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Abstract Smooth pufferfish of the family Tetraodontidae
had become pure genomic models because of the remark-
able compaction of their genome. This trait seems to be the
result of DNA loss following its divergence from the sister
family Diodontidae, which possess larger genomes. In this
study, flow cytometry was used for estimate the genome
size of four pufferfish species from the Neotropical region.
Cytogenetic data and confocal microscopy were also used
attempting to confirm relationships between DNA content
and cytological parameters. The haploid genome size was
0.71±0.03 pg for Sphoeroides greeleyi, 0.34±0.01 pg for
Sphoeroides spengleri, 0.82±0.03 pg for Sphoeroides
testudineus (all Tetraodontidae), and 1.00±0.03 pg for
Chilomycterus spinosus (Diodontidae). These differences
are not related with ploidy level, because 46 chromosomes
are considered basal for both families. The value for
S. spengleri represents the smallest vertebrate genome

reported to date. Since erythrocyte cell and nuclear sizes
are strongly correlated with genome size, the variation in
this last is considered under both adaptive and evolutionary
perspectives.
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Introduction

The Order Tetraodontiformes comprises ten families, and
it includes almost 350 species that are mainly distributed
in marine tropical waters, although some species can also
be found in fresh waters (Nelson 1994). The group shows
an exceptional degree of morphological diversity and
genetic peculiarities, such as the low nuclear DNA
content. The smooth pufferfishes of the Tetraodontidae
family have the smallest genome size among all verte-
brates measured so far, with a haploid genome size around
400 million base pairs (Mb) (Hinegardner and Rosen
1972; Brenner et al. 1993). Although they have similar
gene complements to other vertebrates, the small size is
apparently a result of intron losses and interspersed
repetitive DNA (Elgar et al. 1999; Loh et al. 2008). Thus,
due to this remarkable compaction of the genome, puffer-
fish had become an attractive tool for comparative
genomics, useful to understand the evolution of vertebrate
genomes and karyotype.

Eukaryotic genome size varies by more than five orders
of magnitude and is correlated with various phenotypic
traits of apparent selective significance, mainly positively
with the cellular and nuclear sizes (Cavalier-Smith 1982;
Gregory and Hebert 1999). In this regard, several hypoth-
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eses have been proposed to explain this remarkable
variation. The available evidence favors the nucleotypic
theory which postulates a causal influence of DNA amount
on the cellular phenotype, such as division rate, cell size,
and nuclear size (Bennett 1971; Gregory 2001a; Hardie and
Hebert 2004).

The determination of the nuclear DNA content con-
stitutes an important consideration to be used in genomics
approaches and may provide relevant information for the
establishment of a more reliable scenario of the genomic
evolution. The relationship between genome size and
cellular parameters was previously a subject of the contest
in fishes (Chang et al. 1995; Lay and Baldwin 1999).
However, in this study, once more these positive correla-
tions were confirmed. The flow cytometry analysis associ-
ated with cytogenetic data and confocal microscopy is
conducted for the first time in four pufferfish species that
occur in the Neotropical region. The implications of these
results concerning the adaptive significance of genome size
variation as well as genome evolution of the group are
discussed.

Materials and Methods

Sample and Cell-Suspension Preparation

Fifty-one animals from four pufferfish species: Sphoeroides
greeleyi (n=17), Sphoeroides spengleri (n=19), Sphoer-
oides testudineus (n=10), and Chilomycterus spinosus
(n=5), all collected in Paranaguá Bay (25°30′42″ S;
48°25′15″ W), State of Paraná, Brazil constitute the sample
of this study. Voucher specimens have been deposited at the
Museum of Natural History Capão da Imbuia (Curitiba—
PR, Brazil). The procedures used in this work were in
accordance with the guidelines of the Committee for Ethics
in Animal Experimentation (UFPR 01/03BL) and the
current Brazilian legislation (CONCEA 1153/95). Chromo-
some plates were obtained after cell culture (Fenocchio et
al. 1991) and stained with a 5% Giemsa solution. For
nuclear DNA content measurements, sample preparation
was based on the fixation and cell permeabilization of a
well-established method (Darzynkiewicz et al. 2006), with
modifications. Briefly, red blood cells from the caudal

Fig. 1 Relative fluorescence histogram for propidium iodide-stained
nuclei from Neotropical pufferfishes, measured by flow cytometry
using chicken erythrocytes as a standard. The fish peak is approx-

imately two times higher than the chicken peak because the relative
concentration of fish to chicken cells in the sample was set at 2:1
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Fig. 2 Causative effects of ge-
nome size changes on cell size
cellular phenotype and chromo-
some size. Laser confocal
images of red blood cells: nu-
clear morphology was analyzed
after staining with acridine or-
ange (a–e) and the cell mor-
phology was visualized by
differential interference contrast
(DIC) (f–j). Giemsa stained
metaphases of: Gallus gallus
domesticus (k), Sphoeroides
spengleri (l), S. greeleyi (m),
S. testudineus (n), and Chilo-
mycterus spinosus (o).
Bar =10µm
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artery were collected using a 1-ml heparinized syringe and
used immediately. The cell suspension was fixed by 1%
formaldehyde solution (Sigma, St. Louis, MO, USA), to
prevent extraction of the fragmented DNA, for 1 h at room
temperature. After a double washing in phosphate buffer
solution (PBS) at pH 7.4, cells were permeabilized in
ethanol 70% overnight at −20°C. The samples were washed
in PBS and aliquots of the suspension containing approx-
imately 1×106cells/ml were pretreated with RNAse (Sig-
ma, 20µg/ml) at 37°C for 1 h. Fresh blood of the white
leghorn chicken (Gallus gallus domesticus), prepared as
presented above, was added to each fish sample as an
internal size standard to achieve a final concentration of
0.5×106cells/ml. The mixture was stained with a propidium
iodide solution (Sigma, 50µg/ml) and was incubated in
darkness for 30 min. For confocal microscopy analysis the
dry erythrocytes were stained with acridine orange (Elec-
tron Microscopy Sciences).

Flow Cytometry and Confocal Microscopy Analysis

Measurements of cell DNA contents were performed in a
FACSCalibur (Becton Dickinson Biosciences, San Jose,
CA, USA). For each sample tube, 20,000 cells were
acquired using Cell Quest software. Genome size (diploid
DNA content per cell) in picograms of each fish sample
was calculated from fluorescence intensity (arbitrary units)
by multiplying the fish-to-chicken fluorescence ratio by the
known value of the chicken genome size (2.54 pg—Rasch
et al. 1971). The fish peak was always higher than the
chicken peak because the samples contained twofold
greater concentration of fish cells. Quality controls per-
formed with calibration beads of BD Calibrite Beads
(Becton Dickinson Biosciences) showed stability in the
cytometer and potential for consistent results. Confocal
microscopy provides cellular and nuclear area measure-
ments. The fluorescent images were acquired using an
optical filter appropriate for acridine orange and differential
interference contrast (DIC) sequentially. Relative areas of at
least 50 cells and nuclei were measured and in all cases.
Relationships among DNA content, nucleus, and cell areas
were analyzed by least-squares regression of log10-trans-
formed data. Standard procedures were applied for statis-
tical analysis as presented in Results and Discussion.

Results and Discussion

Fishes of the Tetraodontiformes order, in particular the
family Tetraodontidae, have become an interesting model
for genome studies due to their highly compact genome
(approximately 400 Mb) (Brenner et al. 1993). This
remarkable compaction, which facilitates gene identifica-

tion and sequencing projects, is directly related to the
reduction in intron lengths, intergenic regions, and the lack
of significant amounts of repetitive sequences (Elgar 1996;
Elgar et al. 1999; Venkatesh et al. 2000; Loh et al. 2008).
Our measurements confirmed these findings and presented
one of the smallest known vertebrate genomes yet
measured, S. spengleri, which might be more compact than
the previously reported estimate for Fugu rubripes and
Tetraodon nigroviridis genomes (Jaillon et al. 2004;
Aparicio et al. 2002). According to the internal standard,
average values for S. greeleyi, S. spengleri, S. testudineus,

Fig. 3 Relationship between dry erythrocyte area (a) and nuclear area
(b) with genome size. Cellular and nuclear areas also were positively
correlated (c). Different symbols represent different species: Sphoer-
oides spengleri (●), S. greeleyi (▲), S. testudineus (■), and
Chilomycterus spinosus (♦). These relationships are highly significant
(all r2>0.72, all P<0.0001)
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and C. spinosus were 0.71±0.03, 0.34±0.01, 0.82±0.03,
and 1.00±0.04 pg, respectively. Coefficients of variation of
fluorescence peaks from nuclei were usually inferior to 5%
in all species. Relative fluorescence histograms for propi-
dium iodide-stained erythrocytes from pufferfishes and a
chicken are reported in Fig. 1. However, a small genome
size is not a typical feature of all tetraodontiform fishes,
since spiny puffers (Diodontidae) possess average larger
genomes (Neafsey and Palumbi 2003). In addition, in the
present study, C. spinosus presented the highest value for
the family reported (1C=1.00 pg). Several studies had
confirmed events whole-genome duplications that occurred
in the ray-finned fish lineage (Amores et al. 1998;
Robinson-Rechavi et al. 2001; Taylor et al. 2003; Jaillon
et al. 2004), and these episodes had certainly contributed to
their phenotypic and genomic diversity. In this scenario, the
ancestor of Tetraodontidae presented a relatively large
genome size and acquired this tendency to lose DNA in
the last 50 million years since their divergence from the
Diodontidae (Brainerd et al. 2001; Santini and Tyler 2003).
In this sense, according to present study size estimations,
the process to eliminate the junk DNA was more advanced
in S. spengleri than their relatives.

Regarding chromosome number, the three species of the
genus Sphoeroides (Tetraodontidae) showed 2n=46 and
C. spinosus (Diodontidae) 2n= 50 chromosomes
(Fig. 2k–o). As in most other organisms, the difference in
genome size between spiny and smooth puffers is not
related to differences in ploidy, but in chromosome size,
which is observed for the notable differences in chromo-
some sizes of species, mainly among the tiny chromosomes
of S. spengleri and the largest one of C. spinosus (Fig. 2l, o
respectively). The independence of genome size and
chromosome number is reinforced by the fact that, in most
teleost species studied, the complement remains remarkably
constant around 48 chromosomes, even among species that
differ significantly in DNA content (Ohno 1974; Klinkhardt
et al. 1995). Since the chromosome number in the order
Tetraodontiformes ranges from 2n=28 to 2n=52
(Sá-Gabriel and Molina 2005; Galetti et al. 2006), the
2n=46 observed in the Sphoeroides species previously
studied (Brum and Mota 2002; Sá-Gabriel and Molina
2005; Noleto et al. 2007; Alves et al. 2008) is considered
the basal karyotype for the families Balistidae, Diodontidae,
and Tetraodontidae (Arai 1983; Brum 2000).

This study clearly establishes that the DNA content
affects erythrocyte cell and nuclear size in fishes. Both
cellular and nuclear areas of the red blood cells (RBC)
showed a highly significant positive relationship between
them and with genome size (Fig. 3). The Laser confocal
microscopic analysis confirmed these positive correlations
(Fig. 2a–j). Some studies previously reported a lack of
association between cellular parameters and genome size in

both bony (Lay and Baldwin 1999) and cartilaginous fishes
(Chang et al. 1995). It would be surprising not finding the
relationship in the fishes, since early observations reported
that cell and nuclear sizes varied in concert with DNA
content across the protist, plant, and animal kingdoms
(Cavalier-Smith 1991; Gregory and Hebert 1999). The
constancy of cyto- and nucleogenomic ratios in neo-
polyploids regarding their diploid progenitors provides
further support for the natural cause of these relationships,
supporting that the nucleotypic theory is the most parsimo-
nious explanation for adaptive interpretations of genome
size diversity (Gregory 2001b).

Associations between genome size and characters such
as metabolic and development rates, growth, complexity,
and ecological amplitude are present in many groups of
organisms, and likely derive from the relationships between
DNA content of cells and their size and division rates.
DNA content is not correlated with metabolic rate in ray-
finned fishes, but it is positively associated with reproduc-
tive traits including egg size and parental care, beyond that
freshwater fishes have larger genomes than marine fishes
(Hardie and Hebert 2004) and cartilaginous than in ray-
finned fishes (Stingo and Rocco 2002). The pufferfishes
with their r-selected traits, including rapid growth, early
maturity, no parental care, and high fecundity, may have in
this scenario experienced an increased selection for a
shorter developmental time (e.g., few DNA to be replicated
in consequently a short cell division).

It is unlikely that the genome size evolution might be
affected only by selective forces because there are clear
indications that mutational mechanisms of addition and loss of
DNA such as satellite expansion, heterochromatic shrinkage,
or expansion activity of transposable elements also play an
important role, as well as random genetic drift. Different
evolutionary factors can be important in different organisms
and to confer varying fitness in different habitats, especially in
fishes, due to their extreme diversity. Therefore, an analysis of
complex interaction of factors is needed for a robust
understanding of genome size evolution.
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