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Abstract: Changing demands, software evolution, and bug fixes require the possibility to
update applications as well as system software of embedded devices. Systems
that perform updates of resource-constrained nodes are available, but most ap-
proaches require a complete restart of the node after installing or updating soft-
ware. Restarting the node results in the loss of important system state, such as
routing information or sensor calibration values. Rebuilding this information
requires time and energy.

In this paper we present an online state-preserving update system for resource-
constrained nodes. A remote incremental linking approach is used to generate
node-specific and execution-state dependent code. Compiler-generated symbol,
relocation, and debugging information is used to determine whether a dynamic
update of the running system is possible and how it can be achieved.
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1. INTRODUCTION
The number of microcontrollers used in today’s embedded systems is in-

creasing. In more complex systems, a network of several different microcon-
trollers is used, thereby forming a heterogeneous system of larger and smaller
nodes. Especially, we have to face distributed embedded systems with a mix-
ture of very resource-constrained devices on the one hand and more powerful
devices on the other hand.

An example of such a network is a sensor network [1], a large number of
small, non-expensive, and very resource-constrained nodes equipped with sen-
sors to collect environmental data and able to communicate. Usually the sensor
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nodes are supported and managed by a larger, more powerful node, the base
station.

Once initially set up, selective software updates will become necessary due
to bug fixes, improved functions, extensions, and parameter changes. For ex-
ample, if the calibration process did not deliver a set of parameters that yields
the desired results, software modifications become necessary. Replacing parts,
such as the sampling or pre-processing algorithm, or adding additional soft-
ware to use another sensor will be the consequence. Furthermore, with an es-
timated lifetime of several years, a future-proof system must be able to replace
any part of the system such as the scheduling system or the communication
protocol.

When updating the software of a node it is desirable to do this with as lit-
tle impact as possible. Considering the limited resources of sensor nodes, the
update process itself must not use a lot of resources. Furthermore, different up-
dates affect different parts of the system and updates of the application should
not affect system services. It is not acceptable that the addition of a sensor
driver results in the restart of the complete node. When restarting the node,
state information of applications and the operating system library is lost. Mul-
tihop communication protocols, for example, store routing information to rep-
resent the network topology. After a restart such information is lost and has to
be rebuilt. The routing of the network has to be redetermined, which does not
only affect the local node but the communication of other nodes, too.

Our goal is to update sensor nodes dynamically thereby preserving appli-
cation and system state. During the update process the nodes are stopped but
no restart is needed after the update is complete. The advantage is a consider-
able shorter off-line time and a better performance resulting from a very quick
recovery after the update because the system state does not have to be rebuilt
unnecessarily.

We describe an update infrastructure that allows dynamic reprogramming
of nodes based on the binary code of the application. Most parts of our update
system are located at a more powerful node, the base station for example. We
use compiler-generated information, such as symbol tables, relocation tables,
and debugging information, to identify situations in which a safe update is
possible. In rare cases, the execution state might prevent a dynamic update.
Such situations are signalled to the administrator so that additional actions can
be taken, such as a redesign of the application to increase the updatability.

The following section gives an overview about related approaches for up-
dating nodes in sensor networks. Section3 outlines the architecture of our
system. After that the object file analysis is described followed by section5
presenting the procedure for updating or replacing code. Section6 concludes
the paper and gives a short overview of the current prototype.
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2. RELATED WORK
There are several approaches for dynamically updating software. In the

following we will discuss some existing approaches for updating sensor nodes.
TinyOS [7] provides XNP [2, 10] to update a sensor node. This approach

only supports very coarse-grained updates because the complete memory im-
age is replaced. It has a huge impact if only some parameters are to be adjusted.
Deluge [8] provides similar possibilities and uses Trickle [13] as multihop dis-
semination protocol to distribute the update to multiple sensor nodes. Both
approaches need to restart the sensor node, because a new memory image is
installed.

FlexCup [15] is the update system of TinyCubus [16], a framework to con-
figure nodes in a role-based way. Components are transmitted as relocatable
binary images including symbol tables and relocation information. A linker
component on each node integrates the new components into one image. The
system is restarted after the update to eliminate dangling pointers. Our ap-
proach does not need the linker component on each node because that part of
the process is performed remotely.

Koshy and Pandey [11] present an approach similar to ours. They mod-
ify the development toolchain to create an incremental linker that is used to
prepare the updated code on the base station. Thus, they can control where
modified functions are to be placed on the node and reduce modifications re-
sulting from moved code. They do not consider the current state of the system
and perform a restart after the updated code is written into flash memory.

There are projects that support updating of a running system. To find all ref-
erences to the code they often use an indirection layer to access the updatable
code. One example is SOS [5], an operating system for sensor nodes that is
built of modules. Modules can be updated, removed, and replaced at run time.
The modules are transmitted and installed in a relocatable binary image for-
mat. Module code is position-independent by using only relative jumps, thus
limiting the maximum size of a module to 4 Kbytes, the maximum distance
of relative jumps on the target platform, the AVR ATmega128. Furthermore,
references to functions or data outside of the module are implemented via an
indirection table or are not allowed, respectively. Contiki [3] works similar
and also provides a framework for dynamically loading libraries. The libraries
contain relocation information that enables the installation of the code. Access
to the libraries is provided indirectly via stubs. Our approach does not rely
on an indirection table; we identify and modify the references directly. With
this approach, we can even update code of the operating system library or the
kernel.
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3. ARCHITECTURE
To achieve a minimal update infrastructure on the resource-constrained node,

most parts of the update preparations are executed by a remote node. That
node is called themanagerand is usually more powerful and equipped with
several megabytes of memory. The manager node is responsible for updating
and managing the software installed on the resource-limited nodes (Fig.1).
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Figure 1. Duties and responsibilities of themanager.

As we will discuss in section5 some situations preserve the automatic up-
date of the running system. The information automatically extracted is not suf-
ficient to decide whether the update of the running system can be performed. In
these cases the administrator, who runs and supervises the system, is informed.
He can the take the decision or use the information to redesign the application
in a way that the manager can decide the situation automatically the next time.

Figure2 shows a schematic overview of the manager node. The next para-
graphs give an overview about the most important elements.

3.1 Repository Manager
Therepository manageris responsible for managing and analysing the code.

The code is provided as binary object files. Software that is already installed
and currently running on a sensor node is called the initial image of a node. The
repository manager determines which functions, more precisely which sym-
bols, are available in the compiled and linked ELF [22] object file of the initial
image. Software that is to be updated or installed on a node has to be provided
asrelocatableELF object files.

TheELFExtractorloads these binary files and analyzes the contents of each
input file to identify individual functions and data objects. This results in a
fine-grained modularization of the application. After that the repository man-
ager extracts the dependencies between the identified objects from the reloca-
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Figure 2. Architecture of the manager node.

tion information and builds the dependency graph to determine which data is
needed by a function and which other functions are called. More details about
the modularization process are given in section4.

When the administrator changes a function the system identifies which func-
tions and data in the dependency graph are affected and where these parts are
installed in the network. From this analysis a set of differences for each node
can be calculated. This set of changed functions and their dependencies present
the basis of semi-automatic policies that are used to determine whether the up-
date operation can be performed. In case of conflicts the administrator gets
involved to control the update operation. This is addressed in detail in sec-
tion 5.

3.2 Image Manager and Memory Manager
The image managercreates and manages a memory image model that rep-

resents the usage of the memory in the device. At first this memory model is
initialized with the initial state of the node. The model is then used for keeping
track of the currently installed software layout. Based on this information the
memory manager, a part of the cross linker, determines a location where to
put modified code on the node. For example, an updated function should be
located at the same position as the original function to minimize the number
of references that need to be updated. The virtual image includes a list of ap-
plication modules that are currently installed on the node including their exact
position.
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The image manager also records changes the linker performs to update the
application. Based on this information it calculates a change set after the new
functions were linked into the virtual image. This set contains the differences
for each updated function and the code of all new functions. Deleted functions
are not in the change set. The system ensures that these functions are not used
anymore and the memory manager reuses their space to store new functions.
The changes can then be transmitted to the node in form of edit commands
as they are generated by common diff algorithms, such as UNIX diff [ 9] or
Xdelta [14].

3.3 Bootloader
A small bootloader resides on each node and is able to receive and process

commands from the manager. Its main task is installing new code but it also
provides the manager with essential information about the current state of the
node. As described in section5 the current state influences whether an update
of the running system is possible or not.

When a sensor node receives an edit command, the application transfers
control to the bootloader which either extracts the requested data or modifies
the SRAM and flash memory of the sensor node.

The actual transfer of code blocks can be done via several protocols. Ei-
ther direct single-hop communication or more complex multihop protocols like
Trickle [13] or MOAP [20] are an option.

4. MODULARISATION AND DEPENDENCY
ANALYSIS

Functions and data objects are identified by analysing the relocatable ELF
object files. The analysis is solely based on the information provided in this
ELF files. The developer does not need to use special constructs or annotations
to support the analysis.

ELF files are organized in sections. Some sections contain symbol tables
and relocation tables, other sections contain the relocatable binary data. A
simple example is shown in figure3. To determine the dependencies, we use
the symbol and relocation information an ELF object file provides. For each
relocation the position inside the associated binary section is given at which
the final address of a symbol should be inserted. The final address of a symbol
is resolved by the linker as soon as the location of the associated section inside
the target’s address space is determined [12].

To extract a function we look at the symbols associated with the.text
section. These symbols give us the name, the start offset, and the size of the
code. Thus we know where each function starts and how much space it allo-
cates. To determine the dependencies of a function we take advantage of the
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(a) source code (b) ELF file contents

Figure 3. Example of the data contained in an ELF file and its relationship

relocation table. Each relocation that affects the code of the function represents
a dependency.

We instruct the compiler to place each function in a separate section in the
object file. This way we ensure that each function is visible and each depen-
dency is represented by a relocation embedded in the ELF file. Otherwise calls
of local (static ) functions might not be visible in the relocation table. In
the example in figure3 both functions are in the same section. Thus the com-
piler knows the distance between the two functions and the call fromfoo to
hello could be done via a relative call without a relocation entry. Ifhello
is additionally static, the compiler might even suppress the symbol.

We do not necessarily have to apply the same approach for the data objects
of a program, because they are never placed in the same section as the func-
tions. Thus, the symbols, even of local data, are available because the compiler
needs them to insert references to data. Nevertheless, we instruct the compiler
to generate separate sections because this makes it easier to identify each single
data object. Otherwise the compiler creates one symbol for several local vari-
ables and just uses different addends and a platform-specific analysis would be
necessary to separate such data objects.

5. DYNAMIC CODE UPDATE
Replacing or updating code in a running system requires knowledge about

all references to the old code and their substitution with references to the new
code. We also have to adjust the target addresses of jumps if a function is
moved to another address. We further have to take special care if the function
is modified while it is used by a thread of control. An overview of problems
and possible solutions when updating software dynamically is given in [6].
Here we address three problem classes:
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references to a function as it occurs in function calls

active functions that are currently executed by the target

functions on the call stack (the function called a subfunction that is cur-
rently active)

update of global variables

In the following subsections we examine and discuss these problems.

5.1 References to Functions
The first question we have to address is whether the updated function starts

at the same address as the old one. If the new code has the same size or is
smaller than the original function it fits into the old space and can start at
the same address. This is the preferable situation because we do not need
to change any references. To allow even larger updates fit into the space of
a function the memory manager may allocate extra space [18] when initially
placing a function. In resource-constrained environments this approach has to
be applied carefully, because the additional space is wasted as long as it is not
used by a replaced function.

If the modified function is larger and does not fit into the space of the old
function it has to be installed at a different location. Then we have to identify
all references to this function and update them.

References to the start of a function are used in conjunction with calls. Or-
dinary function calls can be detected by the use of symbol and relocation infor-
mation. The relocation table for a function that calls another function contains
an entry specifying the location where the address of the target function must
be inserted (fig.4). We use this information to find and update the reference to
the function.

Figure 4. The relocation information shows thatfoo needshello . If we updatehello
and thereby move it to an new position we need to modifyfoo as well.

.
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Before patching the location with the new address, we have to determine
how the address is used. It may either be used in a call operation or it may be
stored in a variable to do an indirect call at a later time. We can easily patch
the call operations with the new address. In all other cases it can not be exactly
determined when and by which function the address will be used. In the worst
case the address of the function is stored in a global variable for use by other
functions. A combined code and data flow analysis could be able to detect this
case but we do not think that the cost for this highly architecture-dependant
operation is justified.

Our approach is to identify whether there is enough information to correctly
find and patch all references. As a consequence we cannot patch calls via
function pointers and, thus, forbid the use of function pointers, at least for
functions that should be updated. Nevertheless, function pointers are allowed
in well-known code, such as interrupt vector tables and the operating system
scheduler. A system-specific layer is used to identify code and data references
in this code.

This is not a strong limitation as function pointers are very rarely used in em-
bedded applications1. Furthermore, function pointers are an additional source
of errors especially for inexperienced programmers. For the same reason other
programming paradigms for embedded systems, such as the Misra C rules [17],
forbid the use of function pointers at all.

If our system detects the address of the updated function in any other than a
call operation it indicates an insecure situation to the administrator who has to
decide whether the function should be updated nevertheless.

5.2 Active Function
Before actually updating a function we have to make sure that it is not cur-

rently in use. The consequences of such an update are unpredictable. A func-
tion is in use if it is interrupted by the update process, as shown in figure5, or
if a thread was executing the function before it was suspended. In some event-
driven systems, such as TinyOS [7], this situation does not occur as they do
not offer a thread concept. Just event handlers can interrupt the normal control
flow. Thus the update process gets scheduled as a task when no other task is
active. Other systems, such as Contiki [3] or Nut/OS [4] offer a thread concept.

To identify active functions, the manager asks the bootloader at which ad-
dress the system would resume operation when exiting the loader. If the sys-
tem supports multiple threads the bootloader returns the current position of all

1An analysis of typical TinyOS applications showed that usually no function pointers are used. Nevertheless
pointers to functions are used by the TinyOS scheduler and implicitly in the interrupt vector table.
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Figure 5. A function is interrupted and updated while it is active. Resuming the execution
at the interrupted address may result in a crash or unpredictable behaviour.

threads. The update manager checks whether the update would affect one of
these addresses and indicates an update problem.

A simple but promising approach to overcome this situation is to resume
the system and retry the update a few moments later. If we are updating a
sensor reading function it is likely that the function is not in use the next time
we try an update. To avoid the periodic check, we can improve this approach
by modifying the return address in a way that the bootloader is called as soon
as the function returns. We then resume normal operation and wait until the
function returns into the bootloader. If the function is still in use after a timeout
or several retries, we inform the administrator about the failed update. Then he
can authorize a reset after the update.

The success of this approach depends on the modularity of the application.
Sensor net applications developed with some sort of framework, like TinyOS,
are often designed very modular. Furthermore we inform the administrator
about the reasons of a failed update. He can use this information to improve
the application’s modularity with regard to the next update.

5.3 Functions on the Call Stack
Beside functions that are directly in use by a thread, functions may also be

on the call stack. That is, the function that is to be replaced called another
function and this function is currently active. When the called function returns
it uses the return address on the stack to resume operation in the caller. If we
replace the code of the caller this return address might become invalid. Figure
6 shows an example.foo callshello , this may be a call from a sensor cali-
bration function to the function that actually gets the sensor readings. During
the execution ofhello the functionfoo is updated.hello is not influenced
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directly but the code offoo is modified and the return address that is used to
resumefoo afterhello returns may be incorrect or invalid.

Figure 6. A function on the call stack is updated. When the flow of control returns to the
updated function the resume address may be invalid.

We do not want to forbid the update of such functions in general, because
minor changes, such as bug fixes, may alter the addresses but not the function-
ality of the code. Thus, updates are allowed if they do not alter the structure of
the function. The new code must have the same calls to the same subfunctions
as the old code and the same local variables. In our example above, we can
fix a bug in the calibration algorithmfoo as long as we still call the reading
function hello and do not insert or delete local variables. We then assume
that the return addressA of the n-th call to a specific function from the old code
can be replaced with the equivalent return addressA′ in the new code.

To accomplish this we have to know the stack layout and position. With
this information we can walk through the stack and detect each function on
the stack. The return addresses can then be adapted. The information how
to obtain the stacks is encoded in the bootloader. The manager transfers a
mapping from old to new return addresses if the loader requests it.

The debug information can give us information about the local variables of
a function. Thus we can perform an offline check whether new local variables
were added or removed.

If the structure of the function is modified we can retry the update sev-
eral times. The function is possibly not in use anymore at a future retry. But
the deeper the function is on the call stack the smaller is the probability that
the function is not in use. If the retries are not successful, we inform the
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administrator about the failed update. Again, he can authorize a reset and use
this information for the development of future versions of the application.

5.4 Update of Variables
Update of local variables is not supported as mentioned in the previous sec-

tions. Updates of global variables are allowed under certain conditions. If a
function references a new global variable, this variable is simply allocated on
the node. In the opposite case, that a variable is no longer used by an up-
dated function we can not reliably determine whether the variable is used by
some other code. Therefore we ask the administrator if the variable can be
freed if we do not detect any references anymore. If a variable with the same
name but different type is introduced we have several possibilities. If the old
variable is still used by some code, we generate a warning because this situ-
ation most likely leads to inconsistencies and the administrator has to decide
whether to continue with the update or not. If the new variable replaces the old
the current state should be transformed. Without further information from the
administrator this is not possible. An automatic transformation is subject to
the same restrictions as, for example, the object (de-)serialization in Java [21].

6. CONCLUSIONS AND CURRENT STATUS
The presented work builds a cornerstone of our long-term objective to pro-

vide support for robust and efficient software management in heterogeneous
sensor networks [19]. It enables the management of software installed on
resource-constrained nodes by providing the ability to update and replace code
in the running system. This is achieved by incrementally link new code to
the existing application and to identify unused code. Necessary configuration
information is stored at a larger node that prepares the update. This manager
node also checks whether an update is possible in the running system at all. In
critical situations, the administrator gets involved who can control and decide
in which way the update has to be performed.

The current prototype of the manager software is implemented in Java. It
can load and analyze relocatable ELF object files for x86, Hitachi H8 and AVR
CPUs. Up to now, the prototype communicates and updates single nodes but it
will be extended to handle groups of equal or similar nodes.
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