative expectation

E[[CART ] < 0. The simulation results reported in Tables 6A and 6B in the end of this paper

con�rm it. The intuition for these results is the following. Without weighting, when Nt goes up,

so does Nt+1. With weighting, an increase in Nt results in a smaller increase in N̂t+1 because the

denominator of N̂t+1 = Nt+1=St+1 also goes up; in fact for low values of the persistence parameter

�, N̂t+1 may even decrease. This attenuates the negative bias, however the addition of another

endogenous parameter St generally increases the standard errors.

Insert Tables 6A & 6B Here

Further, from Tables 6A and 6B, we can see that under the alternative weighting scheme,

E[[CART ] is much smaller in the absolute term than E[CART ] for most parameter speci�cations.

However, for a less persistent event process (such as, � = 0:6 or 0:8), its standard deviation becomes

two or three times bigger than the latter, which overshadows the bene�t from reducing bias. On

the contrary, for a very persistent event process (such as, � = 0:95 or 1:0), its standard deviation

increases only a bit because the scaled number of events is more stationary. Therefore, the scaled
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weighting scheme is a better one for a very persistent event process, but a worse one for a less

persistent process.13

3 Relation to Schultz (2003)

Our analytical results can be used to understand better the examples and simulation in Schultz

(2003). Schultz (2003) presents an example showing that long-run event abnormal returns are

negative and become more negative the longer the horizon choosen. We present an example that is

in the same spirit and is consistent with the lognormal model we have presented.

In his example, Schultz (2003) considers a binomial-tree process for the number of events: Nt+1 =

Nt (1 + �It). In this set up, with probability 1, the number of events goes to 0. Further the event

process is a martingale that has expectation one but in the limit with probability close to 1 there are

zero events and with probability very close to 0 there are in�nitely many events. This suggests that

this example is not an appropriate description of the events process. A heuristic proof of this fact is

as follows.14 After taking logs of the equation determining the number of events, we can rewrite

logNt+1 = logNt + log(1 + �It)

= logN0 + t

�
1

t

tP
i=0

log(1 + �Ii)

�
From Jensen�s inequality, we know that E[log(1 +�It)] = k < logE[(1 +�It)] = 0; so we know

that E[logNt+1] drifts downwards. Further by the strong law of large numbers, we can prove that

1
t

Pt
i=0 log(1 +�Ii)

a:s:! k < 0. Hence it follows that logNt+1
a:s:! �1, from which the result follows

that the number of events goes to 0 with probability 1 though the mean number of events is always

1. Thus the event process has �xed mean but the with probability close to 0 it takes in�nite value

and with probability close to 1 it takes zero value in the limit. Further if we start with a positive

number of events, the event return is always negative.15

As in Schultz (2003), we consider an example where returns can go up or down each period by

13We also considered a version of the lognormal model where the parameter � varies across industries, i.e., the
relationship between returns and events is industry speci�c. Now, accounting for this variation across industries and
weighting as we have done in this section reduces the bias further. These results are available from the authors.
14A prior draft provided a more formal proof that is available from the authors upon request.
15Our results here are robust to having asymmetrical shocks in the number of events process.
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5%. The current stock price P0 is $100. Hence at the end of the �rst period, the stock price can be

$105 or $95 with equal probability. We allow the number of events to be determined by the process:

log(Nt+1)� u = �(log(Nt)� u) + �rt

Our example is closely related to Schultz�s binomial example. The main di¤erence is that we replace

his binomial variable It by a normal variable rt. As a result, ours is a ARMA-type model, which

is analytically tractable. Furthermore, by the central limit theorem our model (when � = 1) has

similar asymptotic behavior.

We consider two examples, one where there is an unit root (� = 1:0) and one where there is

stationarity (� = 0:1). Figure 4 shows the example and computes the expected cumulative average

returns as we go forward in time. For the stationary case, the expected CAR declines over time in

absolute magnitude while for the unit root case, the expected CAR increases over time in absolute

magnitude. Schultz�s examples and simulation are closer to the unit root case, hence his results.

Insert Figure 4 Here

4 Extension: Cross-Sectional Dispersion

Until this section, we have focused on the bias in mean returns caused by the endogenous nature

of events. We now consider the e¤ect of endogenous events on inference, especially on the size

of statistical tests. Towards this end, we analyze the e¤ect of event endogeneity on the standard

deviation. To �nd the asymptotic standard deviation, we present a more general model that allows

for cross-sectional dispersion in event returns. Cross-sectional correlation between returns in calendar

time implies correlations across periods in event time �for example, the �rst month event return on

this month�s events is correlated with the second month event return on yesterday�s events. This

important aspect has been ignored in the prior literature on long run event studies such as Barber

and Lyon (1997) (Mitchell and Sta¤ord (2000) do account for this in the context of calendar time

regressions). Figure 5 shows the timeline and explains the notation in the presence of cross-sectional

dispersion.
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Insert Figure 5 Here

In the tthperiod, event returns are given by

r0i;t = �st + u
0
i;t; i = 1; 2; � � � ; N0 (7)

...

rti;t = �st + u
t
i;t; i = 1; 2; � � � ; Nt

where st
iid� N(0; �2s) and u

k
i;j

iid� N(0; �2u). Here r
k
i;t is the return at time t of the ith �rm that went

through an IPO at time k and st is the systematic factor at time t, such as the market return.16

Our speci�cation allows for a single cross-section parameter �, this can be relaxed. Therefore, �2r ,

V ar(rki;j) = �
2�2s+�

2
u. We also maintain the assumption: log(Nt+1)�� = � (log(Nt)� �)+�st+�t+1.

By de�nition,

CART (S) =

PT
t=1

PNt

i=1

PS
j=1 r

t
i;t+jPT

t=1Nt

Theorem 7 For log(Nt+1)� � = � (log(Nt)� �) + �st + �t+1 and � < 1, then

(1) for the monthly cumulative abnormal returns CART (i.e., CART (1)), we can show that

p
TCART

L! N

�
0;
�2a
n2a

�
(8)

(2) for the S �month cumulative abnormal returns CART (S), we can show that

p
TCART (S)

L! N

�
0;
�2b
n2a

�
(9)

where �2a � �2rna+ �2�2s
�
n4a � na

�
, �2b � S�2a+2

PS�1
i=1

PS�i
k=1 exp

��
�2�2s + �

2
�

� (1+�k)
(1��2)

�
, and na �

exp
�
�2�2s+�

2
�

2(1��2)

�
.

Proof. See Appendix.

To evaluate how the cross-sectional dispersion a¤ect the asymptotic variance, we use the following

parameter speci�cation based on data: � = 1:75; � = 0:95; �s = 0:0824; �� = 0:6117. To �nd out

16Note that we suppress the IPO subscript and that rIPO;t =
1

Nt�1

PNt�1
i=1 rt�1i;t .
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�r which is the standard deviation of the historical IPO returns, we use �r = 0:2110 from the

squared �average cross-sectional variance� reported in Table II in Ritter (1991)). We choose � to

be 0; 0:1; 0:2; 0:3; 0:4; 0:5 and 1 and use a mean abnormal return of �19% for the 3 year CAR and a

sample size of T = 200. The results are shown in Table 7.

Insert Table 7 Here

From Table 7, it is clear that with mild correlation (say 0.03), the standard deviation increases

sharply relative to the case where the number of events is random. The persistence in the number of

events interacts with the correlation to increase the standard deviation and hence lower the t-statistic.

While Mitchell and Sta¤ord (2000) have pointed out the correlation between event abnormal returns

increases the standard deviation and reduces t-statistics in calendar time, we present results with

event abnormal returns and show that this e¤ect is compounded by the presence of a persistent event

process. This suggests that size of tests in event studies is incorrect and that correct inferences based

on event studies do not suggest signi�cant long-run event abnormal returns.

5 Related Work

Our paper is also related to recent work by Dejong and Dahlquist (2007), Butler, Grullon, and

Weston (2005), and Baker, Taliaferro, and Wurgler (2005). The paper by Dejong and Dahlquist

(2007) also studies the bias in long-run even abnormal returns. Dejong and Dahlquist (2007) study

the bias using a di¤erent model of events, they also show that the bias disappears asymptotically

with a stationary event process. Our paper di¤ers from theirs along several important dimensions:

�rst, for a very general class of models we give a formal proof of the existence of negative bias in

the small sample case, and also derive explicit expressions of the bias and asymptotic variance in a

more speci�c model. We also provide these calculations for alternative approaches to weighting the

number of events. Second and most importantly, we point out that the extent of the bias di¤ers

considerably for stationary and nonstationary event process. Especially, we show that the negative

bias persists when the event process is non-stationary and thus highlight the important role of the

nature of the event process in event studies when events are endogenous.
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Also related are papers on market timing of aggregate variables, for example, Butler, Grullon,

and Weston (2005) and Baker, Taliaferro, and Wurgler (2005). These studies ask whether market

timing of aggregate variables by managers can explain why some aggregate managerial decision

variables (such as the equity share in new equity and debt issues, aggregate insider trading, corporate

investment plans, etc.) predict stock returns in sample. The approach is this literature is to run a

time series regression of returns on lagged aggregate managerial decision variables (that are often

highly persistent). If innovations in returns predict innovations in managerial decisions and current

managerial decisions are highly correlated with prior managerial decisions, a small sample bias arises

even though there is no relationship between lagged managerial decisions and returns. While the

intuition for this bias has similarities to our paper (both use the relationship between returns and

managerial decisions), the time series regressions used in these papers di¤er considerably from event

studies and the exact intuition is very di¤erent.

6 Conclusions

Schultz (2003) has recently argued via simulation that when returns predict events, long run event

returns are downward biased. We provide the �xed sample and asymptotic theory for long run event

studies when returns predict events. In �xed samples, we prove that expected abnormal returns are

negative and become more negative the longer the holding period. This implies that there is a small

sample bias in the use of long-run event returns. Asymptotically we show that the bias disappears

because long-run event abnormal returns converge in probability to zero when the number of events

process is stationary. Thus the stationarity assumption on the number of events process is su¢ cient

to generate consistency of event abnormal returns in large samples.

We consider a model where the log number of events follows an autoregressive speci�cation. In

the stationary case, we show that convergence occurs while in the non-stationary case convergence

does not occur. To further analyze the small sample bias further, we use Stein�s lemma and compute

the small sample expected bias in the lognormal model. We show that the sample size and the degree

of persistence in the event process determines whether the expected small sample bias is large or
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not � a small deviation from the unit root hypothesis reduces the expected bias a lot. We consider

an alternative weighting scheme for the number of events that makes the modi�ed number of events

process more stationary and show that this leads to lower bias but higher standard errors. We then

prove that the motivating example in Schultz (2003) does have negative expected returns but the

number of events converges to zero. We show that the example does not satisfy our convergence

theorem since it is not stationary.

Our analysis of IPO and SEO data shows that unit root tests cannot discriminate between the

unit root and near unit root alternative. We also derive the asymptotic distribution of long-run

event abnormal returns and show that small correlations between event abnormal returns interact

with persistence in the number of events process to increase the standard deviation. Our analysis

suggests that with event endogeneity, inference in long run event studies is more complicated than

generally believed.

24



Appendix
We state Stein�s lemma, which is to be used in some proofs later on. Please refer to Stein (1972)

or Liu (1994).
Stein�s Lemma
Let X = (X1; � � � ; Xn) be multivariate normally distributed with arbitrary mean vector u and

covariance matrix �. For any function h(x1; � � � ; xn) such that @h=@xi exists almost everywhere and
E
��� @@xih(X)��� <1, i = 1; � � � ; n, we write rh(X) = � @

@x1
h(X); � � � ; @

@xn
h(X)

�T
. Then the following

identity is true:
cov[X;h(X)] = �E[rh(X)]

Speci�cally,

cov[X1; h(X1; :::; Xn)] =
Pn

i=1 cov(X1; Xi)E

�
@

@xi
h(X1; � � � ; Xn)

�
We discuss the de�nition of a¢ liation when some random variables are discrete.
A¢ liation
While a¢ liation as de�ned in Milgrom and Weber (1982) applies to both discrete and continuous

random variables, the usual de�nition of a¢ liation uses the existence of a probability density function
and is

f(z0 _ z)f(z0 ^ z) � f(z0)f(z) (A1)

where z is a vector of random variables. Here z0 _ z is the component wise maximum of the two
random variables and z0 ^ z is the component wise minimum. We can extend this de�nition to the
case where some of variables in the vector z are discrete (the vector y) and the rest are continuous
(the vector x). Then the appropriate de�nition is that

p(y0 _ yjx0 _ x)f(x0 _ x)p(y0 ^ yjx0 ^ x)f(x0 ^ x) � p(y0)f(x0)p(y)f(x); (A2)

here p(yjx) is the probability of the discrete event y given the continuous variable x and f(x) is the
probability density of x.
Clearly, Equation (A2) reduces to Equation (A1) when a joint probability density exists. With

this all the relevant theorems on a¢ liation go through.

Proof of Theorem 1. First, when s = 0, we already know that Nt; 1 + rm;t; 1 + rIPO;t are
a¢ liated. And when s = 1, Nt+1; Nt; 1 + rm;t+1;1 + rm;t; 1 + rIPO;t+1; 1 + rIPO;t are a¢ liated,
because

f(Nt+1; Nt; 1 + rm;t+1;1 + rm;t; 1 + rIPO;t+1; 1 + rIPO;t)

= f(1 + rm;t+1;1 + rIPO;t+1)f(Nt+1; Nt; 1 + rm;t; 1 + rIPO;t) (by assumptions 1 & 2)

= f(1 + rm;t+1;1 + rIPO;t+1)f(Nt+1jNt; 1 + rm;t; 1 + rIPO;t)f(Nt; 1 + rm;t; 1 + rIPO;t)
Suppose, (Nt+s; � � � ; Nt; 1 + rm;t+s; � � � ; 1 + rm;t; 1 + rIPO;t+s; � � � 1 + rIPO;t) are a¢ liated. For

(Nt+s+1; � � � ; Nt; 1 + rm;t+s+1; � � � ; 1 + rm;t; 1 + rIPO;t+s+1; � � � 1 + rIPO;t), we have
f (Nt+s+1; � � � ; Nt; 1 + rm;t+s+1; � � � ; 1 + rm;t; 1 + rIPO;t+s+1; � � � 1 + rIPO;t)

= f (Nt+s+1; � � � ; Nt; 1 + rm;t+s; � � � ; 1 + rm;t; 1 + rIPO;t+s; � � � 1 + rIPO;t)
f (1 + rm;t+s+1; 1 + rIPO;t+s+1)

= f (1 + rm;t+s+1; 1 + rIPO;t+s+1)

f (Nt+s+1jNt+s; � � � ; Nt; 1 + rm;t+s; � � � ; 1 + rm;t; 1 + rIPO;t+s; � � � 1 + rIPO;t)
f(Nt+s; � � � ; Nt; 1 + rm;t+s; � � � ; 1 + rm;t; 1 + rIPO;t+s; � � � 1 + rIPO;t)
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Hence, by induction, (Nt+s+1; � � � ; Nt; 1 + rm;t+s+1; � � � ; 1 + rm;t; 1 + rIPO;t+s+1; � � � 1 + rIPO;t)
are also a¢ liated.

Proof of Theorem 2. Throughout the proof below, let Et (�) be the expectation conditional on
information set It, E (� j It). For the cumulative abnormal return CART (s), we have

E
�
CART (s)

�
=

PT�1
t=0

Ps
j=1E

h
NtrIPO;t+j=

PT�1
t=0 Nt

i
� E

hPT�1
t=0

Ps
j=1NtE[rIPO;t+j ]=

PT�1
t=0 Nt

i
=

PT�1
t=0

Ps
j=1E

h
NtEt

h
rIPO;t+j=

PT�1
t=0 Nt

ii
�
Ps

j=1E[rIPO;t+j ]

Since (N1; � � � ; NT ; 1 + rm;1; � � � ; 1 + rm;T ; 1 + rIPO;1; � � � 1 + rIPO;T ) are a¢ liated, we use the
key implication of a¢ liation that monotone increasing functions of a¢ liated variables have positive
covariance conditional on any history (see the theorems in Milgrom and Weber (1982)) and obtain
that

Et

h
rIPO;t+j=

PT�1
t=0 Nt

i
� Et [rIPO;t+j ]Et

h
1=
PT�1

t=0 Nt

i
= E [rIPO;t+j ]Et

h
1=
PT�1

t=0 Nt

i
Therefore,

E
�
CART (s)

�
�

PT�1
t=0

Ps
j=1E

h
NtE (rIPO;t+j)Et

�
1=
PT�1

t=0 Nt

�i
�
Ps

j=1E[rIPO;t+j ]

=
PT�1

t=0

Ps
j=1E (rIPO;t+j)E

h
Et

�
Nt=

PT�1
t=0 Nt

�i
�
Ps

j=1E[rIPO;t+j ]

=
Ps

j=1E (rIPO;t+j)
PT�1

t=0 E
h
Nt=

PT�1
t=0 Nt

i
�
Ps

j=1E[rIPO;t+j ]

= 0

Similarly we can show E
�
BHART (s)

�
� 0.

Proof of Theorem 3. Similarly, using the properties of a¢ liated random variables, we have

E
�
CART (s+ 1)

�
� E[CART (s)] =

PT�1
t=0 E

h
Nt(rIPO;t+s+1 � E[rIPO;t+s+1])=

PT�1
t=0 Nt

i
� 0
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and

E[BHART+1(s+ 1)]

=
T�1P
t=0

E

"
Nt

s+1Q
j=1

(1 + rIPO;t+j)=
PT�1

t=0 Nt

#
�
T�1P
t=0

E

"
Nt

s+1Q
j=1

E[1 + rIPO;t+j ]=
PT�1

t=0 Nt

#

=
T�1P
t=0

E

"
Nt

sQ
j=1

(1 + rIPO;t+j)Et+s

 
1 + rIPO;t+s+1PT�1

t=0 Nt

!#
�
T�1P
t=0

E

"
Nt
Qs+1
j=1 E (1 + rIPO;t+j)PT�1

t=0 Nt

#

�
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Proof of Corollary 1 Without loss of generality, we let � = 0; otherwise, let N�
t = Nt exp(��)

Note that the scaling constant does not a¤ect either cumulative- or buy-and-hold abnormal returns.

We make the same assumption from now on in the proofs. SinceNt = exp
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Hence
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<1, which satis�es the condition in the theorem above. Therefore the

asymptotic bias is zero, for � < 1.
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Proof of Corollary 2. Let �t = Nt=
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We can prove that for large enough T , say T � T0, 9�0 > 0, such that, ST � T�1��0 .
Notice that, f(x) = (1 + 1=x)�1 is a concave function, by Jensen�s inequality, we have for any
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The inequality above holds for any a > 1. In particular, if we choose a = 1:1, then
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Note that 0:6(T � 1)�1:1 � T�1:1 holds for large enough T and small �0 (for example �0 = 0:1;
T � 3). Hence S3 � T�1:1.
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To prove Theorem 7, we are going to use the two lemmas below. The proofs are omitted here,
which can be found in Corollary 5.26 and Theorem 3.57 in White (2001), respectively.
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When � = 1, then f (�) = 1�
P�
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Proof of Theorem 7. It�s easy to prove that fNtg has asymptotically uncorrelated elements and
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Figure 1: Unit Root v.s. Stationary Event Process

Figure 1 gives a graphical illustration of the estimates of the expected monthly CART for the
model without noise: log(Nt+1) = � log(Nt) + �rt. rt is assumed to be i.i.d. normal, with mean
zero and standard deviation of 0.0824. The standard deviation of rt is chosen to be 0.0824 to be
consistent with our sample. Given a pair of (�; �), to estimate the expected monthly CART , we run
100 rounds of simulation and use the average of the 100 realizations of CART as the estimate of the
expectation. For each simulation, we draw 100,000 observations of the IPO return and the number
of IPOs, i.e. T = 100; 000. For each of the four plots, we �rst �x � (which is �xed as 0:2; 0:4; 0:6 and
0:8, respectively) and then draw the estimates for � = 0:2; 0:4; 0:6; 0:8.
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Figure 2: Large Sample Simulation

Figure 2 plots the estimates of expected CART by simulations as � goes from 0.6 to 1.0 for a
given � (which is chosen to be one of 0.5, 1.0, 1.5 or 1.75.) Based on the model without noise:
log(Nt+1) = � log(Nt) + �rt, we conduct 500 rounds of simulations assuming rt is assumed to be
i.i.d. normal, with mean zero and standard deviation of 0.0824. The standard deviation of rt is
chosen to be 0.0824 to be consistent with our sample of IPOs.
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Figure 3

Figure 3 depicts the time series of IPO and SEO numbers from February 1973 to December 2002.
The solid (blue) line shows the number of IPOs while the dotted (red) line shows the number of
SEOs.
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Figure 4

Figure 4 shows a three-period example. In the ith period, the return ri can be either 5% or -5%
with equal probabilities, i = 1; 2; 3. At time 0, there is only one new issue with price 100, N0 = 1.
The total number of IPOs at time t follows the model: logNt = � logNt�1 + rt, t = 1; 2; 3. We
consider both the unit root case where � = 1:0 and the stationary case where � = 0:1. E

�
CARt

�
is

reported for both cases at the bottom of the �gure.
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Figure 5: Timeline

Figure 5 shows the timeline and explains the notations in the presence of cross-sectional disper-
sion. Here rki;t is the return at time t of the ith �rm that went through an IPO at time k and st is
the systematic factor at time t, such as the market return. In the tth period, rki;t = �st + u

k
i;t; i =

1; 2; � � � ; Nk, k = 0; 1; � � � ; t, where st
iid� N(0; �2s) and u

k
i;j

iid� N(0; �2u).
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Table 1: Average Cumulative Abnormal Return

This table reports the estimates of the expected monthly CART (Panel A) and the estimates
of the expected 3-year CART (Panel B) for T = 400 using 500 rounds of simulations based on
Theorem 5. All simulations are based on the model used: log(Nt+1) = � log(Nt) + �rt + �t+1, where

� = 0:6, 0:8, 0:85, 0:9, 0:95 or 1:0 and � = 0:5, 1:0, 1:5 or 1:75, rt
iid� N(0; 0:0824). The standard

deviation of rt is chosen to be 0.0824 to be consistent with our sample.

Panel A: Average Monthly CAR of holding period T = 400
� = 0:5 � = 1:0 � = 1:5 � = 1:75

� = 0:6 -0.000004 -0.000050 -0.000075 -0.000080
� = 0:8 -0.000054 -0.000105 -0.000163 -0.000220
� = 0:85 -0.000094 -0.000191 -0.000264 -0.000294
� = 0:9 -0.000157 -0.000280 -0.000498 -0.000570
� = 0:95 -0.000376 -0.000711 -0.001091 -0.001271
� = 1:0 -0.001522 -0.002971 -0.004493 -0.005246
Panel B: Average 3-year CAR of holding period T = 400

� = 0:5 � = 1:0 � = 1:5 � = 1:75
� = 0:6 -0.000466 -0.001281 -0.001971 -0.002492
� = 0:8 -0.001233 -0.002933 -0.004205 -0.005113
� = 0:85 -0.002192 -0.003753 -0.005406 -0.006827
� = 0:9 -0.003145 -0.005884 -0.009383 -0.011469
� = 0:95 -0.006708 -0.012655 -0.019601 -0.022620
� = 1:0 -0.029250 -0.057739 -0.086117 -0.099253

38



Table 2: Average Buy-and-Hold Abnormal Return

This table reports the estimates of the expected 3-year BHART for T = 400 using 500 rounds
of simulations based on Theorem 5. All simulations are based on the model used: log(Nt+1) =
� log(Nt) + �rt + �t+1, where � = 0:6, 0:8, 0:85, 0:9, 0:95 or 1:0 and � = 0:5, 1:0, 1:5 or 1:75,

rt
iid� N(0; 0:0824). The standard deviation of rt is chosen to be 0.0824 to be consistent with our

sample.

Average 3-year BHAR of holding period T = 400
� = 0:5 � = 1:0 � = 1:5 � = 1:75

� = 0:6 -0.000451 -0.001307 -0.002006 -0.002576
� = 0:8 -0.001246 -0.002947 -0.004242 -0.005171
� = 0:85 -0.002222 -0.003876 -0.005556 -0.007169
� = 0:9 -0.003110 -0.006002 -0.009682 -0.011769
� = 0:95 -0.006828 -0.012753 -0.019636 -0.022888
� = 1:0 -0.028800 -0.056493 -0.083469 -0.095988
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Table 3: Average Monthly Cumulative Abnormal Return

This table reports the estimates of monthly CART , for T = 200; 400; 600 by 300,000 rounds of
simulations using CART�s de�nition after including one more lag into our model (without noise):
log(Nt) = �1 log(Nt�1) + �2 log(Nt�2) + �rIPO;t�1, where �1 = 0:6 or 0:7; �2 = 0:25 or 0:3 and

� = 2:0; 2:3 or 2:5, rt
iid� N(0; 0:0824). The standard deviation of rt is chosen to be 0.0824 to be

consistent with our sample.

Average Monthly CAR of holding period T = 200
� = 2:0 � = 2:3 � = 2:5

(�1; �2) = (0:6; 0:25) -0.000437 -0.000509 -0.000557
(�1; �2) = (0:6; 0:3) -0.000649 -0.000756 -0.000828
(�1; �2) = (0:7; 0:25) -0.001241 -0.001452 -0.001597
(�1; �2) = (0:7; 0:3) -0.005111 -0.005866 -0.006368
Average Monthly CAR of holding period T = 400

� = 2:0 � = 2:3 � = 2:5
(�1; �2) = (0:6; 0:25) -0.000234 -0.000271 -0.000296
(�1; �2) = (0:6; 0:3) -0.000349 -0.000406 -0.000445
(�1; �2) = (0:7; 0:25) -0.000695 -0.000817 -0.000903
(�1; �2) = (0:7; 0:3) -0.005161 -0.005923 -0.006429
Average Monthly CAR of holding period T = 600

� = 2:0 � = 2:3 � = 2:5
(�1; �2) = (0:6; 0:25) -0.000159 -0.000184 -0.000201
(�1; �2) = (0:6; 0:3) -0.000238 -0.000277 -0.000303
(�1; �2) = (0:7; 0:25) -0.000480 -0.000566 -0.000627
(�1; �2) = (0:7; 0:3) -0.005181 -0.005947 -0.006456
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Table 4: The Distribution of the Number of O¤erings per Month

The numbers of IPOs and SEOs are retrieved from Securities Data Corporation (SDC). To be
consistent with Schultz (2003), we exclude all o¤erings by funds, investment companies, and REITs
(SIC codes 6722, 6726, and 6792) as well as o¤erings by utilities (SIC codes 4911 through 4941) and
banks (6000 through 6081). The following table shows the distribution of the number of o¤erings
each month.

Monthly Number of Monthly Number of
Initial Public Seasoned Equity
O¤erings O¤erings

Mean 25.60 27.25
Median 20 22
Minimum 0 1
Maximum 106 105

First order autocorrelation 0.85 0.81
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Table 5A: Unit Root Testing of H0 without Time Trend

This table reports results of both Augmented Dickey-Fuller and Elliott-Rothenberg-Stock unit
root tests on the number of IPO and SEO o¤erings up to 16 lags against the null H0: unit root
process without time trend. The test statistics for IPOs and SEOs as well as critical values (1%,
5%, 10%) are reported. The �rst half of the table reports the test results using the Augmented
Dickey-Fuller test; while the second half is for the Elliott-Rothenberg-Stock test.

Augmented Dickey-Fuller Test Elliott-Rothenberg-Stock Test
Test Statistics Critical Value Test Statistics Critical Value

Lag IPO SEO 1% 5% 10% IPO SEO 1% 5% 10%
16 -2.223 -2.497 -3.451 -2.870 -2.571 -2.152 -2.390 -2.580 -1.951 -1.637
15 -2.322 -2.380 -3.451 -2.870 -2.571 -2.189 -2.245 -2.580 -1.955 -1.641
14 -2.208 -2.415 -3.451 -2.870 -2.571 -2.148 -2.346 -2.580 -1.958 -1.644
13 -2.302 -2.415 -3.451 -2.870 -2.571 -2.398 -2.354 -2.580 -1.962 -1.647
12 -2.430 -2.299 -3.451 -2.870 -2.571 -2.482 -2.246 -2.580 -1.965 -1.650
11 -1.989 -2.062 -3.451 -2.870 -2.571 -2.057 -2.035 -2.580 -1.968 -1.653
10 -2.069 -2.204 -3.451 -2.870 -2.571 -2.222 -2.190 -2.580 -1.972 -1.656
9 -2.172 -2.520 -3.451 -2.870 -2.571 -2.491 -2.567 -2.580 -1.975 -1.659
8 -2.056 -2.855 -3.451 -2.870 -2.571 -2.395 -2.834 -2.580 -1.978 -1.661
7 -2.068 -2.781 -3.451 -2.870 -2.571 -2.335 -2.785 -2.580 -1.981 -1.664
6 -2.147 -3.295 -3.451 -2.870 -2.571 -2.384 -3.300 -2.580 -1.984 -1.667
5 -2.212 -3.373 -3.451 -2.870 -2.571 -2.438 -3.282 -2.580 -1.986 -1.669
4 -2.159 -3.583 -3.451 -2.870 -2.571 -2.532 -3.591 -2.580 -1.989 -1.672
3 -2.081 -3.798 -3.451 -2.870 -2.571 -2.444 -3.816 -2.580 -1.992 -1.674
2 -2.701 -4.106 -3.451 -2.870 -2.571 -2.861 -4.130 -2.580 -1.994 -1.676
1 -3.571 -4.612 -3.451 -2.870 -2.571 -3.483 -4.663 -2.580 -1.997 -1.679
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Table 5B: Unit Root Testing of H 0
0 with Time Trend

This table reports results of both Augmented Dickey-Fuller and Elliott-Rothenberg-Stock tests
on the number of IPO and SEO o¤erings up to 16 lags against the null H 0

0: unit root process with
time trend. The test statistics for IPOs and SEOs as well as critical values (1%, 5%, 10%) are
reported. The �rst half of the table reports the test results using the Augmented Dickey-Fuller test;
while the second half is for the Elliott-Rothenberg-Stock test.

Augmented Dickey-Fuller Test Elliott-Rothenberg-Stock Test
Test Statistics Critical Value Test Statistics Critical Value

Lag IPO SEO 1% 5% 10% IPO SEO 1% 5% 10%
16 -1.676 -3.121 -3.988 -3.424 -3.135 -2.236 -2.861 -3.48 -2.817 -2.535
15 -1.749 -2.890 -3.988 -3.424 -3.135 -2.276 -2.685 -3.48 -2.823 -2.541
14 -1.671 -3.043 -3.988 -3.424 -3.135 -2.222 -2.800 -3.48 -2.829 -2.546
13 -2.138 -3.025 -3.988 -3.424 -3.135 -2.512 -2.803 -3.48 -2.834 -2.552
12 -2.267 -2.848 -3.988 -3.424 -3.135 -2.606 -2.672 -3.48 -2.840 -2.557
11 -1.330 -2.479 -3.988 -3.424 -3.135 -2.101 -2.423 -3.48 -2.846 -2.562
10 -1.700 -2.759 -3.988 -3.424 -3.135 -2.305 -2.606 -3.48 -2.851 -2.567
9 -2.174 -3.295 -3.988 -3.424 -3.135 -2.615 -3.040 -3.48 -2.856 -2.571
8 -2.057 -3.679 -3.988 -3.424 -3.135 -2.502 -3.345 -3.48 -2.861 -2.576
7 -1.886 -3.569 -3.988 -3.424 -3.135 -2.431 -3.275 -3.48 -2.866 -2.581
6 -1.903 -4.280 -3.988 -3.424 -3.135 -2.486 -3.867 -3.48 -2.871 -2.585
5 -1.896 -4.182 -3.988 -3.424 -3.135 -2.548 -3.825 -3.48 -2.876 -2.589
4 -2.169 -4.658 -3.988 -3.424 -3.135 -2.657 -4.176 -3.48 -2.880 -2.593
3 -2.132 -4.907 -3.988 -3.424 -3.135 -2.547 -4.419 -3.48 -2.884 -2.597
2 -3.211 -5.373 -3.988 -3.424 -3.135 -3.038 -4.759 -3.48 -2.889 -2.601
1 -4.325 -5.912 -3.988 -3.424 -3.135 -3.730 -5.342 -3.48 -2.893 -2.604
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Table 6A: Average Monthly CART Under Equally Weighting Scheme

This table reports the estimates of the expectedmonthly CART for T = 400 using 200,000 rounds
of simulations. CART is de�ned by weighting events equally, as in Equation (4). All simulations
are based on the model log(Nt+1) = � log(Nt) + �rt + �t+1, where � = 0:6, 0:8, 0:85, 0:9, 0:95 or 1:0

and � = 0:5, 1:0, 1:5 or 1:75, rt
iid� N(0; 0:0824). The standard deviation of rt is chosen to be 0.0824

to be consistent with our sample. The simulation-based estimates of mean and standard deviation
of CART are reported in Panels A and B, respectively.

Panel A: Mean of CART (�10�4) with T = 400
� = 0:5 � = 1:0 � = 1:5 � = 1:75

� = 0:6 -0.2001 -0.2984 -0.7568 -0.7673
� = 0:8 -0.5224 -1.0743 -1.7521 -1.9906
� = 0:85 -0.5777 -1.8624 -2.6184 -3.3653
� = 0:9 -1.7879 -3.1278 -5.0328 -5.4113
� = 0:95 -3.5192 -7.1808 -11.0574 -13.1639
� = 1:0 -15.0864 -30.2697 -44.5558 -51.8022
Panel B: Std. Dev. of CART (�10�4) with T = 400

� = 0:5 � = 1:0 � = 1:5 � = 1:75
� = 0:6 54.9066 55.1574 55.3252 55.5463
� = 0:8 66.9126 67.3492 67.9923 68.4603
� = 0:85 74.8013 75.1170 76.2416 76.9925
� = 0:9 89.4798 90.2106 91.2480 91.9962
� = 0:95 117.0015 117.5599 118.7614 118.9192
� = 1:0 171.1819 172.0112 173.2287 173.7028
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Table 6B: Average Monthly [CART Under Scaled Weighting Scheme

This table reports the estimates of the expected monthly [CART for T = 400 using 200,000
rounds of simulations. [CART is de�ned under scaled weighting scheme, as in Equation (5). All
simulations are based on the model log(Nt+1) = � log(Nt) + �rt + �t, where � = 0:6, 0:8, 0:85, 0:9,

0:95 or 1:0 and � = 0:5, 1:0, 1:5 or 1:75, rt
iid� N(0; 0:0824). The standard deviation of rt is chosen to

be 0.0824 to be consistent with our sample. The simulation-based estimates of mean and standard
deviation of [CART are reported in Panels A and B, respectively.

Panel A: Mean of [CART (�10�4) with T = 400
� = 0:5 � = 1:0 � = 1:5 � = 1:75

� = 0:6 -0.0025 0.5826 0.2684 -0.2312
� = 0:8 0.6706 0.5095 0.8015 -0.1072
� = 0:85 0.4510 -0.0333 -0.0517 0.4218
� = 0:9 0.4604 0.2896 0.1904 0.6934
� = 0:95 -0.3192 0.2648 0.0476 -0.1847
� = 1:0 -2.2153 -5.6278 -8.4805 -9.9124

Panel B: Std. Dev. of [CART (�10�4) with T = 400
� = 0:5 � = 1:0 � = 1:5 � = 1:75

� = 0:6 166.5494 166.7364 166.1989 166.7117
� = 0:8 165.7027 165.8637 165.9608 166.0384
� = 0:85 164.9011 164.8834 165.2495 165.0750
� = 0:9 162.6115 162.4133 162.9946 163.2824
� = 0:95 157.4607 157.4294 157.2405 157.4461
� = 1:0 172.1102 172.7707 174.1883 173.4290
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Table 7: Asymptotic Standard Deviation of 3-YEAR CART

This table reports the asymptotic standard deviation of 3-year CART for T = 200 based on
the asymptotic distribution stated in Theorem 7 (2). To derive the asymptotic distribution, it is
assumed that log(Nt+1) � � = � (log(Nt)� �) + �st + �t+1. To be consistent with our data, we
set the variance of the systematic factor st, �2s = 0:0824, and the variance of �t+1, �2� = 0:6117.
Further, we use �r = 0:211, the cross-sectional standard deviation of the historical IPO returns
from the Table II in Ritter (1991). For each of four pairs of speci�cation of (�; �), we calculate the
asymptotic standard deviation of 3-year CART for various values of � which are 0:0; :::; 0:5, and 1:0.
By Theorem 7, the asymptotic standard deviation is: �b(na

p
T )�1. The explicit expressions of �a

and �b are given in Theorem 7.

Asymptotic Standard Deviation of 3-year CART (T = 200)
� (� = 1:75; � = 0:95) (� = 1:75; � = 0) (� = 0; � = 0:95) (� = 0; � = 0)
0:0 0.03251 0.08110 0.03429 0.08152
0:1 0.09062 0.08374 0.08511 0.08415
0:2 0.17227 0.09122 0.15953 0.09158
0:3 0.25584 0.10247 0.23620 0.10279
0:4 0.33991 0.11640 0.31348 0.11667
0:5 0.42419 0.13219 0.39101 0.13240
1:0 0.84651 0.22397 0.77977 0.22402
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