View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by CiteSeerX

Iterative Embedding with Robust Correction using Feedback of Error
Observed

Praneeth Vepakomma
Dept. of Statistics, Rutgers University, NJ, USA
Dept. of Electrical & Computer Engineering
Florida International University, FL, USA
Motorola Solutions, USA

Abstract

Nonlinear dimensionality reduction techniques
of today are highly sensitive to outliers. Almost
all of them are spectral methods and differ from
each other over their treatment of the notion of
neighborhood similarities computed amongst the
high-dimensional input data points. These tech-
niques aim to preserve the notion of this sim-
ilarity structure in the low-dimensional output.
The presence of unwanted outliers in the data di-
rectly influences the preservation of these neigh-
borhood similarities amongst the majority of the
non-outlier data, as these points ocuring in ma-
jority need to simultaneously satisfy their neigh-
borhood similarities they form with the outliers
while also satisfying the similarity structure they
form with the non-outlier data. This issue dis-
rupts the intrinsic structure of the manifold on
which the majority of the non-outlier data lies
when preserved via a homeomorphism on a low-
dimensional manifold. In this paper we come
up with an iterative algorithm that analytically
solves for a non-linear embedding with mono-
tonic improvements after each iteration. As an
application of this iterative manifold learning al-
gorithm, we come up with a framework that de-
composes the pair-wise error observed between
all pairs of points and update the neighborhood
similarity matrix dynamically to downplay the
effect of the outliers, over the majority of the
non-outlier data being embedded into a lower di-
mension.

Preliminary work. Under review by MLIS 2015. Do not distribute.
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1 Introduction

Nonlinear dimensionality reduction (NLDR) methods
like Laplacian Eigenmaps (1), Locally Linear Embed-
ding (2), Hessian Eigenmaps (3)), and Local Tangent Space
Alignment (4)) try to preserve the local geometry of high
dimensional data in a low dimensional space. Linear
dimensionality reduction methods like Principal Com-
ponents Analysis (PCA) and Classical Multidimensional
Scaling (MDS) (5) are based on low-rank approximations
of a Gram Matrix, that define an inner product space
that preserves some priori information collected from the
high dimensional data matrix. Unlike PCA and MDS,
NLDR methods aim to find a homeomorphic mapping
and assume that a ’'representation’ of the local geometry
of high-dimensional data can be preserved on a smooth
manifold of much lower dimension, also referred to as its
intrinsic dimension (6), (7), (8). The problem of finding
such a mapping is also referred to as -Manifold Learning.
Local neighbourhood information based on K-nearest
neighbors, Gaussian kernels, e—neighborhood graphs,
covariances, Euclidean distances and geodesic distances
are some examples of prior information collected in the
high-dimensional data that need to be preserved after the
embedding. In the presence of outliers the information
required to find a homeomorphic mapping is corrupted and
nonlinear dimensionality reduction methods of today fail
to completely recover the manifold of interest.

In this paper, we propose an iterative method for
manifold learning and use it to adaptively downweight the
outliers based on the pair-wise error produced at any given
iteration. The effect of outliers is reduced by simultane-
ously updating the priori local neighborhood information
that needs to be preserved after the embedding. This
is done using multiplicative updates derived from the
pair-wise error produced between all pairs of points after
any given iteration. Our iterative embedding algorithm
guarantees monotonic improvement after each iteration as
it is based on majorization-minimization, an optimization
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framework that guarantees monotonic convergence. This
leads to every iteration of our algorithm doing better than
the previous until it converges to smaller and smaller
improvements after many iterations. This means that
the learning of the low-dimensional manifold can be
visualized as well as guaranteed to be happening in the
right direction as the iterations progress. The problem of
manifold learning in the presence of noise or missing data
was studied in (9), (10). The focus in this paper is instead,
over the presence of outliers that do not have the same
low-dimensional representation as of the data of interest,
and often get falsely projected over the smoothened man-
ifold with a lower degree of freedom. Another problem
caused by outliers is the short-circuiting of two or more
sub-manifolds that are closeby, yet separated as described
in (11D, (12)

This paper is organized as follows: Section 2 describes our
views on pairwise error based feedback and dynamically
re-weighting the neighborhood structure for nonlinear di-
mensionality reduction. In Section 3, we describe our itera-
tive non-linear embedding algorithm, that is apt for achiev-
ing our motives described above. In section 4, we pro-
pose a multiplicative model for enforcing robustness, and
integrate it with our iterative embedding framework. The
multiplicative updates are calculated by solving a regular-
ized M-estimation problem. We present, majorization min-
imization updates for the chosen, robust function. In Sec-
tion 5, we summarize our algorithm and present our results
using the above framework.

2 Interleaving Iterative Embedding &
Robust Reweighting of Similarity
Structure

The problem of nonlinear embedding in the presence of
outliers around the high-dimensional data can be tackled
at two levels. The first level is to deal with outlier detec-
tion in the high-dimensional space before the embedding.
This is non-trivial and non-obvious, because of the ’curse
of dimensionality’. The other choice, would be during or
after the embedding. In this paper we focus on dealing with
outliers during the embedding by first presenting an algo-
rithm for embedding iteratively. Our iterative algorithm
is inspired by Laplacian Eigenmaps, a non-iterative tech-
nique that uses a Gaussian kernel exp(— ||Y;, — Y. ||§ /o)
to generate weights W;; from a high dimensional data ma-
trix Y, «x, where Y;,Y; are data points in R* and de-
note the rows ¢, 7 of Y respectively. o is a tuning param-
eter that establishes the notion of the extent of neighbor-
hood. In Laplacian Eigenmaps a low-dimensional embed-
ding X, % p, in NP with p < k is obtained by minimizing
the following loss function:

ZW (X (1)

over X, where d7;(X) is the squared Euclidean distance
between row X;,X; The solution is subject to an or-
thornormal constraint over X G'/? that depends on the di-
agonal matrix G, where G;; = > ; Wij and is given by
XTGX = I and thereby prevents a degenerate solution
over X.

In this paper we consider the case where W is a matrix of
weights computed over a Y that is plagued by outliers. Our
approach relies on the pair-wise error matrix F, obtained
at any given solution X with entries F;; = Wijd?j(X )-
The pair-wise residuals F;; can be decomposed into de-
coupled pointwise indices of the form c;, c; such that,
> V(Eij, (€i, ¢5)) is minimum, based on the model ~(.)
that we would like to build over our error. We refer to ¢;, ¢;,
as point-wise indices, in the rest of the paper. These indices
can be used at this stage to inturn update the weight matrix
W.

It would be of practical use to have an iterative update
for non-linear embedding, where the pairwise error terms
can be collected during the process of embedding, and
decomposed into well regularized point-wise indices,
which would in turn be used to dynamically update the
weight matrix during the embedding. This decomposition
into pointwise indices, can be done in several ways.
For example, a rank-one approximation of the form
||E — CCTH ; @ € XL with non-negativity constraints
on the enries in ¢ can be an option, and non-negative
matrix factorization (NMF) can be used to achieve this.
However, an NMF update is not a good choice, as we
would like to have updates with an inverse relation between
the pairwise error and the point-wise indices such that,
v(eiscj) — 0; as WizdF;(X) — oo, and hence we prefer
multiplicative updates over the weight, instead of additive
updates.

Another important issue, is the domain of the point-
wise indices to which the search space is restricted to. We
would suggest that ¢}s are restricted to R®* Vi. Finally,
we perform a regularized M-Estimation to estimate the
point-wise indices in this framework.

This gives us the following updates at iteration, t in
its basic form:

arg min 2
B
arg min Z’y 5 et ] 3)

where Ef; = 7, . Whd;; (X*)2 with X* being the mini-
mizer of eqn 2 under a constralnt that X is not a matrix of
all zeros.

W:JH is updated using a functional of the point wise in-
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dices as

We minimize (2) iteratlvely, and learn a new weight matrix
based on the error at every iteration using 3 & 4.

The next two sections build over these updates shown
above, taking the issues of regularization, convergence and
robustness into consideration.

3 Unified Iterative Framework for
Nonlinear Dimensionality Reduction

In this section, we propose majorization-minimization
based iterative updates and a linear constraint for nonlin-
ear dimensionality reduction over the loss function given
below:

arg min Z Wi; d2 (®)]

The above function can be represented as a trace optimiza-
tion problem as follows:

arg min O(X) = Tr[XTLX]

L=D-W;Dj=—Y wj 6)

L is also known as the graph laplacian. We build a ma-
jorization function (13)), (14) over the above model, based
on the fact that [2Diag[L] — L] is diagonally dominant.
This leads, to the following inequality for any matrix M,y

(X — M)T[2Diag[L] - L)(X = M) =0 ()

and this inequality was used by Trosset, in [4], in a different
context; to have a faster algorithm, as a substitution to the
Guttman majorization based MDS. We get the following
majorization inequality over our objective function in (5),
by separating it from (6) using

g(X, M) = Tr[XT2Diag(L)X]|—2Tr[X T (2Diag(L)—L)M
as
Tr(XTLX) + g(X, M) ®)
which is quadratic in X where,
f(M) =Tr(M*LM) — Tr(M*2Diag(L)M)

Hence, we achieve the following bound over our objective
function:
Tr(XTLX)+ f(M) < g(X,M),VX #M
= g9g(X,X), X=M
that satisfies the supporting point requirement, and hence
g(.) touches the objective function at the current iter-

ate and the following majorization-minimization iteration
holds true:

X! — arg min g(X, M?) and M = X*
p's

Also, L;; can be replaced byL;;.7(c;, ¢;) without loss of
any generality. It is important to note that these inequalities
occur amongst the presence of additive terms that are in-
dependent of X unlike a typical majorization-minimization
framework and hence, it is a relaxation.

3.1 A Novel linear constraint for dimensionality
reduction:

We now propose a linear constraint for nonlinear dimen-
sionality reduction over the quadratic loss function pro-
posed in (7). Our constraint prevents degenerate solutions,
where the rows(or columns) of X coincide thereby prevent-
ing d;;(X) from going to zero. Its linearity, makes it easier
to practically enforce it due to the quadratic nature of the
loss function.

Row Unique Matrix: A matrix M is row-unique, if all the
rows in the matrix are distinct.

Proposition: For any row-unique matrix M,,,, and
for any given Laplacian matrix Ly, ,, if Tr(XTLM) # 0,
then there exist at least two rows in X, ,, that are

distinct. Tr(XTLM) = > icj Wij¢ij (X, M) where,
(]5ij(X7 M) = Zzl(fbm - l‘ja)(mm - mja) Hence,

for a row unique M, there exists at least two rows in X,
such that z; # z; in order to satisfy the inequality on
Tr(XTLM) . Note that, (X, X) = d?j(X)

We define our constraint in its basic form for nonlinear di-
mensionality reduction as follows:

Tr(XTSM) =v 9)

where v > 0 is a user-defined constant and S = n~ 11 —
T is the graph laplacian, with all the weights being one.
As aresult of g(.) being a quadratic majorizer we have

lim ||Xt+1 - MtH —0
t—o0

]as a result of which, we have the following over ¢(.) in our

linear constraint
tlim ¢ij(Xt+17 Mt) — dZZJ(X) eRt

and hence we require that v be non-negative inorder to
simultaneously achieve convergence and enforce regular-
ization.

The following is the total loss function, T'(.) obtained when
the constraint is combined with our majorizing function
9(.), defined in (7) with X being a positive multiplier over
the constraint:

T(X,A) =g(X, M)+ \[Tr(X"SM)—v] (10
The gradient, is given by:

VT (X, \) = 4Diag(L)X —4Diag(L)M +2LM +ASM
(11)
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We get the following update, by setting the gradient equal
to zero.

Xi11 = M;—(0.5) [Diag(L)]"* LM;—0.25\[Diag(L)] 'S

12)
and solving for the constraint, we get the follwing update,
for the multiplier:

ATr[MTISM,;) — v) — 2Tr(M} LDiag(L)~*SM,)
Tr(MESDiag(L)~1SM,;)

)\:

(13)

My = X1 (14)

The assignment in is to construct a majorization func-
tion at the latest iterate, that is recursively minimized using
(12) and (T3). Hence, this generates updates that satisfy the
following set of inequalities.

O(Xy) < g(Xy, My—1) < g(Xy—1,X1—1) < O(Xy—1)

With every iterate, doing better than the previous, it proves
the convergence of our updates. The analytical updates
of (7,8) can be used to solve for laplacian eigenmaps in
their standard form and when the weights are computed as
(I-WT)(I-W), it becomes equivalent to solving Locally
linear embedding. Similarly, any methodology that comes
under the class of implicit mappings, like LLE, Laplacian
Eigenmaps, as classified in (16) can be solved using our up-
dates and hence acts as a unified framework for such tech-
niques.

4 Robust Multiplicative Updates

In this section, we deal with the estimation of robust point-
wise indices from the error obtained after every iteration of
eqn.s 13, 14 inorder to reweight the weights at each iter-
ation. We aim to downweight the effect of outliers during
a nonlinear embedding and help retain local information,
that is required to achieve a homeomorphic mapping of the
topology of interest. We provide majorization minimiza-
tion based updates, to perform a regularized M-estimation
of these indices with a differentiable ¢/ type robust func-
tion. We minimize the following function, that is defined
over the residual, e using a robust function p(.)

> o (eele))s ey = Wydi(X*)  (15)
X

The Geman Mcclure p(.) function and its first derivative,
which is the influence function ¢ (.) is given by:

T 2xo

P(l‘):m ;7/1(93):m (16)

Any function h(.) that is twice differentiable can be easily
majorized using its taylor expansion, if there exists a pos-
itive upper bound B, over its second derivative, such that

M,

h'(z) < B for all x as corresponding majorizer h,,, utiliz-
ing the given bound B would be, h,,(y) + k!, (v)(z —y) +

3Bz —y)?

his result is indeed useful, but it does not necessarily pro-
duce the sharpest quadratic majorizer possible. (15) sug-
gested a beautiful result for calculating a majorizer based

T M) k) K-y
v (@ —y)?

if h(.) is an even, differentiable function such that the ratio
K (x)/x is decreasing on (0, o) and the sharpest quadratic

a7)

majorizer is given by %yy) (22 —y?) +h(y). Our p(.) func-
tion in (18) does not require an alternative construction for
a majorizer as

lim M

Jim 2 =0, p(a) = p () (18)
and hence we have the following sharpest quadratic ma-

jorizer up to a constant:

e2.ocic?
Gi(e,z) =) 5 19
; (0 +z; Zj)

We majorize c? c? inorder to achieve independence of vari-

ables in @ over the gradient as required for constraint qual-
ification and hence, it also give us closed form updates in-
stead of relying on a block relaxation framework that in-
volves cyclic updates. We employ the following majorizer
that is obtained through the arithmetic-geometric mean in-
equality:

1/e\* 1 /¢ 4
202 < 22|22 i (A 2
= A [2 (Zz) +2<Zj)] 20
= Ble,2); Ve 2

Ble,e) = cc?

Be,~ also provides us with implicit positivity constraints
over? in a majorization setting where, z; = c¢;_;. Em-
ploying (22) over (21) we get the following majorizer &, (.)
over the chosen robust function:

€50 AN A

)= ; (0 +2723)? EAP (Zﬁ) T2 (Zy)
2D
We require that the entries in @ corresponding to outliers
in the data be sparse with the rest of the indices being large
and spread out. We use a combination of L; and Lo norms
with coefficients that control the tradeoff between the spar-
sity induced by the L; and the reguarization of large val-
ues with the easy to optimize Lo norm. This framework
was previously introduced to improve the performance of
the lasso, and to encourage the grouping effect among the
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predictors in the regression setting. This gives us the fol-
lowing loss function with A1,A2 being the coefficients over
the norms and &,,, being our majorizer:

e, 2) = &mle, 2) + M flelly + Az lell,  (22)

The contribution of A\; and A2 can be easily reparametrized
using a single variable o = )\1/:-2>\2 giving us the following
problem:

¢ = arg min I(c, 2) (23)
with the constraint using, 7 € R such that:

(1 =a)lefly +afelly < (24)

We majorize Y _, \/c? using a linear approximation of its
taylor expansion to deal with the L; norm as shown below:

chrzi2
21z

Em(c2) + MY +Ao Y f =E(e,2) (29
=1 1=1

We get the following first-order condition for the model in
(24):
9(C, 7)
8ci

(&)

|2:]

€7, 22
where kz - Zj;éi [(1+ZL2JZ2_)2 (?)]
%

= kch + )\1

i

This gives us the following quadratic equation which needs
to be solved at every iteration:

1 /A

2 =— (22 4200 27)

and for the model in (26) we have the following update to

obtain ¢;:

i -1

cf = ;i = a-- 2ac| such that: (28)

y= t 29)

(1= a)/VE: Y21y (VPi + api)

S Experiments

In this section, we present the results of our iterative algo-
rithm presented in section 3, along with the results of these
updates, when combined with the robust framework in sec-
tion 4. The Toroidal Helix dataset consists of a 1D curve
coiled around a helix with a small amount of noise in the
sampling along the helix. We show in Figure 1 that our it-
erative updates untangle the helix into a pefect circle. The
sequence consists of embeddings obtained in intervals of
25 iterations. It also provides an intuitive, unfolding of the
topology where every iterate does better than its previous,
due to the majorization-minimization optimization frame-
work used in our approach.

We refer to our interleaved robust technique as ’Robust
Nonlinear Embedding’ or 'RNE’ in this section. We ini-
tially tested RNE on this standard dataset, in the presence
of outliers that were uniformly generated around the topol-
ogy. Fig 2. shos the results of our expriment on this dataset
under the presence of outliers. The first image in Fig 2.
is the Torroidal Helix before adding outliers. The second
image has 5% outliers added around it. The ideal recov-
ery upon this embedding from a Homeomorphic perspec-
tive has to be a circular loop. The third image shows the
result obtained by Laplacian Eigenmap where the result is
severely distorted because of the outliers. The fourth im-
age shows the result of our RNE, which is close to the
ideal of being a circular loop. The fifth image in this se-
ries shows the monotonic convergence of the error of our
iterative embedding algorithm when applied on the non-
corrupted Torroidal Helix prior to even interleaving it with
the robust outlier correction mechanism. Figure 2; shows
that our proposed algorithm recovers the topology reason-
ably well, in comparison to Laplacian Eigenmaps in the
presence of outliers. This experiment was actually first run
on Laplacian Eigenmaps, with different neighborhood pa-
rameters, and the parameters that gave the best possible em-
bedding were chosen, and the corresponding weight matrix
was constructed. We then ran our proposed (RNE) algo-
rithm, using the weight matrix constructed above.

On another synthetic dataset called the Twin Peaks Dataset
as well we ran the algorithm and the results in Fig 3. show
the effectiveness of the embedding using RNE vs Laplacian
Eigenmaps. The ideal result of the embeddin should look
like a rectangular planar surface. The first image on the
top-left in the Fig 3. shows the Twin-Peaks Dataset with
outliers. The second image in this series in the top-right
is the result from Laplacian Eigenmaps which has been ef-
fected by the outliers and hence recovers a very distorted
rectangle instead. The third image in this series in the bot-
tom is the result of using RNE which does a much better
recovery of the ideal embedding.

For a real-life data experiment we used the famous USPS
Handwritten Digits standard dataset to measure the preci-
sion and recall of RNE over the Digit 1 corrupted with in-
creasing levels of outliers generated by uniform sampling
from the rest of the digits in this dataset. The measurements
were made using the indices generated by RNE. Indices
that were close to zero, were counted as points detected
as outliers and indices with larger values were counted as
points considered as inliers, and then these measurements
were compared with respect to the ground truth. Table 1
shows the Precision/Recall measured using this construc-
tion over a repeated series of experiments with increasing
levels of outliers. As the % of outliers increased from 10%
to 40% the precision-recall have reduced from a precision
of 98.99% and a recall of 98.5% to a precision of 87.45%
and a recall of 84.5% respectively in our detection rate
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upon the completion of the entire iterative embedding.

From a visual perspective, the Fig.4 shows the compari-
son of the embeddings recovered by Laplacian Eigenmaps
and RNE respectively. The first image shows the result of
Laplacian Eigenmaps where the outliers have been placed
relatively closer to the embedding of the 1’s. Similarly, in
some cases the outliers and inliers have got mixed up as
well, as in by being placed in close proximity to each other.
In comparison, in the second image, the 1’s have densely
amassed themselves on an arc like geometry and a vast ma-
jority of the outliers have got separated from this structure
formed by 1’s.

Empirical evidence was collected to see the effect of the
parameter v in our constraint. We used data depth, an affine
invariant, robust measure of scatter to find that the scatter
increases with increasing v to an extent, following which
the change in scatter flattens out. This finding is presented
in Fig 5 below.

Outlier % Precision/Recall
10% Outliers | 98.99 / 98.5
20% Outliers | 98.98 / 98.0
30% Outliers | 98.45/95.5
40% Outliers | 87.45/84.5

Table 1: Precision/Recall with Varying Percentage of Out-
liers
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6 Conclusion & Future Work:

In this work, we present a novel iterative algorithm for
manifold learning and then interleave the iterative frame-
work with a robust mechanism to deal with outliers dur-
ing manifold learning. Our algorithm takes the feedback of
the error observed after every iteration. As part of future
work, we would like to interleave our iterative algorithm

with other metrics that measure the error and/or quality of
manifold learning (or nonlinear dimensionality reduction)
algorithms. Some good options for such metrics were in-
troduced in (17)). We would also like to take the interleaved
iterative algorithm a step forward into the online learn-
ing setting of learning the manifold embedding where the
high-dimensional data comes in dynamically and could as
well contain unwanted outliers. We would also like to fur-
ther continue the studies on the effect our algorithm in this
problem, with real-life datasets in the settings of computer
vision, genomics, multi-manifold setting with outliers and
spatio-temporal manifold learning.
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Figure 1: Sequence of iterations, of our iterative algorithm untangling the toroidal helix
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