

NOT PEER-REVIEWED

- 1 Effect of achievement motive on purpose in life, social participation, role expectation,
- 2 self-efficacy, and physical function by a longitudinal research study in Japan: using
- 3 multilevel structural equation modeling
- 4
- 5 Authors:
- 6 Nobuyuki Sano¹ Makoto Kyougoku¹
- 7 Affiliations:
- 8 ¹ Department of Occupational Therapy, School of Health Sciences and Social Welfare, Kibi
- 9 International University, Takahashi, Okayama, Japan
- 10 Nobuyuki Sano is an instructor of Kibi International University.
- 11 The authors have no conflict of interest directly relevant to the content of this article.
- 12 ¹ Department of Occupational Therapy, School of Health Sciences and Social Welfare, Kibi
- 13 International University, Takahashi, Okayama, Japan
- 14
- 15 **Corresponding author:**
- 16 Nobuyuki Sano
- 17 Address: 8, Iga-machi, Takahashi city, Okayama, Japan

- 18 Kibi International University
- 19 Phone number: 090-8717-1836
- 20 Email address: sanokichi09094@gmail.com.

21

22 Key words: Achievement motive, Multilevel structural equation modeling, Rehabilitation,

23 Community-dwelling elderly people

24

25 Abstract

Objective: The purpose of this study was to demonstrate the effects of the achievement 26 27 motive on important variables such as the purpose in life and social participation with 28 objective physical functions in predicting within-person fluctuations and between-person 29 differences using longitudinal research in community-dwelling Japanese elderly people. 30 Methods: The final dataset consisted of 227 persons (men: 109, women: 118) from day-service centers through testing at three time points. The tests comprised a questionnaire 31 32 on the achievement motive, purpose in life and so on and the measurement of physical 33 functions. We verified the following hypothesis model; 1) achievement motive works on 34 improvement of the purpose in life, social participation, self-efficacy, and role expectation, 2)

35	social participation and role expectation improve the purpose in life, 3) hobbies and going out
36	affect the purpose in life, 4) social participation and physical function affect the increase in
37	going out, 5) achievement motive and social participation improve physical function and
38	increase role expectation and hobbies, and 6) self-efficacy improves social participation and
39	the purpose in life. Our hypothesized model was based on previous research and was analyzed
40	using a multilevel structural equation modeling approach.
41	Results: The modified hypothesis model without hobby, grip strength, and gait speed
42	exhibited an adequate model fit: comparative fit index = 0.904 , Tucker-Lewis index = 0.775 ,
43	root mean square error of approximation = 0.064 , Akaike's information criterion = 25201.17 ,
44	Bayesian information criterion = 25389.59 , and adjusted BIC = 25256.24 . Within level, the
45	achievement motive had significant direct effects on the purpose in life, social participation,
46	and self-efficacy. In addition, there were significant indirect effects of the achievement
47	motive on the purpose in life through social participation and on social participation through
48	self-efficacy. Between level, the achievement motive had significant direct effects on all
49	variables and significant indirect effects on the purpose in life, social participation, and going
50	out.

51 **Conclusion:** Our findings highlight the implications of achievement motive for the purpose in

- 52 life, social participation and self-efficacy of the participation at the within person and between
- 53 people levels. Consequently, we understood that the achievement motive could strongly affect
- 54 between-person differences more than within-person fluctuations during a short period of six
- 55 months.

56 Introduction

57	In Japan, the percentage of elderly people who are aged 65 years or over in the total
58	population was 26.7% in 2015, and is expected to increases by more than 30% by 2035
59	(Cabinet Office, 2017). Accordingly, it is very important to extend healthy life expectancy
60	(i.e., the number of years of life that are expected to be lived in full health), to expand
61	health-related quality of life (QOL) for the elderly, and to reduce the enormous expenditures
62	of the national medical and the long-term care benefit (i.e., care prevention). Care prevention
63	is defined as "preventing (delaying) as much as the possible conditions that require nursing
64	care, preventing worsening of the conditions even if an elderly person currently requires as
65	much care as possible, and trying to mitigate such conditions" (Ministry of Health, Labour
66	and Welfare, 2012; Wada et al., 2015). It is also explained as "trying to improve QOL by
67	improving life functions (activity level) and participation (role level) of individual elderly
68	people and supporting individual purposes of life and efforts towards self-actualization
69	through improvement of mental and physical functions, environmental adjustment, and so
70	forth instead of only trying to improve individual elements such as the motor functions and
71	nutritional conditions in the elderly" (Ministry of Health, Labour and Welfare, 2012; Wada et
72	al., 2015). Therefore, rehabilitation of the elderly is necessity for maintaining or improving

73	not only mental and physical functions, but also activity and role levels, and providing
74	intervention and support to motivate them is expected (Miyata, 2015; Tsuruta, 2015).
75	A number of studies have addressed the motivation of individual as an important
76	part of rehabilitation, and the achievement motive is a significant concept concerning client
77	goal assessment and intervention (Lampton et al., 1993; Resnick, 1996; Resnick et al., 2002;
78	Vanetzian, 1997). In Japan, Achievement motive is measured by an achievement motivation
79	scale with two psychometric factors: (1) self-fulfillment achievement motivation directed at
80	pursuing goals evaluated by one's own standards of achievement regardless of the values of
81	others or society; (2) competitive achievement motivation directed at seeking social prestige
82	by defeating others and achieving better results than they achieve (Horino, 1987; Horino &
83	Mori, 1991; Takeuchi et al., 2014). However, we report that the scale is inadequate for
84	persons with disabilities because it is unlikely that they seek the social prestige of defeating
85	others. In fact, our previous study showed that the competitive achievement motivation scores
86	of people using rehabilitation service was significantly lower when compared with those of
87	healthy people and that factor analysis result were different from the original two-factor
88	structure (Sano, 2013). Therefore, we have operationally defined the achievement motive as
89	the intention to achieve one's goals while maintaining a standard of excellence and have

 the achievement motive in clients adequately. The validity and the reliability of S been demonstrated in our previous studies, it consists of a unique two-factor str self-mastery-derived achievement motive, which refers to making an effort to enh own abilities and intelligence; (2) means/process-oriented achievement moti emphasizes the willingness to follow a rehabilitation program to achieve one's goal Kyougoku, 2015; Sano et al., 2014). We have previously demonstrated that the achievement motive affect variables such as the health-related QOL, purpose in life, social participation, role c self-efficacy, and hopelessness in community-dwelling elderly people (Sano & I) 2016a; Sano & Kyougoku, 2016b; Sano et al., 2015). These results suggest that enh intention to achieve one's goals enables clients in rehabilitation to improve states i life functions and participation and prevents them from failing to meet their subsequently abandoning their goals. Other studies have also demonstrated that hea participation, physical function, gait ability, social role, and so on (e.g. Garatac Imai & Saito, 2011; Martin et al, 2001; Shimada et al., 2006). Moreover, the seven 	90	developed the Scale for Achievement Motive in Rehabilitation (SAMR) in order to assess \mp
 been demonstrated in our previous studies, it consists of a unique two-factor str self-mastery-derived achievement motive, which refers to making an effort to enh own abilities and intelligence; (2) means/process-oriented achievement moti emphasizes the willingness to follow a rehabilitation program to achieve one's goa Kyougoku, 2015; Sano et al., 2014). We have previously demonstrated that the achievement motive affect variables such as the health-related QOL, purpose in life, social participation, role of self-efficacy, and hopelessness in community-dwelling elderly people (Sano & I 2016a; Sano & Kyougoku, 2016b; Sano et al., 2015). These results suggest that enh intention to achieve one's goals enables clients in rehabilitation to improve states i life functions and participation and prevents them from failing to meet their subsequently abandoning their goals. Other studies have also demonstrated that here QOL and well-being as outcomes for elderly people have positive correlations of participation, physical function, gait ability, social role, and so on (e.g. Garatace Imai & Saito, 2011; Martin et al, 2001; Shimada et al., 2006). Moreover, the seventiate 	91	the achievement motive in clients adequately. The validity and the reliability of SAMR has
 self-mastery-derived achievement motive, which refers to making an effort to enh own abilities and intelligence; (2) means/process-oriented achievement moti emphasizes the willingness to follow a rehabilitation program to achieve one's goa Kyougoku, 2015; Sano et al., 2014). We have previously demonstrated that the achievement motive affect variables such as the health-related QOL, purpose in life, social participation, role e self-efficacy, and hopelessness in community-dwelling elderly people (Sano & I 2016a; Sano & Kyougoku, 2016b; Sano et al., 2015). These results suggest that enh intention to achieve one's goals enables clients in rehabilitation to improve states i life functions and participation and prevents them from failing to meet their subsequently abandoning their goals. Other studies have also demonstrated that hea QOL and well-being as outcomes for elderly people have positive correlations or participation, physical function, gait ability, social role, and so on (e.g. Garatace Imai & Saito, 2011; Martin et al, 2001; Shimada et al., 2006). Moreover, the sever 	92	been demonstrated in our previous studies, it consists of a unique two-factor structure: (1)
 own abilities and intelligence; (2) means/process-oriented achievement moti emphasizes the willingness to follow a rehabilitation program to achieve one's goal Kyougoku, 2015; Sano et al., 2014). We have previously demonstrated that the achievement motive affect variables such as the health-related QOL, purpose in life, social participation, role e self-efficacy, and hopelessness in community-dwelling elderly people (Sano & I 2016a; Sano & Kyougoku, 2016b; Sano et al., 2015). These results suggest that enh intention to achieve one's goals enables clients in rehabilitation to improve states i life functions and participation and prevents them from failing to meet their subsequently abandoning their goals. Other studies have also demonstrated that her QOL and well-being as outcomes for elderly people have positive correlations of participation, physical function, gait ability, social role, and so on (e.g. Garatac Imai & Saito, 2011; Martin et al, 2001; Shimada et al., 2006). Moreover, the sever 	93	self-mastery-derived achievement motive, which refers to making an effort to enhance one's
 emphasizes the willingness to follow a rehabilitation program to achieve one's goa Kyougoku, 2015; Sano et al., 2014). We have previously demonstrated that the achievement motive affect variables such as the health-related QOL, purpose in life, social participation, role e self-efficacy, and hopelessness in community-dwelling elderly people (Sano & I 2016a; Sano & Kyougoku, 2016b; Sano et al., 2015). These results suggest that enh intention to achieve one's goals enables clients in rehabilitation to improve states i life functions and participation and prevents them from failing to meet their subsequently abandoning their goals. Other studies have also demonstrated that her QOL and well-being as outcomes for elderly people have positive correlations or participation, physical function, gait ability, social role, and so on (e.g. Garatac Imai & Saito, 2011; Martin et al, 2001; Shimada et al., 2006). Moreover, the sevel 	94	own abilities and intelligence; (2) means/process-oriented achievement motive, which
 Kyougoku, 2015; Sano et al., 2014). We have previously demonstrated that the achievement motive affect variables such as the health-related QOL, purpose in life, social participation, role et self-efficacy, and hopelessness in community-dwelling elderly people (Sano & I) 2016a; Sano & Kyougoku, 2016b; Sano et al., 2015). These results suggest that enh intention to achieve one's goals enables clients in rehabilitation to improve states i life functions and participation and prevents them from failing to meet their subsequently abandoning their goals. Other studies have also demonstrated that heat QOL and well-being as outcomes for elderly people have positive correlations of participation, physical function, gait ability, social role, and so on (e.g. Garatac Imai & Saito, 2011; Martin et al, 2001; Shimada et al., 2006). Moreover, the seve 	95	emphasizes the willingness to follow a rehabilitation program to achieve one's goals (Sano &
97 We have previously demonstrated that the achievement motive affec 98 variables such as the health-related QOL, purpose in life, social participation, role e 99 self-efficacy, and hopelessness in community-dwelling elderly people (Sano & I 100 2016a; Sano & Kyougoku, 2016b; Sano et al., 2015). These results suggest that enh 101 intention to achieve one's goals enables clients in rehabilitation to improve states i 102 life functions and participation and prevents them from failing to meet their 103 subsequently abandoning their goals. Other studies have also demonstrated that hea 104 QOL and well-being as outcomes for elderly people have positive correlations of 105 participation, physical function, gait ability, social role, and so on (e.g. Garataci 106 Imai & Saito, 2011; Martin et al, 2001; Shimada et al., 2006). Moreover, the seve	96	Kyougoku, 2015; Sano et al., 2014).
98 variables such as the health-related QOL, purpose in life, social participation, role e 99 self-efficacy, and hopelessness in community-dwelling elderly people (Sano & I 2016a; Sano & Kyougoku, 2016b; Sano et al., 2015). These results suggest that enh 101 intention to achieve one's goals enables clients in rehabilitation to improve states i 102 life functions and participation and prevents them from failing to meet their 103 subsequently abandoning their goals. Other studies have also demonstrated that hea 104 QOL and well-being as outcomes for elderly people have positive correlations v 105 participation, physical function, gait ability, social role, and so on (e.g. Garatac 106 Imai & Saito, 2011; Martin et al, 2001; Shimada et al., 2006). Moreover, the seve	97	We have previously demonstrated that the achievement motive affects various
99 self-efficacy, and hopelessness in community-dwelling elderly people (Sano & I 2016a; Sano & Kyougoku, 2016b; Sano et al., 2015). These results suggest that enh intention to achieve one's goals enables clients in rehabilitation to improve states i life functions and participation and prevents them from failing to meet their subsequently abandoning their goals. Other studies have also demonstrated that hea QOL and well-being as outcomes for elderly people have positive correlations v participation, physical function, gait ability, social role, and so on (e.g. Garatac Imai & Saito, 2011; Martin et al, 2001; Shimada et al., 2006). Moreover, the seve	98	variables such as the health-related QOL, purpose in life, social participation, role expectation,
2016a; Sano & Kyougoku, 2016b; Sano et al., 2015). These results suggest that enh intention to achieve one's goals enables clients in rehabilitation to improve states i life functions and participation and prevents them from failing to meet their subsequently abandoning their goals. Other studies have also demonstrated that hea QOL and well-being as outcomes for elderly people have positive correlations v participation, physical function, gait ability, social role, and so on (e.g. Garatac Imai & Saito, 2011; Martin et al, 2001; Shimada et al., 2006). Moreover, the seve	99	self-efficacy, and hopelessness in community-dwelling elderly people (Sano & Kyougoku,
 intention to achieve one's goals enables clients in rehabilitation to improve states i life functions and participation and prevents them from failing to meet their subsequently abandoning their goals. Other studies have also demonstrated that hea QOL and well-being as outcomes for elderly people have positive correlations v participation, physical function, gait ability, social role, and so on (e.g. Garataci Imai & Saito, 2011; Martin et al, 2001; Shimada et al., 2006). Moreover, the sever 	100	2016a; Sano & Kyougoku, 2016b; Sano et al., 2015). These results suggest that enhancing the
life functions and participation and prevents them from failing to meet their subsequently abandoning their goals. Other studies have also demonstrated that hea QOL and well-being as outcomes for elderly people have positive correlations v participation, physical function, gait ability, social role, and so on (e.g. Garatac Imai & Saito, 2011; Martin et al, 2001; Shimada et al., 2006). Moreover, the seve	101	intention to achieve one's goals enables clients in rehabilitation to improve states involved in
 subsequently abandoning their goals. Other studies have also demonstrated that hea QOL and well-being as outcomes for elderly people have positive correlations v participation, physical function, gait ability, social role, and so on (e.g. Garataci Imai & Saito, 2011; Martin et al, 2001; Shimada et al., 2006). Moreover, the seve 	102	life functions and participation and prevents them from failing to meet their goals and
QOL and well-being as outcomes for elderly people have positive correlations v participation, physical function, gait ability, social role, and so on (e.g. Garataci Imai & Saito, 2011; Martin et al, 2001; Shimada et al., 2006). Moreover, the seve	103	subsequently abandoning their goals. Other studies have also demonstrated that health-related
 participation, physical function, gait ability, social role, and so on (e.g. Garatac Imai & Saito, 2011; Martin et al, 2001; Shimada et al., 2006). Moreover, the sever 	104	QOL and well-being as outcomes for elderly people have positive correlations with social
106 Imai & Saito, 2011; Martin et al, 2001; Shimada et al., 2006). Moreover, the seve	105	participation, physical function, gait ability, social role, and so on (e.g. Garatachea, 2009;
	106	Imai & Saito, 2011; Martin et al, 2001; Shimada et al., 2006). Moreover, the several studies

107	have reported that daily life activities and motor/cognitive functions in elderly people are
108	improved through care prevention projects such as physical exercise, machine training, and
109	the dementia prevention programs (e.g. Kamegaya & Yamaguchi, 2016; Suita et al., 2011;
110	Wada et al., 2015). To summarize, it is presumed that better states of physical function, gait
111	ability, and social participation has tend to make elderly people have better healthy life
112	expectancy and health-related QOL, and the achievement motive contributes to this.
113	Nevertheless, our previous studies about the achievement motive were
114	cross-sectional studies and indicated structural relationships among the investigated variables
115	and general trends in the study population. What is more, the latent variables used in our
116	studies, such as the achievement motive, health-related QOL, and purpose in life were based
117	on subjective evaluation via self-reported questionnaires. Although individual intervention
118	and support are expected to bring about desirable changes in rehabilitation clients, it remains
119	unclear as to how the achievement motive affects various outcomes of objective physical
120	functions by within-person fluctuations and causal relationships through longitudinal research.
121	Therefore, the purpose of this study was to demonstrate the effects of the achievement motive
122	on the purpose in life, social participation, self-efficacy, role expectation, hobbies, and
123	physical function in predicting within-person fluctuations and between-person differences by

124 longitudinal research in community-dwelling elderly people.

125	We devised our hypothesized model (Figure 1) based on previous research. First, in
126	accordance with previous studies, we assumed that the achievement motive works on
127	improvement of the purpose in life, social participation, self-efficacy, and role expectation
128	(Sano & Kyougoku, 2016a; Sano & Kyougoku, 2016b; Sano et al., 2015). Similarly, we
129	assumed that social participation and role expectation work improve the purpose in life (Imai,
130	2013; Sano N, Kyougoku M. 2016a). In addition, the possibility that hobbies and going out
131	affect the purpose in life was examined. Next, we assumed that social participation and
132	physical function affect the increase in going out by reference to research on social
133	participation and gait ability promoting going out (Sano N, Kyougoku M. 2016c). We also
134	assumed that the achievement motive and social participation improve physical function and
135	increase role expectation and hobbies, because good motivation and social participation
136	promote activity and regular habits. Moreover, we conjectured that self-efficacy improves
137	social participation and the purpose in life by due confidence and opportunity for practical
138	action.

- 139
- 140 Methods

141 Ethics statement

142	This study was of a longitudinal research design. Data collection conformed to the
143	Declaration of Helsinki and the policies of the Ethics Committee of Kibi International
144	University (No. 13-34). In addition, we obtained approval from the facility directors of the
145	institutions that cooperated in this study. Participants had the right to withdraw from the study
146	at any time regardless of reasons. They indicated informed consent by completing
147	questionnaires and placing them in a box or submitting them to the study staff.
148	
149	Participants
150	Participants included community-dwelling elderly people from day-service centers.
151	Subjects were excluded if they had been diagnosed with a mental disorder, such as
152	schizophrenia and dementia, if they had demonstrated clear decline in cognitive function due
153	to a mental disorder or neuropsychological deficit, or if they were unable to read or write on
154	the questionnaire.
155	
156	General procedure
157	The longitudinal data in this study were collected from March to December in 2014

158	Participants were tested at the three time points: initial occasion, three months later, and six
159	months later. Participants answered the questionnaires and physical functions were measured
160	at each time point by the corresponding author or the staff of the institutions that cooperated
161	in this study.
162	
163	Questionnaires
164	1) Demographic information
165	The questionnaire covered the following demographic information: gender, age,
166	primary illness or disease, nursing care level (needing care: 1-5, needing support: 1-2, or
167	nothing), number of times the person went out each week (going out), and hobbies in which
168	the person participated.
169	2) Achievement motive
170	The SAMR was used to assess participants' achievement motive (Sano &
171	Kyougoku, 2015; Sano et al., 2014). The SAMR has 10 self-rating items (e.g., "I think that I
172	can overcome any difficulty to achieve my goal"), which respondents answer on a 7-point
173	Likert scale ranging from 1 (strongly disagree) to 7 (strongly agree). The SAMR is based on a
174	two-factor solution structure: self-mastery derived factor and means/process-oriented derived

175	factor. To	tal scores	of the	SAMR	can be	converted	to a	standardized	score	and a	higher

- 176 standardized score represents a stronger achievement motive.
- 177 3) Social participation

178	The self-completed occupational index (SOPI) was used to assess social
179	participation (Imai & Saito. 2010). The SOPI has 9 self-rating items (e.g., "Have you been
180	able to perform important leisure activities in the past month?"), which respondents answer on
181	a 5-point Likert scale ranging from 1 (I hardly have been satisfied) to 5 (I have been very
182	satisfied). The SOPI is based on an oblique three-factor model: leisure, productivity, and
183	self-care. Summary score was calculated using following equation: (total score of 9 items -
184	9)/36 \times 100. A higher summary score represents better social participation.
185	4) Purpose in life
186	The K-1 scale for the feeling that life is worth living among the aged (K-1 scale)
187	was used to assess participants' purpose in life (Kondo, 2007). The K-1 scale has 16
188	self-rating items (e.g., "I feel something to realize my accomplishment"), which respondents
189	answer on a 3-point Likert scale ranging from 0 (no) to 2 (yes). The K-1 scale is based on an
190	oblique four-factor model: self-realization and will, sense of life fulfillment, will to live, and
191	sense of existence. We reverse scored item 2, 4, 9, and 12 so that an agreement with the item

192 represented a low level of purpose in life. A higher total score of the K-1 scale represents a

- 193 better purpose in life.
- 194 5) Self-efficacy

195	The general self-efficacy scale (GSES) was used to assess participants' self-efficacy
196	(Sakano, 1989). The GSES has 16 self-rating items (e.g., "I work on anything positively"),
197	which respondents answer on a 2-point Likert scale ranging from 0 (no) or 1 (yes). The GSES
198	is based on a three-factor model structure: behavioral positivity, anxiety for failure, and social
199	position of capacity. We reverse scored item 2, 4, 5, 7, 8, 11, 14, and 15 so that agreement
200	with these items represented a low level of self-efficacy. A higher total score of the GSES
201	represents a better self-efficacy.
202	6) Role expectation
203	A multiple-choice form was used to assess participants' role expectation. We
204	provided 11 items with reference to a role checklist: volunteer, caregiver, housework, friend,
205	family member, religionist, hobbyist or amateur, participant in an organization, student,
206	worker, and other (Kielhofner, 2007). Participants selected roles that were applicable to them
207	and the total number of chosen roles was counted.

208

209 Physical functions

210	This study implemented grip strength, gait speed, and timed up & go test (TUG) as
211	physical functions. Grip strength was measured two times with each hand, using a digital or
212	analog Smedley dynamometer in the standing or sitting position with shoulder adduction and
213	neutral rotation and full extension of the elbow (Otsuka, 1994). Results were recorded as the
214	mean of two trials in the stronger hand in kilograms. Gait speed was measured once in a tenth
215	of a second with a stopwatch over the middle 10 meters of a 16-meters walkway to minimize
216	the effects of acceleration and deceleration (Dean et al., 2001; Tozato, 2003). Subjects were
217	instructed to walk as fast as they could safely walk and were able to use assistive devices such
218	as a T-cane or walker. The TUG was measured twice in a tenth of a second with a stopwatch
219	as the time taken for a subject to stand up from an armchair, walk a distance of 3 meters, turn
220	on a marker, walk back to the chair, and sit down (Podsiadlo & Richardson, 1991;
221	Shumway-Cooket al., 2000). Subjects were instructed on walking pace and assistive devices
222	in the same way as for gait speed. Results were recorded as the mean of two trials.
223	

224 Statistical analyses

225 Descriptive statistics were obtained and normality testing was conducted using

226	SPSS Statistics version 22 (www-01.ibm.com/software/jp/analytics/spss/products/statistics/).
227	Multilevel correlation analysis and participant reliability between/within levels were
228	conducted using HAD12 (http://norimune.net/had). Multilevel structural equation modeling
229	(MLSEM) was conducted using Mplus version 7.2 (www.statmodel.com).
230	1) Descriptive statistics and test of normality
231	To observe the overall patterns, the number of answers and response frequencies
232	(%) for each choice on demographic information on the initial occasion were examined. In
233	addition, for total scores or the summary score on each scale and physical function,
234	descriptive statistics were calculated, including mean, standard deviation (SD), skewness,
235	kurtosis, and normality using the Kolmogorov-Smirnov test at the three time points.
236	2) Multilevel correlation analysis between variables
237	Multilevel analysis deals with the analysis of multilevel data such as the trio of
238	collected data on each occasion nested within participants in this study and attempts to
239	partition observed variance into within and between-clusters components (Shimizu, 2014). On
240	analyzing this data, we took the multilevel data structure into account with the trio of data
241	(within level) nested within participants (between level).
242	To identify the different within level and between level correlations, we performed

243	multilevel correlation analysis among demographic information, total or summary scores on
244	each scale, and physical functions. Values of >0.2 and <0.4 indicated weak correlation, those
245	of >0.4 and <0.7 indicated moderate correlation, and those of >0.7 and <0.9 indicated strong
246	correlation.

247 3) Causal relationship using MLSEM approach

248 To determine whether the trio of collected data within an individual was a reliable 249 indicators of the respective between level construct, we confirmed the reliability of 250 participants between/within levels by calculating the P values of within-class variance and between-class variance, the intra-class correlations coefficient type 1 (ICC1) and type 2 251 252 (ICC2), and design effect (DEFF) (Bliese, 2000; Shimizu, 2014; Snijders & Bosker, 1999). 253 ICC1 and ICC2 are based on a one-way analysis of variance with random effects. In the 254 present case, the trio of collected data within an individual constitutes the dependent variables 255 and the independent variable lies between level is. ICC1 was calculated to make sure enough 256 between level variance was available to warrant decomposing within level and between level 257 variance (Hoffman & Stawski, 2009; Preacher et al., 2010). ICC2 was calculated to provide 258 an estimate of the reliability of the class-mean rating (Bliese PD. 2000; Shimizu, 2014). 259 DEFF was calculated as a value for correct weighting of the sample size of the group (in this

NOT PEER-REVIEWED

Peer Preprints

260

261 of participants at the between/within levels set the standard values: P values of within-class 262 variance and between-class variance are <0.05, ICC1 >0.2, ICC2 >0.7 (<0.6 may issue an 263 estimator bias), and DEFF >2.0 are desirable (Bliese, 2000; Preacher et al., 2010; Shimizu, 264 2014). 265 The MSEM approach takes advantage of both multilevel modeling (MLM), the statistical model of parameters that vary at more than one level, and SEM, a single variable 266 267 that can be both a predictor and an outcome, features in modeling longitudinal data (Preacher 268 et al., 2010; Shimizu, 2014). The TWOLEVEL option was used in order to model random 269 intercepts and fixed slopes using the multilevel framework (Muthén & Muthén, 2012). Given 270 that a trio data of individuals were used, we employed cluster identifiers to account for 271 dependency among sample participants. The hypothetical model was analyzed using multiple 272 indicator multiple cause (MIMIC) and an MLSEM approach. We used the maximum 273 likelihood with robust standard errors (MLR) with missing data and referred to several fit 274 indices: comparative fit index (CFI), Tucker-Lewis index (TLI), root mean square error of 275 approximation (RMSEA), Akaike's information criterion (AIC), Bayesian information 276 criterion (BIC), and sample size-adjusted BIC. CFI and TLI values greater than 0.9 indicate

study, number of measurements for an individual) for ICC1 (Shimizu, 2014). The reliability

277	the best model fit. For RMSEA, values ≤ 0.05 indicate a close fit, ≤ 0.08 indicate a reasonable
278	fit, and those ≥ 0.1 indicate a poor fit (Hu & Bentler, 1999; MacCallum et al., 1996). For AIC,
279	BIC, and sample size-adjusted BIC as the comparative indices, lower values of these three
280	indices represent better model fit and are used to compare the best fitting model by choosing
281	the model with the smallest value. We estimated the standardized path coefficients of direct
282	effect and indirect effect, each with 95% confidence interval (CI). The adjusted R-square (R^2)
283	is provided based on observation variables in the perceived path, indicating which percentage
284	of the variance in these variables is explained by the combination of the intercept and slope.
285	
286	Results
286 287	Results 1) Participant characteristics
286 287 288	Results 1) Participant characteristics We recruited a total of 284 participants from 9 facilities on the initial occasion. The
286 287 288 289	Results 1) Participant characteristics We recruited a total of 284 participants from 9 facilities on the initial occasion. The final sample consisted of 227 individuals, 109 (48.0%) men and 118 (52.0%) women, and the
286 287 288 289 290	Results 1) Participant characteristics We recruited a total of 284 participants from 9 facilities on the initial occasion. The final sample consisted of 227 individuals, 109 (48.0%) men and 118 (52.0%) women, and the mean age was 77.1 ± 8.6 years on the initial occasion. Individuals who withdraw from this
286 287 288 289 290 291	Results 1) Participant characteristics We recruited a total of 284 participants from 9 facilities on the initial occasion. The final sample consisted of 227 individuals, 109 (48.0%) men and 118 (52.0%) women, and the mean age was 77.1 ± 8.6 years on the initial occasion. Individuals who withdraw from this study or stopped using the facilities due to hospitalization, removal, or death (n = 57) were
286 287 288 289 290 291 292	Results 1) Participant characteristics We recruited a total of 284 participants from 9 facilities on the initial occasion. The final sample consisted of 227 individuals, 109 (48.0%) men and 118 (52.0%) women, and the mean age was 77.1 ± 8.6 years on the initial occasion. Individuals who withdraw from this study or stopped using the facilities due to hospitalization, removal, or death (n = 57) were excluded from the analyses presented in this manuscript (rate of attrition: 20.1%). Details of

294 **2)** Descriptive statistics and test of normality

- Descriptive statistics for total scores or the summary score on each scale and physical functions on each occasion are shown in Table 2. The tests of normality indicated that the total score of SAMR on the second occasion and the summary score on the third occasion held the normalization data. For going out, role expectation, hobby, gait speed, and TUG, high values were indicated in the skewnes and kurtosis with a Poisson distribution. The other variables were found to be non-normal according to the tests of normality; however, there were no extreme deviations in mean, SD, skewnes, and kurtosis.
- **302 3) Multilevel correlation analysis between variables**

303 Multilevel correlation analysis indicated that there were different correlations 304 within level and between level (Table 3). Bivariable correlation within level revealed 305 significant positive correlations among the K-1 scale, SAMR, SOPI, and GSES, and a 306 significant positive correlation between TUG and gait speed. In addition, there was a 307 significant negative correlation between grip strength and TUG. Meanwhile, bivariable 308 correlation between level revealed that there were significant positive correlations among 309 almost all variables without physical functions, and a significant positive correlation between 310 GSES and grip strength. In particular, TUG had a strong positive association with gait speed

311 and a negative association with role expectation and going out.

312 4) Causal relationship using MLSEM approach

313	To begin with the reliability of participants between/within levels, hobby deviated
314	from both the P values of within-class and between-class variance. Although role expectation
315	did not meet the standard values for ICC1 and DEFF, we decided to determine whether role
316	expectation must be excluded in consideration of the result of the MLSEM. The other
317	variables had met the standard ranging (Table 4). Accordingly, direct and indirect effects both
318	within and between levels of the MLSEM approach were simultaneously estimated.
319	Figure 2 demonstrates the results of the MLSEM approach based on the
320	hypothesized model. The fit indices of the hypothesized model without hobby were not an
321	adequate fit level: CFI = 0.742, TLI = 0.420, RMSEA = 0.073, AIC = 31933.48, BIC =
322	32220.59, and adjusted BIC = 32017.39 . In addition, both within level and between level,
323	there were insignificant path coefficient estimates based on the hypothesized model; in
324	particular, physical functions had the most insignificant paths. Therefore, these variables and
325	paths without statistical relationships in either within level or between level were eliminated
326	sequentially and the modified model was run again with the SEM approach in reference to the
327	fit indices. Consequently, the fit indices of the modified model exhibited an adequate fit: CFI

328	= 0.904, TLI = 0.775, RMSEA = 0.064, AIC = 25201.17, BIC = 25389.59, and adjusted BIC
329	= 25256.24 (Figure 3). The direct effects and the indirect effects in the modified model can be
330	seen in Table 5.
331	In the within level results of the modified model, SAMR had statistically significant
332	effects on the K-1 scale, SOPI, and GSES. Moreover, the effect of SOPI on the K-1 scale and
333	the effect of GSES on SOPI were statistically significant. For indirect effects, the sum of the
334	effects of SAMR on the K-1 scale through role and SOPI, and the effect of SAMR on SOPI
335	through GSES were found to be significant. Meanwhile, between level of the modified model,
336	SAMR had statistically significant effects on all variables. SOPI also had statistically
337	significant effects on the K-1 scale, role, and going out. Moreover, the effects of GSES on
338	SOPI, the effect of role on the K-1 scale, and the effect of TUG on going out were statistically
339	significant. For indirect between level effects, the sum of the effects of SAMR on the K-1
340	scale through role and SOPI, and the effect of SAMR on SOPI through GSES were found to
341	be significant.
342	The within level results of the modified model were $R^2 = 0.167$ for the K-1 scale, R^2
343	= 0.096 for SOPI, R^2 = 0.092 for GSES, R^2 = 0.009 for role, R^2 = 0.000 for TUG, and R^2 =

344 0.003 for going out. The between level results of the modified model were $R^2 = 0.521$ for the

K-1 scale, R² = 0.394 for SOPI, R² = 0.177 for GSES, R² = 0.292 for role, R² = 0.044 for
TUG, and R² = 0.130 for going out. **Discussion**

The purpose of this study was to demonstrate the effects of the achievement motive 349 on the purpose in life, social participation, role expectation, self-efficacy, and physical 350 351 function in predicting within-person fluctuations and between-person differences by 352 longitudinal research in community-dwelling elderly people. Accordingly, we hypothesized that the achievement motive and other variables have relationships with direct or indirect 353 354 effects within level and between level. We performed the longitudinal research over six 355 months in the participants. The findings partly supported our hypothesis in the modified 356 model without hobby, grip strength, and gait speed. It was demonstrated that the achievement 357 motive had a significant effect on the purpose in life, social participation, and self-efficacy in both of within-person fluctuations and between-person differences. Especially for the between 358 359 level result, the effect size of the achievement motive was higher than that within level and 360 the achievement motive also had significant effects on role expectation and gait ability as 361 measured by TUG.

362	For the reliability of participants according to P values, ICC1, ICC2, and DEFF, we
363	put role expectation on hold and excluded hobby. Role expectation was applied in the
364	MLSEM approach because there were relevant values through the fit indices and path
365	coefficients of MLSEM. The results was presented that the dataset of this study is seemed
366	appropriate to be treated as a trio nested within participants. In addition, the result of the
367	modified model using the MLSEM approach showed that CFI and RMSEA were good fit
368	statistics, and AIC, BIC, and adjusted BIC were smaller than that of the hypothesized model
369	without hobby. Consequently, we concluded that the modified model was an adequate model
370	in this study.

371 Within level, the higher state of achievement motive in within-person fluctuations 372 had a tendency to get better with the state of the purpose in life, social participation, and 373 self-efficacy. Furthermore, the result presented the slight possibility that the state of social 374 participation and role expectation improved by the achievement motive leads the state of the 375 purpose in life well and that the state of self-efficacy improved by the achievement motive 376 leads the state of social participation well. That is, we suggested that the objective notion, 377 such as a meaning from life's experiences and possessing a sense of intentionality, recognizing engagement in important activities for oneself, and a belief in their capability to 378

379

380	achieve their personal goals.
381	Between level, a stronger achievement motive tended to enhance the purpose in life,
382	social participation, and self-efficacy similar to that observed within level. Moreover, the
383	achievement motive has favorable effects on role expectation and walking ability. This study
384	demonstrated new findings that pursuing client goals to maintain a standard of excellence
385	could improve balance and ability and reduce the risk of falling related to walking as a
386	physical function. Furthermore, the result presented the significant mediators that a better
387	condition of social participation, role expectation, self-efficacy, and walking ability promoted
388	by the achievement motive leads an individual to enhance the purpose in life, going out, and
389	social participation. In other words, the stronger the achievement motive of individuals, the
390	more they tend to increase going out because of improvement in the walking ability in
391	addition to fulfillment of the objective notion.
392	These results demonstrated that rehabilitation support based on establishing and
393	pursuing client goals while maintaining a standard of excellence could promote meaningful

organize and execute actions, would be fulfilled while individuals enhanced their desire to

394 outcomes, such as the purpose in life, social participation, and going out, for

395 community-dwelling elderly people. Although the total score and the summary score of scales

396	were used in the study analysis, the variables and the path coefficients indicated that the
397	achievement motive's affects were consistent with our previous cross-sectional studies (Sano
398	& Kyougoku, 2016a; Sano & Kyougoku, 2016b; Sano & Kyougoku, 2016c; Sano et al., 2015).
399	Therefore, we concluded that the causal relationship of the achievement motive in elderly
400	persons having favorable effects on the purpose in life, social participation, role expectation,
401	and self-efficacy has been established by this longitudinal design research that was conducted
402	over a period of six months. In addition, it was revealed that there are some different effects
403	from within level and between level. For within-person fluctuations, it is considered that a
404	long period is necessary for changes in objective outcomes, such as physical function, regular
405	habits, and role accomplishment. In sum, we understood that the effects of the achievement
406	motive could strongly affect between-person differences more than within-person fluctuations
407	in as short a period as six months.
408	

409 Limitations and future research directions

410 Regarding the content of our study, there are several limitations. First, the sampling
411 in this study only consisted of persons using adult day services in non-random selection areas.
412 In addition, because it was impossible to carry out the same timing for all three occasions

413	with the same rater, measurement errors due to the point of data collection and the rater in
414	physical function testing should be noted. However, any rater bias we dealt with by using and
415	sharing standardized indices of measurement methods such as grip strength, gait speed, and
416	TUG (Otsuka, 1994; Podsiadlo & Richardson, 1991; Tozato, 2003). Given these
417	considerations, it would be useful in future studies to establish a program for raising the
418	achievement motive of individuals and to examine the effect of particular interventions
419	selected on the basis of this and of previous study findings.
420	
421	Acknowledgments
422	We are grateful to the participants the research assistants at the cooperating
423	facilities, and our colleagues in the laboratory for their support of this study. In addition, we
424	thank our families who supported us.
425	
426	References
427	Bliese PD. 2000. Within-group agreement, non-independence, and reliability: Implications for
428	data aggregation and analysis. In: Klein KJ, Kozlowski SW, Eds. Multilevel theory,
429	research, and methods in organizations: Foundations, extensions, and new directions.
430	San Francisco: Jossey-Bass, 349-381.
431	Cabinet Office. 2014. Annual Report on the Aging Society: 2014 (Summary). Available at
432	http://www8.cao.go.jp/kourei/english/annualreport/2014/2014pdf_e.html (accessed 7
433	February 2017).
434	Dean CM, Richards CL, Malouin F. 2001. Walking speed over 10 metres overestimates
	PeerJ Preprints https://doi.org/10.7287/peerj.preprints.2801v1 CC BY 4.0 Open Access rec: 12 Feb 2017, publ: 12 Feb 2017

Pe	er Preprints NOT PEER-REVIEWED
435	locomotor capacity after stroke. Clinical Rehabilitation 15:415-421 DOI
436	10.1191/026921501678310216.
437	Garatachea N, Molinero O, Martínez GR, Jiménez JR, González GJ, Márquez S. 2009.
438	Feelings of well being in elderly people: relationship to physical activity and physical
439	function. Archives of Gerontology and Geriatrics 48:306-12 DOI
440	http://dx.doi.org/10.1016/j.archger.2008.02.010.
441	Hoffman L, Stawski RS. 2009. Persons as contexts: Evaluating between-person and
442	within-person effects in longitudinal analysis. Research in Human Development
443	6:97-120 DOI 10.1080/15427600902911189.
444	Horino M. 1987. Analysis and reconsideration of the concept of achievement motive. The
445	Japanese Journal of Educational Psychology 35:148-154 DOI
446	http://doi.org/10.5926/jjep1953.35.2_148.
447	Horino M, Mori K. 1991. The effects of achievement motivation on relationships between
448	depression and social support. The Japanese journal of educational psychology
449	39:308-315.
450	Hu L, Bentler PM. 1999. Cutoff criteria for fit indexes in covariance structure analysis:
451	Conventional criteria versus new alternatives. Structural Equation Modeling 6:1-55.
452	Imai T. 2013. Effects of occupational participation on the concept of "IKIGAI": a six- month
453	follow-up survey for healthy middle-aged and elderly in Japan. The Journal of
454	Japanese Occupational Therapy Association 32:142-150.
455	Imai T, Saito S. 2010. Measuring the quality of participation in activities in everyday life:
456	developing the self-completed occupational performance index (SOPI). The Journal of
457	Japanese Occupational Therapy Association 29:317-325.
458	Imai T, Saito S. 2011. Effects of participating in meaningful occupation on HR-QOL: a
459	six-month follow-up survey on healthy elderly and middle-aged adults in Japan. The
460	Journal of Japanese Occupational Therapy Association 30:42-51.
461	Kamegaya T, Yamaguchi H. 2016. Effects of a 12-Week Municipal Dementia Prevention
462	Program on Cognitive/Motor Functions among the Community-Dwelling Elderly.
463	Geriatrics 1:18 DOI 10.3390/geriatrics1030018.
464	Kielhofner G. 2007. Model of human occupation: theory and application. 4th edition.
465	Philadelphia: Lippincott Williams & Wilkins.
466	KondoT. 2007. IKIGAI measuring: what is IKIGAI? Kyoto: Nakanishiya-Syuppan.
467	Lampton CC, Lambert ME, Yost R. 1993. The effects of psychological factors in sports
468	medicine rehabilitation adherence. Journal of Sports Medicine and Physical Finess
469	33:292-299.
	PeerJ Preprints https://doi.org/10.7287/peerj.preprints.2801v1 CC BY 4.0 Open Access rec: 12 Feb 2017, publ: 12 Feb 2077

Peer Preprints NOT PEER-REVIEWED 470 MacCallum R, Browne M, Sugawara H. 1996. Power analysis and determination of sample 471 size for covariance structure modeling. Psychological Methods 1:130-149. 472 Martin M, Grünendahl M, Martin P. 2001. Age differences in stress, social resources, and 473 well-being in middle and older age. Journal of Gerontology: Psychological Sciences 474 56:214-22 DOI https://doi.org/10.1093/geronb/56.4.P214. 475 Ministry of Health, Labour and Welfare. 2012. Long-term care prevention project manual 476 edition Japanese). 1-13. Available revised (in at 477 http://www.mhlw.go.jp/topics/2009/05/dl/tp0501-1 1.pdf (accessed 7 February 2017). 478 Miyata S. 2015. Realities and challenges of life phase rehabilitation: from the point of view of 479 the visit rehabilitation services. Sogo Rihabiriteshon 43:809-816. 480 Muthén LK, Muthén BO. 2012. Mplus User's Guide: Statistical Analysis With Latent 481 Variables (7th Edition). Los Angeles, CA: Muthén & Muthén. 482 Otsuka T, Domen K, Liu M, Sonoda S, Saitoh E, Tsubahara A, Kimura A, Chino N. 1994. 483 Grip strength of healthy elderly individuals method of measurement and mean 484 strength. The Japanese Journal of Rehabilitation Medicine 31:731-735. 485 Podsiadlo D, Richardson S. 1991. The timed "Up & Go": a test of basic functional mobility 486 for frail elderly persons. Journal of the American Geriatrics Society 39: 142-148. 487 Preacher KJ, Zyphur MJ, Zhang Z. 2010. A general multilevel SEM framework for assessing 488 multilevel mediation. Psychological Methods 15:209-233 DOI 10.1037/a0020141. 489 Resnick B. 1996. Motivation in geriatric rehabilitation. Image-the Journal of Nursing 490 Scholarship 28:41-45 DOI 10.1111/j.1547-5069.1996.tb01176.x. 491 Resnick B, Magaziner J, Orwig D, Zimmerman S. 2002. Evaluating the components of the 492 exercise plus program: rationale, theory and implementation. Health Education 493 Research 17:648-658 DOI 10.1093/her/17.5.648. 494 Sakano Y. 1989. Verification of validity of Gemeral Self-Efficacy Scale(GSES). Waseda

495 journal of human sciences 2:91-98.

- 496 Sano N. 2013. Factor structure of the achievement motive for the patients with the
 497 orthopedics disease in rehabilitation. Program of the 55th annual Meeting of The
 498 Japanese Association of Educational Psychology. p 267.
- Sano N, Kyougoku M. 2015. Examination of structural validity of a scale for achievement
 motive in rehabilitation (SAMR) for community-dwelling elderly persons. Sogo
 Rehabilitation 43:341-347.
- Sano N, Kyougoku M. 2016a. An analysis of structural relationship among achievement
 motive on social participation, purpose in life, and role expectations among
 community dwelling elderly attending day services. PeerJ 4:e1655 DOI

Pee	Preprints NOT PEER-REVIEWE
505	https://doi.org/10.7717/peerj.1655.
506	Sano N, Kyougoku M. 2016b. The psychometric properties of a Scale for Achievement
507	Motive in Rehabilitation, and the effects of achievement motive on self-efficacy,
508	hopelessness, and economic poverty in a cross-sectional study. PeerJ Preprints DOI
509	10.7287/peerj.preprints.2459v1/supp-1.
510	Sano N, Kyougoku M. 2016c. The influence of occupational participation on going outside
511	and stress response: A cross-sectional study on community-dwelling elderly in a
512	day-service center. Japanese occupational therapy research 35:229-238.
513	Sano N, Kyougoku M, Teraoka M. 2015. Effect of achievement motive for
514	community-dwelling elderly persons on social participation and HR-QOL. Sogo
515	Rehabilitaion 43:765-772.
516	Sano N, Kyougoku M, Yabuwaki K. 2014. Development of a scale for achievement motive in
517	rehabilitation (SAMR). Sogo Rehabilitation 42:667-674.
518	Shimada H, Furuna T, Obuchi S, Sugiura M, Yoshida H, Kim H, Yoshida Y, Nishizawa S,
519	Suzuki T. 2006. Timed Up & Go Test is a Useful Assessment Tool for Community
520	Health in Elderly People. The Journal of Japanese Physical Therapy Association
521	33:105-111.
522	Shimizu H. 2014. Multilevel Modelings for individual and Group Data. Kyoto:
523	Nakanishiya-Shuppan.
524	Shumway-Cook A, Brauer S, Woollacott M. 2000. Predicting the probability for falls in
525	community-dwelling older adults using the Timed Up & Go Test. Physical Therapy
526	80:896-903.
527	Snijders TAB, Bosker RJ. 1999. Multilevel analysis: An introduction to basic and advanced
528	multilevel modeling. London: Sage.
529	Suita S, Tanabe T, Kudo A, Miyagawa T, Hayashi M, Uchida M, Kakamu T, Yamaguchi N,
530	Kobayashi-Miura M, Amano H, Seki R, Fujita Y. 2011. Epidemiologic Studies on
531	Exercise, Self-perception, and Social Interactions by the Elderly: Characterization of
532	Nonparticipating Individuals in the Care Prevention Project. Shimane journal of
533	medical science 28:41-50.
534	Takeuchi H, Taki Y, Nouchi R, Sekiguchi A, Kotozaki Y, Miyauchi CM, Yokoyama R,
535	Iizuka K, Hashizume H, Nakagawa S, Kunitoki K, Sassa Y, Kawashima R. 2014.
536	Regional gray matter density is associated with achievement motivation: evidence
537	from voxel-based morphometry. Brain Struct Funct 219:71-83 DOI
538	10.1007/s00429-012-0485-3.
539	Tozato F, Nagasaki H, Daikoku H. 2003. An evaluation of walking ability: The 10m-walk test.
	PeerJ Preprints https://doi.org/10.7287/peerj.preprints.2801v1 CC BY 4.0 Open Access rec: 12 Feb 2017, publ: 12 Feb 2017

Pe	Preprints NOT PEER-REVIEWED
540	The Journal of Japanese Association of Occupational Therapists 22:471-476.
541	Tsuruta S. 2015. Future directions of the long-term care prevention. Sogo Rihabiriteshon
542	43:803-808.
543	Vanetzian E. 1997. Learning readiness for patient teaching in stroke rehabilitation. Jour- nal
544	of Advanced Nursing 26:589-594 DOI 10.1046/j.1365-2648.1997.t01-20-00999.x.
545	Wada Y, Sakuraba K, Kubota A. 2015. Effect of the long-term care prevention project on the
546	motor functions and daily life activities of the elderly. Journal of Physical Therapy
547	Science 27:199-203 DOI 10.1589/jpts.27.199.
548	

NOT PEER-REVIEWED

549

- 550 Figure 1. Hypothesized model
- 551 Note.
- 552 A rectangle represents an observed variable.

553

556 Note.

558 = 32017.39.

559	The values written around the arrows are indicated standardized path coefficients estimated
560	by MLSEM approach. R^2 is indicated the adjusted R-square and is used as the coefficient of
561	determination. The error terms are omitted to make the figure simple. The paths coefficients
562	on underline are statistically significant at the 10% level; the paths on double line are
563	statistically significant at the 5% level.

564

NOT PEER-REVIEWED

565

566 Figure 3. Modified model using MLSEM approach

567 Note.

```
568 CFI = 0.904, TLI = 0.775, RMSEA = 0.064, AIC = 25201.17, BIC = 25389.59, adjusted BIC
```

- 569 = 25256.24.
- 570
- 571
- 572

	Class	n=227	%
Gender	Men	109	48.0%
	Women	118	52.0%
Age: mean±S	SD (range)	77.1±8.6	(48-95)
Disease	Orthopedic	84	37.0%
	Neurological	84	37.0%
	Heart	3	1.3%
	Others	25	11.0%
	Unknown	31	13.7%
Care level	Care 5	0	0.0%
	Care 4	4	1.8%
	Care 3	17	7.5%
	Care 2	57	25.1%
	Care 1	58	25.6%
	Support 2	52	22.9%
	Support 1	37	16.3%
	Unknown	2	0.9%

573 **Table 1. Participant characteristics (at initial occasion)**

574 Note.

575 It represents the number of answer and response frequencies (%) for each heading, it

576 represents mean, Standard Deviation (SD), and answer range in case of age.

577

578

Table 2. Descriptive statistics (at the three occasion)

	Initial occasion				Second occasion					Third occasion					
	Mean	SD	Skewnes	Kurtosis	Normality	Mean	SD	Skewnes	Kurtosis	Normality	Mean	SD	Skewnes	Kurtosis	Normality
SAMR	52.54	10.00	-0.60	0.93	0.00	51.22	9.33	-0.23	-0.05	0. 20	51.25	9.96	-0.71	1.40	0. 01
K−1 scale	21.43	7.28	-0.62	-0.48	0.00	21.43	7.43	-0.62	-0.39	0.00	21.59	7.32	-0.64	-0.25	0.00
SOPI	47.48	26.00	0.10	-0.64	0.00	47.27	26.31	-0.02	-0.85	0. 02	48.66	25.44	-0.06	-0.66	0.08
GSES	8.56	4.17	-0.10	-0.97	0.00	8.11	4.16	-0.07	-0.77	0. 02	8.30	4.38	-0.09	-1.01	0.00
Going out	4.10	3.22	3.44	21.46	0.00	3.65	2.68	2.02	8.18	0.00	3.88	3.00	1.71	4.60	0.00
Role	1.56	1.00	1.71	4.55	0.00	1.50	0.97	1.41	2.17	0.00	1.55	1.07	1.73	3.71	0.00
Hobby	1.47	1.29	2.37	13.59	0.00	1.67	2.18	9.86	127.17	0.00	1.76	3.46	12.13	168.14	0.00
Grip	22.30	7.96	0.74	0.64	0.00	22.56	7.84	0.69	0.10	0.00	22. 57	8.01	0.67	0. 24	0.00
Gait	12.17	7.95	3.38	14.68	0.00	11.96	7.73	3.29	14.13	0.00	13. 51	8.98	3.65	19.60	0.00
TUG	13.27	7.72	2.63	9.42	0.00	13.44	8.69	3.04	12.38	0.00	11.93	7. 70	3.83	20. 01	0.00

Note.

SD, Standard Deviation; Discrimination, SAMR; Total score of scale for achievement motive in rehabilitation, K-1 scale; Total score of K-1 scale for

the feeling that life is worth living among the aged, SOPI; Summary score of self-completed occupational index, GSES; Total score of general self-efficacy scale, Grip; Grip strength, Gait; Gait speed, TUG; Timed up & go.

	Roles	Going	K-1	SAMR	SOPI	GSES	Grip	TUG	Gait
Roles	-	.135 **	.057	.084 +	.093 +	.120 *	038	042	062
Going	.386 **	-	.051	.041	007	.044	.002	038	.045
K-1	.615 **	.275 **	-	.371 **	.249 **	.329 **	017	015	.054
SAMR	.467 **	.215 *	.618 **	-	.229 **	.295 **	018	.011	.013
SOPI	.453 **	.318 **	.590 **	.590 **	-	.263 **	.004	049	.039
GSES	.206 *	.111	.362 **	.424 **	.413 **	-	.042	033	044
Grip	.154 *	.138 +	.095	.159 *	.053	.223 **	_	393 **	108 *
TUG	257 **	220 **	160 *	187 *	191 *	.080	.014	-	.327 **
Gait	231 *	193 *	158 *	176 *	193 *	.075	001	.881 **	-

Table 3. Multilevel Correlation analysis

Note.

Values for the within level are above the diagonal; values for the between level are below the

diagonal.

 $p^+ < .10, p^* < .05, p^{**} < .01.$

Other abbreviations are similar to Table 2.

	P value (Within)	P value (Between)	ICC1	ICC2	DEFF
Roles	0.000	0.000	0.346	0.613	1.692
Going	0.000	0.000	0.508	0.756	2.016
Hobby	0.197	0.169	0.437	0.700	1.874
K-1	0.000	0.000	0.763	0.906	2.526
SAMR	0.000	0.000	0.621	0.831	2.242
SOPI	0.000	0.000	0.604	0.821	2.208
GSES	0.000	0.000	0.729	0.890	2.458
Grip	0.000	0.000	0.934	0.977	2.868
TUG	0.000	0.001	0.943	0.980	2.886
Gait	0.000	0.000	0.954	0.984	2.908

Table 4. The reliability of participants at the between/within levels

Notes.

P value (Within); the P values of within-class variance, P value (Between); the P values of between-class variance, ICC1; the intra-class correlations coefficient type 1, ICC2; the intra-class correlations coefficient type 2 (ICC2), DEFF; design effect.

The other abbreviations are similar to Table 2.

Table 5. Standardized estimates, standard errors, P value, and 95% IC for the MLSEM

approach

Within level						Between level					
Path				95%	IC				95%	IC	
	Estimate	SE	P value	Lower	Upper	Estimate	SE	P value	Lower	Upper	
Direct effects											
SAMR	On										
K-1 Scale	0.312	0.058	0.000	0.197	0.426	0.300	0.093	0.001	0.118	0.483	
SOPI	0.183	0.050	0.001	0.085	0.282	0.524	0.074	0.000	0.378	0.669	
GSES	0.303	0.054	0.000	0.197	0.408	0.421	0.065	0.000	0.293	0.549	
Role	0.061	0.042	0.145	-0.021	0.144	0.299	0.097	0.002	0.108	0.489	
TUG	0.011	0.058	0.854	-0.103	0.124	-0.210	0.059	0.000	-0.326	-0.095	
SOPI	On										
K-1 Scale	0.195	0.059	0.001	0.079	0.311	0.223	0.100	0.025	0.028	0.419	
Role	0.062	0.046	0.176	-0.028	0.152	0.304	0.102	0.003	0.105	0.504	
Going	-0.015	0.052	0.767	-0.117	0.087	0.297	0.089	0.001	0.122	0.472	
GSES	On										
SOPI	0.201	0.049	0.000	0.105	0.297	0.190	0.072	0.008	0.049	0.332	
Role	On										
K-1 Scale	0.022	0.045	0.622	-0.066	0.111	0.350	0.073	0.000	0.208	0.492	
TUG	On										
Going	-0.048	0.037	0.191	-0.120	0.024	-0.170	0.055	0.002	-0.278	-0.062	
K-1 Scale	With										
Going	0.035	0.041	0.390	-0.045	0.115	0.048	0.077	0.528	-0.102	0.198	
Indirect effects											
SAMR	On										
K-1 Scale via	SOPI										
	0.036	0.014	0.010	0.009	0.063	0.117	0.057	0.038	0.006	0.228	
K-1 Scale via	Role										
	0.001	0.003	0.644	-0.004	0.007	0.105	0.040	0.009	0.026	0.183	
Sum	0.037	0.014	0.009	0.009	0.065	0.222	0.063	0.000	0.098	0.346	
SAMR	On										

Pe	er J Pre	eprints			N	OT PE	ER-RE	VIEWE	E			
	Going via SO	PI										
		-0.003	0.009	0.765	-0.021	0.016	0.156	0.050	0.002	0.058	0.254	
	Going via TU	JG										
		-0.001	0.003	0.850	-0.006	0.005	0.036	0.016	0.024	0.005	0.067	
	Sum	-0.003	0.010	0.735	-0.023	0.016	0.191	0.050	0.000	0.093	0.290	
	SAMR	On										
	SOPI via GSI	ES										
		0.061	0.019	0.002	0.023	0.098	0.080	0.033	0.016	0.015	0.145	

Note.

SE; Standard Error, other abbreviations are similar to Table 2.

"On" defines regression relationships; "With" defines correlation relationships.