
0-89791-993-9/97 $10.00 1997 IEEE

Speeding Up Technology-Independent Timing Optimization by

Network Partitioning

Rajat Aggarwal� Rajeev Murgai, Masahiro Fujita

Lattice Semiconductor Corporation, Fujitsu Laboratories of America, Inc.

Milpitas, CA Santa Clara, CA

rajat@lscsjc.latticesemi.com fmurgai,fujitag@fla.fujitsu.com

Abstract

Technology-independent timing optimization is an importantprob-
lem in logic synthesis. Although many promising techniques have
been proposed in the past, unfortunately they are quite slow and

thus impractical for large networks. In this paper, we propose DE-
PART, a delay-basedpartitioner-cum-optimizer, which purports to

solve this problem. Given a combinational logic network that is to
be optimized for timing, DEPART divides it into sub-networks us-

ing timing information and a constraint on the maximum number
of gates allowed in a single sub-network. These sub-networks are
then dispatched, one by one, to a standard timing optimizer. The

optimized sub-networks are re-glued, generating an optimized net-
work. The challenge is how to partition the original network into

sub-networks so that the �nal solution quality after partitioning
and optimization is comparable to that from the timing optimizer.

We propose a partitioning technique that is timing-driven and is
simple yet e�ective. We compare DEPART with speed up [21], a

state-of-the-art timing optimization tool, and with various parti-
tioning techniques such as min-cut based and region growing, on
a suite of large industrial and ISCAS circuits. On more than half

of the benchmarks, DEPART yields run-time improvements of 20
to 450 times over a normal invocation of speed up (the overall

average improvement being 8 times), without compromising the
solution quality much. Min-cut and region growing partitioning

schemes, not being timing-driven, perform poorly in terms of the
�nal circuit delay.

1 Introduction

Timing optimization of a digital circuit is an important prob-

lem in logic synthesis. It can be performed at di�erent stages
of the design process. For instance, technology-independent opti-

mization is done before the circuit is mapped on to a technology,
whereas technology-dependent optimization is carried out during or
after mapping. In this paper, we will deal only with technology-
independent timing optimization, which addresses the following
problem: Given a Boolean network, the arrival times at the pri-
mary inputs, the required times at the primary outputs, and a
delay model, obtain a logically equivalent network that meets the
required time constraints under the given delay model.

Many timing optimization techniques have been proposed in lit-
erature. They are mostly based on transformations that designers

use to speed up circuits. Some of these techniques are rule-based
such as LSS [8] and SOCRATES [4]. They use a pre-de�ned set

�This work was done when the �rst author was an intern at
Fujitsu Labs of America in the summer of 1996.

of local transformations based on design style and the target tech-
nology to improve the delay. Others use algorithms to optimize
the circuit. For instance, [9, 22] determine a set of nodes whose
restructuring improves the overall circuit performance. The choice
of these nodes is made so as to obtain the maximumdelay improve-

ment with a minimum area increase. Some algorithmic techniques
reduce delay by using network don't cares and permissible func-

tions to re-express node functions using early arriving signals [6];
some others use delay-driven clustering and subsequent collapsing
and optimization [23], while others either eliminate long paths that

cannot be sensitized by any input vector [5] or reduce the delay of
the longest sensitizable path [19].

speed up [21] is a state-of-the-art, topology-based performance
optimizer that uses a variety of transformations to optimize the
network. These include tree-height reduction [22, 9], timing-driven

cofactoring [12], generalized bypass transform [15], timing-driven
simpli�cation, timing-driven decomposition, etc. These transfor-

mations are local in that they attempt to resynthesize a small part
of the network. The best possible timing improvement of each

node using these transformations is computed. Finally, a set of
nodes on which the transformations should be applied is selected.

The selection is based on obtainingmaximum timing improvement
with minimum area increase.

Although speed up delivers very good-quality solutions (in

terms of circuit delay), it turns out that its run-times are exor-
bitantly large, especially on large circuits and sometimes even on

moderately large circuits. For instance, as shown in the column
\Run-time: speed up" of Table 3, speed up takes 35387 cpu sec-
onds { about 10 hours { to optimize a 1000-gate circuit Ind-1 and

over 35 hours for the 1500-gate circuit table3 . Although speed up

generates high-quality solutions, such run-times are simply not ac-
ceptable { timing optimization would slow down the entire design
cycle.

We propose DEPART, a delay-based logic partitioner-cum-

timing optimizer. DEPART assumes that a timing optimizer al-
ready exists and then aims to improve the run-time of this op-

timizer on large or moderately large networks, without modify-
ing the optimizer and without sacri�cing the solution quality. It
achieves this goal by suitably partitioning the network into sub-
networks and dispatching them to the optimizer one by one. The

optimized sub-networks are re-glued, generating an optimized net-
work. The challenge is how to partition the original network into
sub-networks so that the �nal solution quality after partitioning
and optimization is comparable to that from the timing optimizer.
We propose a partitioning technique that is timing-driven and is

simple yet e�ective. The paper is organized as follows. Related
work on network partitioning is in Section 2. Section 3 presents
our algorithm DEPART. The experimental results are presented
in Section 4.

2 Related Work

Most of the research work in partitioning has targeted the objec-
tive of minimizing the number of nets crossing partitionboundaries
while balancing the sizes of the partitions [13, 2]. This objec-
tive is relevant during oorplanning and placement, where tightly-
connected components are to be placed in close proximity so as to
minimize the total routing length and congestion.

More relevant to us is the problem of partitioning for synthesis.
One such work is BEAT NP [7], a partitioning tool that enables
the logic synthesis tool BOLD [3] to handle larger circuits during
area optimization. CPU times were reduced by 1 to 3 orders, but
were often accompanied by an optimization loss of about 30 to
50%. [10] proposes a network partitioning and resynthesis scheme
based on reconvergent fanout regions of the network (petals and
corollas). The goal once again is to resynthesize large networks
for smaller layout areas. [17] also targets the same goal. It parti-
tions the network into disjoint sub-networks and optimizes them
for minimum area. Nodes in a sub-network are chosen on the basis
of common transitive fanins.

Not much work has been done on partitioning aimed at timing
optimization of large networks. However, we must mention the

problem of clustering for minimum delay addressed in [14, 16,
18]: given that an edge crossing cluster boundaries incurs a �xed

delay D and that each partition can accommodate no more than
M gates, partition the network such that the delay through the

network is minimized. This problem is di�erent from the one we
are targeting in two respects:

1. the delay D is not relevant to our problem.

2. we are interested in partitioning so that after timing-driven

restructuring and optimization, the network delay is mini-
mized. The clustering for minimum delay problem does not
change the network structure { except possibly replicating

some gates.

3 DEPART: DElay optimization

using PARTitioning

The main idea of our algorithm DEPART { DElay optimization
using PARTitioning { is shown in the owchart of Figure 1. DE-

PART reads in an unoptimized network represented in terms of
2-input gates and returns a network optimized for timing, also

in terms of 2-input gates. Optimization is achieved by �rst di-
viding the given network into sub-networks or partitions, each of
which has no more than M (two-input) gates. However, some

of our partitioning schemes may initially yield sub-networks with
more gates, in which case some gates are temporarily deleted from
the partitioned networks to make the networks amenable for fur-
ther partitioning and size reduction. This further partitioning is

achieved by recursively invoking the main algorithm DEPART on
the smaller network. The deleted gates are added back to the op-
timized network returned by DEPART, thus restoring the original
logic functionality. On the other hand, if a partitioned network
has no more than M gates, the network is handed over to the

timing optimizer directly, which attempts to improve the network
timing and returns an optimized network. Finally, all the opti-

mized partitioned networks are merged appropriately, generating
the optimized network.

DEPART is oblivious to the algorithms employed within the

timing optimizer. So, a designer can embed his or her favorite
optimizer within DEPART and potentially speed it up. In the

current implementation we chose speed up, since it is a state-of-
the-art program and generates high-quality solutions.

N

Y

size < M

Timing Optimizer

DEPART N

Y

size < M

Timing Optimizer

DEPART

DE lay optimization using PARTitioning

Generate Partitioned Networks

N

Y

size < M

Timing Optimizer

DEPART

Merge the Optimized Networks

Optimized
Network

Network
Unoptimized

1 2 p

 Create bins

Figure 1: Flowchart of DEPART: DElay optimization using PAR-

Titioning

To see why partitioning can potentially improve the run-time,
assume that the worst case complexity of timing optimization is

f(N), whereN is the number of gates in the unpartitionednetwork
�. Let us also assume that the numbers of gates in the p partitioned
networks generated by DEPART are N1; N2; : : : ; Np. Ignoring the

time taken for computing the partitions (which, as we will see,
is negligible anyway), the worst-case complexity for partitioning-

based delay optimization, such as DEPART, is
Pp

i=1
f(Ni). The

partitioning-based optimization will be faster if

f(N) = f(

pX

i=1

Ni) >

pX

i=1

f(Ni):

In the above, we assumed N =
Pp

i=1
Ni, i.e., the partitions are

disjoint. The inequality holds if f is worse than linear. Since
timing optimization is NP-hard, f is actually exponential. Then,

partitioning-based optimization will de�nitely be much faster.
Typically, practical timing optimization algorithms are not exact
but are heuristic in nature. However, they perform tasks that have
higher than linear complexities. For instance, speed up [21] com-
putes selection sets through the network and picks the best set by

solving a covering problem, which is known to have exponential
complexity in the worst-case. So, even for a heuristic optimizer,

partitioning should improve the run-time.
With partitioning-based optimization the danger, however, is

that we may lose out on optimization, because the optimizer sees
only a part of the entire network at any time. The crucial issue,

then, is how to partition the network such that the �nal solution
quality (primarily timing, but also area) after partitioning and
optimization is comparable with that of a standard optimizer , say
speed up. Partitioning algorithms in DEPART are timing-driven,
i.e., they cluster network nodes with a view to rendering the forth-
coming performanceoptimizatione�ective { from the point of view
of both circuit performance and CPU time. DEPART �rst creates

bins; each bin contains a subset of primary outputs and their tran-
sitive fanin nodes. From the bins, partitioned networks (or sub-

A

B

C

1

2

a

b

c

d
e

f

g
h

i

j

k

3

4

5

6
7

8

9

10

11

Figure 2: Example network consisting of three primary outputs A,
B, and C, and primary inputs a through k.

networks) are generated and sent to the timing optimizer. The
resulting optimized sub-networks are glued together yielding the

optimized network. These steps are described in the next few sub-
sections.

We will explain this algorithmwith the help of a running exam-

ple { the network � of Figure 2. � has eleven primary inputs (PIs)
a through k, three primary outputs (POs) { A, B, C, and eleven

internal nodes (or gates) 1 through 11. Although not shown, the
signal ow is from left to right.

3.1 Creating Bins

We divide the network into bins, each containing some primary
outputs and their transitive fanins (TFIs). The crucial point is to

decide which outputs should be grouped together in a bin. We
developed three strategies.

1. Minimum bins: In this strategy, the outputs are grouped
based on the number of TFI nodes they share. Outputs that
share many TFI nodes are placed in one bin. Recall that no

partition (and hence bin) should have more than M gates.
Our goal is to minimize the number of bins needed to accom-

modate all the primary outputs and their transitive fanins,
without violating the constraint M . Since each bin would

correspond to a partitioned network, minimizing bins mini-
mizes the number of partitioned networks resulting in better
optimization.

The problem of grouping outputs in minimum bins subject to
the size constraintM is similar to the bin-packing problem
[11], in which itemswith weights are to be packed inminimum
number of uniform bins each of capacityC such that the sum
of the weights of the items in a bin is at most C. Apart from
some minor technicalities, the correspondence between the
two problems is quite straightforward. Each primary output
oi along with its transitive fanin is considered an item, whose
weight w(oi) is the number of gates in the transitive fanin of

the output. The capacity C of each bin is M , which means
that no more than M gates can be accommodated in each

bin. The goal is to use fewest bins to store all the items.

On the outputs whose TFIs have at mostM gates, we apply

the standard best-�t decreasing heuristic [11]. Each of the
remaining outputs is stored in a separate bin.

B

e

f

g
h

4

5

6
7

8

9

i

c

d

3

2

b

C

i

j

k

10

11

c

d

3

A1

2

a

b

(b) (a)

Figure 3: Bins created with M = 5 and minimum bins

We illustrate bin creation on the example network of Figure

2. The transitive fanins of A, B, and C have 7, 16, and
5 nodes respectively, out of which 3, 8, and 2 are internal

nodes (or gates). Let M be 5. First, we create special bins
for outputs with weights more than 5. The only such output

is B, and we obtain the bin (b) in Figure 3. We sort the
remaining outputs, A and C, on the number of TFI gates.

We obtain the sorted list L = fA;Cg. A and its TFI are
placed in a newly created bin, (a). It turns out that C can
also �t in the same bin. Note that we are considering gates

and not PI/POs while checking the �tting of items into bins.
The bin (a) is now full to capacity.

2. Criticality information: The basic idea is to group criti-
cal primary outputs in fewest bins. A critical output is one

that needs to be speeded up in order to improve the per-
formance of the circuit (we will make the notion of critical-

ity more precise shortly). Non-critical primary outputs are
not sent for optimization, thus reducing the total run-time
tremendously.

First, a delay trace is carried out on the network to determine
the arrival times, required times, and slacks at all the nodes

of the network. The arrival times of the primary inputs can
be set by the user, 0 being the default. If no required times

are set at the outputs, they are set to be the maximumarrival
time of an output. A primary output is critical if its slack

is at most t% of the maximum arrival time of some network
output, where t is a user-speci�ed number. In case no
required times are set at the outputs, we can alternatively
de�ne an output to be critical if its arrival time is at least
(100� t)% of the maximum arrival time. If t is 0, only the

latest arriving outputs are critical. If it is 100, all the outputs
are critical.

After the delay trace, non-critical outputs are determinedand
ignored from consideration. The critical outputs are sorted
into list L, the most critical output being �rst. Then, a
bin-packing-like method is used to group the sorted critical
outputs and their TFIs into bins. The �rst output from L

is placed in a new bin. Thereafter, at any step, the next
output is fetched from L and considered for placement in the

same bin as the last output. Thus, an attempt is made to
place critical outputs in fewest bins solely based on criticality
information (and not on node sharing, which was the case in
the minimum bins approach).

Let us consider the example of Figure 2. Assume that each
gate has a delay of 1 unit, and that all inputs arrive at time

B

e

f

g
h

4

5

6
7

8

9

i

c

d

3

2

b

C

i

j

k

10

11

c

d

3

A1

2

a

b

(b)

(a)

Figure 4: Bins created with M = 5 and criticality

0. After delay trace, we �nd that the arrival times of A, B,
and C are 3, 4, and 2 respectively. If t = 25, any output with

arrival time at least 75% of 4 (= 3) is critical. So A and B

are critical and C is not. Two bins are created, one with B

and the other with A. This is shown in Figure 4. C is ignored

from consideration.

3. Minimum Critical Bins: This strategy is a cross between
the last two. As in criticality, non-critical outputs are

removed from consideration. Then critical outputs are placed
in bins using the strategy employed in minimum bins. Note

the di�erence between this strategy and criticality. In
criticality, critical outputs are placed solely on the basis of
criticality information, whereas in minimum critical bins,

they are placed solely on the basis of TFI information.

For our example, minimum critical bins creates the same
bins as created by criticality in Figure 4. However, the
order in which the bins will be processed will be di�erent.

We will explain this later.

Each bin generates a partitioned network that is sent to the
timing optimizer. The next subsection describes how partitioned
networks are generated from bins.

3.2 Generating Partitioned Networks

From Bins

Bin-creation phase generates information about the primary out-
puts and nodes present in each bin. This information is used to
derive partitioned networks. Bins, in general, share nodes. TFI of
an output that belongs to bin A may share some nodes with TFI

of an output belonging to bin B. While creating networks from
bins, one has to decide whether these common nodes should be

replicated in each network or just be present in one of them. We
propose three ways to handle this:

1. No-Overlap: In this option, no overlap is allowed among

partitioned networks, except for primary inputs. Assume
that bins are traversed in some order (we will address the
ordering issue soon). If bin X has an internal node (or gate)
n that is present in bin Y earlier in the order, but not in any
bin prior to Y , n will be included in the network for Y , but
not in the network for X. Instead, a dummy primary out-
put fed by n is introduced in the network corresponding to

Y . Also, in the network corresponding to X, a dummy pri-
mary input is added. However, not every common node n is

converted into dummy input and output; only the boundary
nodes, as explained below.

Figures 5(a) and 5(b) show the networks generated from the
bins of Figure 3 using no-overlap. For the sake of the ex-
ample, assume that the bins are processed in the order 3 (a),
3 (b). Creating the network from 3 (a) is straightforward {
include all the nodes of bin 3 (a) in the partitioned network.
Next, 3 (b) is processed. Primary inputs b; c; d, and nodes
2 & 3 are common to bins 3 (a) and 3 (b). However, none
of the nodes b; c; d, and 3 fan out to a node that is in bin
3 (b) but not in bin 3 (a). So b; c; d, and 3 are not made
primary inputs for the network 5 (b). However, node 2 fans
out to node 4, which is in bin 3 (b) and not in 3 (a). So a
dummy primary output 2A is introduced in network 5 (a).
Similarly, dummy primary input 2a is added to network 5
(b). It is implicit that 2A and 2a are essentially the same
signal. Adding 2A to the network 5 (a) ensures that during
timing optimization of the network 5 (a), node 2 is retained,
so that it can be later composed into the optimized network
5 (b) at the primary input 2a.

Although no-overlap does not carry any area penalty, it can

break a critical path several times, potentially resulting in
a loss of optimization. This fact motivated us to devise the
bin creation heuristic criticality in its current form. By

sorting the outputs by criticality and grouping the highly
critical ones in the �rst few bins, the algorithm attempts to

retain complete input to output (I/O) paths of more critical
outputs in a single sub-network.

2. Complete-Overlap: This option lies on the other end of the
spectrum. Nodes common to di�erent bins are replicated in

the corresponding networks. Each partitioned network thus
retains all the nodes of the corresponding bin. Referring to
the running example, the networks corresponding to the bins

of Figure 3 are identical to those of Figure 3.

This option allows maximum exibility in terms of timing

optimization (modulo the loading e�ects), since complete I/O
paths are available to the optimizer. However, it typically

results in a huge area penalty.

3. Critical-Overlap: Here only critical nodes are replicated.
The intuition is that the timing optimizer can optimize better

when complete critical paths are available. Also, by restrict-
ing replication to critical nodes, area penalty is reduced. As

for the non-critical nodes, they are not duplicated, but are
converted to dummy primary inputs and dummy primary

outputs appropriately as described in no-overlap.

Processing Order for Bins: In order to generate networks
from bins, bins have to be processed in some order. This order can
have a great impact on the kinds of networks generated and hence
the run-time and solution quality.

In minimum bins and minimum critical bins options, bins are

traversed in the order of increasing sizes (i.e., used capacities).
To understand why, consider our example. In minimum bins, we
would �rst process bin (a) of Figure 3, since it has only 5 gates, as
compared to the special, large bin (b), which has 8 gates. Next, we
come to bin (b). With the no-overlap option, the gates common
to the two bins are excluded from the network generated from bin
(b). As shown in Figure 5 (b), this network has 6 gates. This
ordering scheme then helps to reduce the sizes of the networks
that would have been otherwise large.

In criticality, bins are traversed in the order they were
created { the most critical �rst. For our example, minimum

critical bins and criticality generate identical bins. However,

in minimum critical bins the bin with output B, being larger, is
processed after the bin with output A. This implies that with the

B

e

f

g

4

5

6
7

8

9

i

(b)

c

d

3

A1

2

a

b

2a 2A

C

i

j

k

10

11

(a)

h

Figure 5: Partitioned networks generated with no-overlap

no-overlap option, nodes 2 and 3 will be deleted from the network
forB. With criticality,B will be processed �rst (since it is more
critical), and nodes 2 and 3 will be deleted from the network of A.

3.3 Optimizing the Partitioned Net-

works

After partitionednetworks have been created, they are sent for tim-
ing optimization. However, it may happen that some partitioned

networks have more than M gates. For instance, the network of
Figure 5 (b) has 6 nodes, and further partitioning is needed to

reduce the size to no more than M = 5. We incorporate this by
de�ning a recursive optimization-partitioner. When the number of
internal nodes, S, of the partitioned network is no more than M ,

we enter the base level optimization: partitioned network is sent
directly to the standard timing optimizer such as speed up. How-

ever, when S is greater thanM , the partitioned network is sent to
a second level partitioner-cum-optimizer. This partitioner-

cum-optimizer program appropriately selects a primary output P
from the partitioned network,1 deletes P , converts all its immedi-

ate fanins to primary outputs, and makes a recursive call to the
main partitioning algorithm DEPART on the network thus ob-
tained.

The intuition behind this strategy is the following. First re-
call that the network at this stage is in terms of 2-input gates

and therefore the number of fanins of P is 2. After deleting P ,
these fanins are converted into primary outputs. If the sizes of

the TFIs of each of these outputs are roughly the same (� S=2),
and furthermore if S=2 �M , the outputs will satisfy the capacity
constraintM during the �rst level of recursion itself. If S=2 > M ,

further recursion may be needed, but the process will quickly lead
to partitions of sizes at mostM .2 An advantage of this method is
that a path in the original network completely resides in the new
network, except perhaps for the terminal node, if that happens to

be P .
The partitioned network in Figure 5(a) has 5 nodes. SinceM =

5, this sub-network is directly sent to the timing optimizer (the
base case). However, the network in Figure 5(b) has 6 nodes,
and is sent to the second level partitioner-cum-optimizer. The

second level optimizer selects the primary outputB, deletes it, and
converts its immediate fanins 4 and 8 to primary outputs B1 and

B2. Figure 6 shows the network thus generated. This network has

1P is the latest arriving output.
2It can happen that the sizes of the two TFIs are disparate

for many consecutive recursion calls. In that case, we limit the

maximum depth of recursion and then call the timing optimizer
on the network at the �nal level.

e

f

g
h

4

5

6

8

9

i

2a

B2

B1

Figure 6: The network generated by the second level partitioner
after deleting the primary output B.

5 gates, and when sent recursively to DEPART, it is immediately
sent to the timing optimizer. However, ifM was 4, in the recursive
call to DEPART, the network of Figure 6 would go through the

steps of bin creation and network creation. Note that each of the
two outputs B1 and B2 has 3 internal nodes. So two bins will
be generated. Both corresponding networks will satisfy the M

constraint and hence would be sent to the timing optimizer.

Now we explain how timing information is propagated between
the partitioned networks during optimization. Assume that the

original network � is partitioned into networks �1; �2; : : : ; �p. Also
assume that the partitioned networks are sent for optimization in
the same order, i.e., �1 �rst and �p last. Say at some stage, �i is

sent for optimization. Then, after optimization, the arrival times of
the primary outputs of �i may change. If some primary output of

�i is a dummyoutput, it feeds dummy input(s) of other partitioned
network(s), say �j. The new arrival time is used to update arrival

time of the corresponding dummy primary input(s), so that when
�j is optimized later (assuming j > i), the timing information used

in optimization is the updated one. In fact, in DEPART, we make
sure that if i < j, no dummy primary input of �i is connected to a
dummyprimaryoutput of �j. Thus, the arrival time informationof

�i depends only on the arrival times of the real primary inputs of �
and possibly of the dummy primary outputs of networks �k; k < i.

3.4 Combining the Optimized Parti-

tioned Networks

After all the partitioned networks have been optimized, they are
merged to form an optimized network having the same function-
ality as the original network. The optimized partitioned networks
are merged by patching up the corresponding dummy primary out-
puts and dummy primary inputs. For instance, if (a) and (b) of
Figure 5 are the optimized partitioned networks, after merging we
obtain the optimized network shown in Figure 2. The only dummy

primary input-output pair is (2a;2A). At the time of merging, the
fanin of 2A, node 2, is made to fan out to all the fanouts of 2a,

which, in this case, is the single node 4. Both 2a and 2A disappear
after merging.

Thus we obtain a functionally-identical, timing-optimized cir-
cuit. Next, we report the experimental results on a set of industrial

and ISCAS benchmarks.

4 Experimental Results

DEPART is implemented in the sis framework [20], the logic syn-
thesis system from the University of California, Berkeley. In the

Bench. #I/P #O/P #Lev. #Lit.

Ind-1 8 8 37 1074
Ind-2 8 8 23 435

C880 60 26 35 684
C6288 32 32 92 4962
C7552 207 108 35 3976
C3540 50 22 40 2222
seq 41 35 17 2937
apk2 1263 1218 33 22096
alu4 14 8 28 1745

apex5 114 85 24 1346
C5315 178 123 32 2911
C2670 233 139 20 1379
table3 14 14 55 1456
apex3 54 50 14 2750
des 256 245 22 5889
pair 173 137 28 2949

Table 1: Characteristics of the benchmarks used as test inputs

current implementation, DEPART invokes speed up on each sub-

network. Since speed up lets one specify the delay model to be
used during optimization, so does DEPART. Currently, DEPART

uses the unit delay model, which assigns a delay of one to each
2-input gate and thus estimates the circuit delay to be the number

of levels.3

The benchmarks used in the experiments come from two

sources: some are combinational ISCAS benchmarks and the rest
(i.e., Ind-1, Ind-2, apk2) are industrial circuits. We �rst optimized

the benchmarks for minimum area (i.e., factored form literals)
using the standard sis optimization script, script.rugged [20],
twice with a timeout option of 1 hour each time and then ap-

plied eliminate -1; speed up -i to obtain networks that would
be starting points for all the experiments. eliminate -1 collapses

all nodes that do not save any literals into their fanouts. speed up

-i performs a timing-driven decomposition on each network node

and produces a network that has either inverters or two-input
gates. Table 1 shows the numbers of primary inputs, primary out-
puts, levels, and literals in these networks. With the exceptions of

Ind-2 and C880 , the criterion for selecting a benchmark was that
it should have at least 1000 two-input gates (roughly equal to the

number of literals).

DEPART uses several control parameters that inuence the �-

nal solution quality and run-time, such as the maximum size of a
partitioned networkM , the bin creation heuristic, degree of over-
lap between partitions, etc. We did extensive experimentation to
determine the best values for them. The best values were found
to be M = 200, bin creation { a combination of criticality and
minimum bins, overlap among partitioned networks { no overlap

[1].

4.1 Comparison with Other Schemes

In this section we compare and analyze results of DEPART with

speed up (invoked on the entire network), and two partitioning-
based schemes:

3Singh concludes in [21] that optimized networks generated us-
ing unit delay model have post-map delays comparablewith delays
of networks generated using more sophisticated models, such as
unit fanout model, library model, etc. We reached the same con-

clusion using a similar set-up and a 0.5-micron technology library
[1].

1. hMETIS, a state-of-the-art min-cut-based partitioning algo-
rithm [13], and

2. a region growing algorithm based on connectivity informa-
tion.

None of these partitioning schemes are driven by timing consider-
ations. A comparison with them would highlight the signi�cance
of a timing-driven partitioning scheme such as DEPART.

hMETIS is a multi-level min-cut partitioning algorithm. It is a
very fast and accurate scheme that partitions a netlist into a pre-
speci�ed number of approximately equal-sized clusters and min-
imizes the total number of nets crossing the cluster boundaries.
It produces k partitions using a bisection algorithm recursively.
hMETIS �rst coarsens the netlist in multiple levels to get a smaller
representative netlist. A partitioning solution is calculated on the
smaller netlist which is then re�ned in the uncoarsening phase.
These coarsening and uncoarsening phases allow hMETIS to ob-
tain a global picture, resulting in a high-quality solution. These
phases also help in reducing the run-time, since most of the com-
putation is performed on the smaller netlist.

We implemented a region growing algorithm, using a recursive
bisection technique. The bisection process starts from a randomly

selected node and grows in a breadth-�rst fashion a region around
it of nodes tightly connected to it [13] until half of the nodes of

the netlist are in this region. The nodes belonging to the grown
region are assigned to the �rst part and the rest to the second

part. The process is repeated on the two parts until k partitions
are obtained.

Timing optimizer (speed up) is invoked on each cluster obtained

by either partitioning algorithm (hMETIS or region growing algo-
rithm). Timing information (such as arrival times) is updated and

propagated to other clusters after each invocation. This is sim-
ilar to the timing optimization step in DEPART. The di�erence

between DEPART and these partitioning techniques is the target
cost function. As described earlier, DEPART attempts to generate
partitions with a view to maximizing the optimization potential of

the timing optimizer. These techniques, however, do not pay any
attention to timing. Instead, they either minimize the total num-

ber of nets crossing the cluster boundaries (hMETIS) or maximize
the connectivity within each cluster (region growing).

speed up is invoked with unit delay model (so it minimizes the
number of levels) and depth of collapse of transitive fanin region
equal to 4.

For hMETIS and region growing, we set the number of clusters
to the number of nodes divided by M (=200).

Tables 2 and 3 show comparison of various techniques. For
each benchmark, numbers of levels and literals (a measure of net-
work area) before and after timing optimization (with and without
partitioning) are reported. For each technique, run-times on Sun
SPARCstations 20 are reported in seconds in Table 3.

From Table 2, we deduce that with respect to number of levels,
on average, DEPART is about 6.6% worse than speed up4 and in
terms of literals, it is marginally better. However, Table 3 shows
that on average, it is more than 8 times faster than speed up. It

is interesting to note that speed up takes about 10 hours on Ind-

1, which has about 1000 2-input gates. DEPART, however, takes

about 15 minutes (which is 40 times less) and generates same num-
ber of levels and fewer gates! On table3 , DEPART is more than
450 times faster than speed up (speed up takes 35.5 hours and DE-
PART only 4.7 minutes) { with only 7% penalty in the number of
levels. Run-time improvements by factors of 20 to 40 can be seen

in many other examples, such as Ind-2, C880 , C3540 , seq, alu4 ,

4\% Change" in the table is with respect to the original net-
work (the column \Org"). The �gure 6.6%, although not in the

table, is obtained from a pairwise comparison between speed up

and DEPART.

Bench. Levels Literals
Org speed up m-c r-g DEPART Org speed up m-c r-g DEPART

Ind-1 37 30 34 37 30 1074 1383 1117 1074 1249
Ind-2 23 18 22 22 20 435 553 451 447 465
C880 35 18 21 35 21 684 1005 1007 684 913
C6288 92 70 78 92 75 4962 5582 6139 4962 6367
C7552 35 21 29 35 22 3976 4505 4566 3976 4577
C3540 40 31 33 40 33 2222 2414 2331 2222 2382
seq 17 14 15 17 15 2937 2964 2940 2937 3003

apk2 33 16� 32 33 16 22096 22094� 22375 22096 21666
alu4 28 25 28 28 26 1745 1937 1745 1745 1917
apex5 24 14 16 24 14 1346 1580 1954 1346 1580
C5315 32 21 27 32 25 2911 3387 3067 2911 3099
C2670 20 17 18 20 17 1379 1469 1405 1379 1482
table3 55 41 52 54 44 1456 2287 1493 1458 2750
apex3 14 12 13 14 12 2750 2790 2770 2750 2810
des 22 19 20 22 20 5889 6043 6508 5889 6223
pair 28 17 17 28 20 2949 3282 3950 2949 3158

% Change -27.45 -14.81 -0.40 -22.87 16.36 12.49 0.17 15.78

Org original benchmark -- before optimization

m-c Min-cut approach of hMETIS

r-g Region Growing

Table 2: Comparing speed up, min-cut based hMETIS, region growing and DEPART. �: the best network at the time of abortion,
which was done after more than 2 days. % Change is with respect to \Org".

C5315 , C2670 , and pair . This improvement is achieved at the

cost of a very small delay penalty, maximum penalty being about
15%. Three factors contribute towards such an advance:

1) the inherent run-time advantage of partitioning { this was dis-
cussed in Section 3,
2) Partitioning is timing-driven:

a. Partitions are formed with timing optimization in mind.

{ Outputs are grouped in a bin, keeping in mind gate-
sharing (to save area) and criticality (for timing).

{ Complete I/O paths are handed to the optimizer (as

much as possible).

{ Non-critical outputs are ignored.

b. Updated timing information is propagated from an optimized
partition to partitions yet to be optimized.

3) careful parameter-tuning in DEPART.

We also noted that the CPU time taken only by the partitioning
algorithm (i.e., not including the time taken by speed up for timing

optimization) is negligible as compared to the time spent in calls
to speed up { it is about 4% of the total time.

Sometimes, though rarely, DEPART takes appreciable run-time.

For our benchmark suite, it happens only on one example, apex3 ;
DEPART takes about 16 hours. We believe this is due to speed up

(which is invoked from within DEPART many times) taking long
time to choose selection-sets for applying the transformations.
speed up builds a binary decision diagram (BDD) to solve the
selection-set problem and the size of the BDD cannot be predicted
before-hand.

It is interesting to study the relative performance on the largest
circuit in the benchmark suite: apk2. First of all, speed up did not

terminate in more than 2 days. So, for comparison, we decided
to select the �nal network generated by speed up at the time of
abortion (speed up is an iterative algorithm and at the end of each
iteration one can save the best network generated so far). The

run-time reported is the time taken to generate the �nal network
when the program was aborted. DEPART and speed up yield the

same number of levels. DEPART has about 5% area penalty, but

is about 15 times faster than speed up. We also observed that
speed up was using more than 1000 MB of memory at the time

of abortion. This was causing thrashing and a slow-down of the
entire optimization process.

Note that DEPART makes run-time calls to speed up, without
using any information about the algorithms employed within it.

The overall performance of min-cut-based hMETIS is far from
satisfactory. On average, it results in 19.8% more levels than

speed up and about 12.9% more levels than DEPART. For the
benchmark apk2, DEPART reduced the number of levels from 33

to 16, whereas hMETIS reduced it only to 32! Thus there is a
strong case for using a timing-driven partitioner. The quality of

the resulting circuit can be quite bad with min-cut. Except for
one example (C7552), hMETIS run-times are comparable to DE-
PART's.

The results of region growing algorithm are very poor. Except

for two benchmarks, namely, Ind-2 and table3 , there was no im-
provement on any of the other benchmarks. Even on Ind-2 and
table3 , the improvements were marginal. The reason behind this
is that partitioning, not being timing-driven, was unsuccessful to
give complete I/O paths to the timing optimizer.

We also compared DEPART with the clustering for minimum
delay algorithm, which was mentioned in Section 2. The imple-
mentation of [16] is not very practical, since it results in about 30
to 70% gate-replication. We modi�ed this algorithm to generate

clusters without replication and rede�ned the meaning of the inter-
cluster delay D to be more suitable for our application. It turns

out that DEPART is twice as fast and generates faster and smaller
circuits. Due to space limitations, we omit the details; they can
be found in [1].

Finally, we mapped unoptimized and optimized circuits on to

Fujitsu's 0.5-micron technology library. The technology mapper
was run in delay-minimization mode. Although we do not report
the mapped results due to space constraint, we found that on aver-
age, the delay through a mapped network generated by DEPART

is about the same as through that generated by speed up { about
1% more [1].

Bench. Run-time
speed up m-c r-g DEPART

Ind-1 35387.0 173.1 3.3 941.4

Ind-2 3026.6 30.0 2.9 114.2
C880 13367.7 327.2 1.8 388.4
C6288 12728.3 1655.2 55.3 2151.5
C7552 2522.5 56572.0 38.1 459.6
C3540 22671.7 363.6 11.1 336.4
seq 18557.0 449.9 19.3 626.7
apk2 76922.2� 6931.3 2029.1 5001.5

alu4 7698.9 108.9 7.8 333.0
apex5 343.2 781.0 5.7 137.2
C5315 6377.5 570.0 20.0 175.7
C2670 3179.8 148.4 6.9 101.3
table3 128323.4 136.8 5.9 282.9
apex3 127026.9 817.9 16.6 57455.9
des 4490.1 4576.0 47.9 1879.2
pair 4087.5 834.8 20.8 186.1

% Change 209.07 -36.53 -98.80 -73.73

m-c Min-cut approach of hMETIS

r-g Region Growing

Table 3: Comparing run-timesof speed up, min-cutbased hMETIS,
region growing, and DEPART. The %Change is with respect to

the average value of run-times of the four techniques. �: the best
network at the time of abortion, which was done after more than
2 days.

Future work is in at least two directions:
1) The performance of DEPART is far from satisfactory on apex3
{ it takes more than 15 hours to �nish. We need to investigate this

further and come up with a better methodology.
2) DEPART is built on top of a timing optimizer. Further gains

in run-times can be accrued if the underlying timing optimizer can
be speeded up.

References

[1] R. Aggarwal, R. Murgai, and M. Fujita. Speeding Up
Technology-Independent Timing Optimization. In Fujitsu

Labs of America Internal Memorandum, September 1996.

[2] Charles J. Alpert and Andrew B. Kahng. Recent directions
in netlist partitioning. Integration, the VLSI Journal, 19(1-
2):1{81, 1995.

[3] K. Bartlett, D. Bostick, G. Hachtel, R. Jacoby, M. Lightner,
M. Moceyunas, C. Morrison, and D. Ravenscroft. Bold: A
multi-level logic optimization system. In Proceedings of the
International Conference on Computer-Aided Design, 1987.

[4] K. Bartlett, W. Cohen, A. J. De Geus, and G. D. Hachtel.

Synthesis of Multi-level Logic Under Timing Constraints.
In IEEE Transactions on Computer-Aided Design, October
1986.

[5] H. Chen and D. Du. Circuit Enhancement by Eliminating
Long Paths. In Proceedings of the Design Automation Con-
ference, pages 249{252, 1992.

[6] K. C. Chen and S Muroga. Timing Optimization for Multi-
Level Combinational Circuits. In Proceedings of the Design
Automation Conference, pages 339{344, 1990.

[7] H. Cho, G. Hachtel, M. Nash, and L. Setiono. BEAT NP: A
Tool for PartitioningBoolean Networks. In Proceedings of the

International Conference on Computer-Aided Design, pages
10{13, 1988.

[8] J. Darringer, D. Brand, J. Gerbi,W. Joyner, andL.Trevillyan.
LSS: A system for Production Logic Synthesis. IBM Jour-
nal of Research and Development, 28(5):326{328, September
1984.

[9] G. DeMicheli. Performance-OrientedSynthesis of Large-Scale
Domino CMOS Circuits. IEEE Transactions on Computer-
Aided Design, CAD-6(5):751{765, 1987.

[10] Sujit Dey, Franc Brglez, and Gershon Kedem. Corolla based
Circuit Partitioning and Resynthesis. In Proceedings of the
Design Automation Conference, pages 607{612, 1990.

[11] M. R. Garey and D. S. Johnson. Computers and Intractabil-
ity. W. H. Freeman and Co., NY, 1979.

[12] P. Gutwin and P. C. McGeer. Delay predictor for technology-
independent logic equations. In Proceedings of the Interna-
tional Conference on Computer Design, pages 468{471, 1992.

[13] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Hyper-
graph Partitioning: Application in VLSI Domain. In Proc.
ACM/IEEE Design Automation Conference, 1997.

[14] E. L. Lawler, K. N. Levitt, and J. Turner. Clustering to

Minimize Delay in Digital Networks. In IEEE Transactions
on Computers, pages 47{57, January 1969.

[15] P. C. McGeer, R. K. Brayton, A. L. Sangiovanni-Vincentelli,

and S. K. Sahni. PerformanceEnhancement through the Gen-
eralized Bypass Transform. In Proceedings of the Interna-

tional Conference on Computer-Aided Design, pages 184{187.
IEEE, 1991.

[16] R. Murgai, R. K Brayton, and A. Sangiovanni-Vincentelli.

On Clustering for Minimum Delay/Area. In Proceedings
of the International Conference on Computer-Aided Design,

November 1991.

[17] Y. Nakamura and T. Yoshimura. A Partitioning-based Logic
Optimization Method for Large Scale Circuits with Boolean

Matrix. In Proceedings of the Design Automation Conference,
pages 653{657, 1995.

[18] R. Rajaraman and D. F. Wong. Optimal Clustering for De-
lay Minimization. In Proceedings of the Design Automation

Conference, pages 309{314, June 1993.

[19] A. Saldanha, H. Harkness, P. C. McGeer, R. K. Brayton, and
A. Sangiovanni-Vincentelli. Performance Optimization Using

Exact Sensitization. In Proceedings of the Design Automation
Conference, pages 425{429, 1994.

[20] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton,
and A. Sangiovanni-Vincentelli. SIS: A System for Sequen-
tial Circuit Synthesis. MemorandumNo. UCB/ERL M92/41,
ElectronicsResearch Laboratory, College of Engineering, Uni-
versity of California, Berkeley, CA 94720, May 1992.

[21] K. J. Singh. Performance Optimization of Digital Circuits.
PhD thesis, UC Berkeley, December 1992.

[22] K. J. Singh, A. R. Wang, R. K. Brayton, and A. Sangiovanni-
Vincentelli. Timing Optimization of Combinational Logic. In
Proceedings of the International Conference on Computer-
Aided Design, pages 282{285. IEEE, 1988.

[23] H. J. Touati, H. Savoj, and R. K. Brayton. Delay Optimiza-
tion of CombinationalLogic circuits by Clustering and Partial
Collapsing. In Proceedings of the International Conference
on Computer-Aided Design, pages 188{191. IEEE, November
1991.

	CD-ROM Home Page
	ICCAD97
	Front Matter
	Table of Contents
	Session Index
	Author Index

