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A functional renormalization group application to 
the scanning tunneling microscopy experiment
José Juan Ramos Cárdenas1* and José Luis Rodríguez López2

Abstract: We present a study of a system composed of a scanning tunneling 
microscope (STM) tip coupled to an absorbed impurity on a host surface using the 
functional renormalization group (FRG). We include the effect of the STM tip as a 
correction to the self-energy in addition to the usual contribution of the host surface 
in the wide band limit. We calculate the differential conductance curves at two dif-
ferent lateral distances from the quantum impurity and find good qualitative agree-
ment with STM experiments where the differential conductance curves evolve from 
an antiresonance to a Lorentzian shape.
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1. Introduction
The coupling of the spin degree of freedom to the electronic degrees of freedom in quantum impu-
rity models leads to a variety of phenomena. One of the correlation phenomena is the Kondo effect 
arising from the spin-flip scattering between the impurity and the conduction electrons, for tem-
peratures below a characteristic Kondo temperature (TK), this scattering causes the electrons of the 
host metal to condense into a many-body ground state that collectivelly screens the local spin of the 
impurity resulting in the anomalous behavior in the resistivity, specific heat, and magnetic suscepti-
bility of the modeled system (Hewson, 1993; White, 1983). While the Kondo effect is well understood 
for impurities in solids, the scanning tunneling microscope (STM) has revealed new facets of the 
Kondo physics (Li, 1998; Madhavan, Chen, Jamneala, Crommie, & Wingreen, 1998; Néel et al., 2008; 
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Prüser et al., 2011), such as the Fano–Kondo resonance on the differential conductance when a sin-
gle magnetic impurity is placed on a metallic surface. The line shape of the observed Kondo reso-
nance in STM experiments (Aynajian et al., 2010; Jiang, Zhang, Cao, Wu, & Ho, 2011; Madhavan et al., 
1998) is not Lorentzian but has the asymmetric shape characteristic of a Fano antiresonance (Fano, 
1961; Uchoa, Yang, Tsai, Peres,  & Castro Neto, 2009). The antiresonances observed in the differential 
conductance, reflect a dip in the spectral density of conduction electrons near the Fermi level caused 
by the Kondo effect. In an STM experiment, electrons from a sharp tip tunnel into the material to be 
studied, creating a tunneling current due to the application of a potential. When a STM tip is away 
from the impurity it measures the substrate density of states; however, close to the impurity elec-
trons from the tip can tunnel directly to the impurity. The theory of STM is not trivial because elec-
trons from the tip not only tunnel to the impurity but also via the surface states i. e. we have various 
different channels of tunneling. The line shape can be explained as a result of the interference from 
the different tunneling paths: one from the STM tip to the substrate and the other from the tip to the 
impurity and then to the substrate.

In the present work, we approach the correlation problem or the on-site interaction of the impu-
rity’s electrons by the functional renormalization group (FRG) (Bartosch, Freire, Ramos-Cardenas, & 
Kopietz, 2009; Gezzi, Pruschke, & Meden, 2007; Hedden, Meden, Pruschke, & Schoenhammer, 2004; 
Jakobs, Meden, & Schoeller, 2007; Jakobs, Pletyukov, & Schoeller, 2010; Metzner, Salmhofer, 
Honerkamp, Meden, & Schoenhammer, 2012; Schuetz, Bartosch, & Kopietz, 2005). This method leads 
to an infinite set of coupled ordinary equations (ODEs) for the system’s irreducible n-particle vertex 
functions � (n). The derivation is done in such a way that the effects of high-energy modes above a 
flowing infrared cutoff parameter Λ, are incorporated before the modes below Λ. The Λ serves as a 
flow parameter that controls the RG flow of the Λ-dependent vertex functions � (n)

Λ
 from an initial 

cutoff Λi, at which all vertex functions are known to a final cutoff Λf , at which the full theory is  
recovered. Though this method is exact and in most cases not solvable, one has to truncate the infi-
nite set of ODEs for vertex functions � (n)

Λ
 with n ≥ 3. Nevertheless, the flexibility and relative simplic-

ity of the FRG can lead to useful applications in complex contexts such as the problem of the impurity 
on a metallic substrate.

In this work, we investigate the STM differential conductance of an impurity on a metallic surface 
considering the different channels of tunneling. We choose and Anderson type model (Anderson, 
1961) for the impurity, substrate, and STM tip. The STM tip has an additional feature: the tip can 
move laterally away from the impurity and the differential conductance is calculated for increasing 
lateral distances (Figure 1). In order to keep things as simple as possible, the surface and tip are 
modeled as featureless by considering a constant density of states in the wide band limit. The calcu-
lation of the self-energy (�1

Λ
) and the effective interaction (�2

Λ
) is based on the Keldysh non-equilibri-

um FRG in the static approximation.

In Section 2, we present a brief description of the Anderson type model we use, derive the correc-
tions to the self-energy in the presence of the STM tip and write the model in terms of the Keldysh 
Green functions. In Section 3, we discuss briefly the FRG in its Keldysh version. In Section 4, we dis-
cuss the parameters and the numerical results. We conclude with a discussion in Section 5.

Figure 1. STM tip coupled 
to a host surface with an 
impurity. Notes: The tunneling 
matrix elements t

12
, t
13

 and 
t
23

 represent the couplings 
tip-impurity, tip-surface and 
impurity-surface, respectively. 
The tip-impurity lateral 
distance is denoted by r.
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2. Model Hamiltonian and effective action
We consider a host material with an impurity deposited on the surface. Electrons from an STM’s tip 
can tunnel to the substrate via (a) direct tunneling tip-to-surface or (b) tunneling via tip-impurity-
surface, for a particular bias V. The system’s Hamiltonian is

where cp is the annihilation operator for electrons in the tip, ck is the annihilation operator for elec-
trons in the surface, d†

�
 and d

�
 are, respectively, the creation and annihilation operators of the elec-

trons in the impurity. In this work, we focus on an absorbed impurity, described in terms of correlated 
quantum levels: Ed = eV −

U

2
 where, if we set eV=0 this corresponds to the particle-hole symmetric 

case, U is the repulsive interaction between electrons in the impurity, and n
�
= d†

�
d
�
 is the electron 

occupation in the impurity. The tunneling parts of the Hamiltonian are

where tij is the coupling between the subsystems i  and j, with i, j = 1, 2, 3. Here the numbers 1, 2, 
and 3 denote the tip, impurity, and host surface, respectively. The tip and host surface are assumed 
to be in thermal equilibrium at the temperature T, and to have independent chemical potentials �

1
 

and �
3
 respectively, the difference between them is the bias voltage eV = �

3
− �

1
. The distribution 

functions for electrons of the tip and substrate systems are assumed to be equilibrium Fermi distri-
bution functions, f

1
 and f

3
. Electronic tunneling matrix elements t

13
 (tip-impurity) and t

23
 (substrate-

impurity) give rise to an stationary current between the tip and host surface, and between the 
impurity and host surface.

In general, the Hamiltonian (1) is a generalization of the well-known interacting Anderson Impurity 
Model. The Hamiltonian H

1
 and H

2
 in Equation (2) describe free electrons in the tip and substrate, 

respectively, while H
2
 describes the electrons in the impurity, this contains the Ed levels of the d 

electrons plus the interaction term Un
↑
n
↓
, here we assume the simplest case of an isolated atomic 

impurity state of energy Ed, which has at the most double occupancy with a spin ↑ and a spin ↓ elec-
tron. The Hamiltonians H

12
 and H

23
 describe the d levels of the impurity hybridized with the conduc-

tion electrons in the tip and the host surface, respectively. The Hamiltonian H
13

 describes the 
hybridization between the electrons in the tip and those of the host surface. To get some insight into 
the model, let us consider the case where the hybridization energies are set equal to zero, tij = 0. 
Since the d electrons are uncoupled from the conduction electrons in the tip and the host surface. 
There are three energy configurations for the states in the impurity: zero occupation with total  
energy E

0
= 0, single occupation with energy E

1�
= Ed and double occupation with total energy 

E
2
= 2Ed + U. If the ground state corresponds to single occupation then the state has twofold  

degeneracy corresponding to 1/2 spin. It will have associated magnetic moments which will give a 
Curie law contribution to susceptibility. The other two configurations are no magnetic. This is the so 
called atomic limit. When we set the hybridization energies tij ≠ 0 the impurity-level energy is  
degenerate with the conduction electron energy levels in the host surface and the tip. In this work 

(1)H = H
1
+ H

2
+ H

3
+ H

12
+ H

13
+ H

23
,

H
1
=
∑
p

�pc
†

p�cp� ,

H
2
=
∑
�

Edd
†

�
d
�
+ Un

↑
n
↓
,

H
3
=
∑
k

�kc
†

k�
ck� .

(3)

H
12

=
∑
p,�

(t
12
c†p�d� + t12d

†

�
cp�),

H
13

=
∑
k,p,�

(t
13
c†
k�
cp� + t13c

†

p�ck�),

H
23

=
∑
k,�

(t
23
c†
k�
d
�
+ t

23
d†

�
ck�),

(2)
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we assume the hybridizations tij are small compared to U, Therefore, we expect the ground states of 
the impurity to be essentially the same of the atomic limit.

The contributions from the substrate and the tip to the self-energy of the impurity’s Green func-
tion can be calculated from the inverse free retarded Green’s function Q(�) ≡ [g(�)]−1. On the real 
frequency axis Q(�) is given by Q(𝜔) = 𝜔� − Ĥ

0
, where Ĥ

0
 is the noninteracting part of the 

Hamiltonian. Written as a matrix Q(�) is given by

 where

  

The inverse of Q
�
(�) can be calculated using

  

The free Green’s function on the impurity is obtained from the element

here one can identify the matrix blocks A = � − Ed, B =
[
t
12
t
23

]
, C =

[
t∗
12
t∗
23

]T
 and

after some Matrix Algebra one can obtain an expression for the Green’s function:

where the renormalized tunneling energy between the tip and the impurity is given by

The different contributions to the self-energy are depicted in Figure 2. The vertices t
12

, t
23

, and t
13

 
represent the interaction between electrons in the tip-impurity, impurity-host surface, and tip-host 
surface, respectively. The Green’s functions for free electrons in the impurity, host surface and tip are 

(4)gd�(�) =
[
Q

�
(�)

]−1
1,1
,

(5)D =

[
� − Ed t

13

t∗
13

� − �k

]
,

(6)gd𝜎(𝜔) =

(
𝜔 − Ed −

∑
k

|t
23
|2

𝜔 − 𝜖k
−
∑
p

|t̃
12
|2

𝜔 − 𝜖p

)−1

,

(7)t̃
12

= t
12

−
∑
k

t
23
t∗
13

𝜔 − 𝜖k + i𝛿
+
.
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represented by a black, red, and blue lines. The self-energy has the contributions from the substrate 
and tip represented by the diagram with a red line and the diagram with a blue line, respectively, 
where the renormalized hybridization t̃

12
 is represented with a square with an entering blue line and 

a leaving black line. The first term in the self-energy derives from the hybridization of the electrons 
in the impurity with the conduction sea of the host metal while the second derives from the hybridi-
zation of the electrons with the conduction sea of the tip of the STM.

We model the tip-impurity, tip-surface, and impurity-surface couplings, respectively, by considering

 

We treat the substrate in the wide band limit with a constant density of states �
3
 and assume the 

coupling between the substrate and the impurity does not depend on momentum and spin, and the 
substrate contribution to the self-energy is

where Γ
3
= 2�|t0

23
|2�

3
. The renormalized tunneling t̃

12
 is calculated by using

where R(r,�) and I(r,�) denote the corresponding real and imaginary parts given by

and

(8)t
12

= t0
12
e−r∕r0 ,

(9)t
13

= t0
13
eik⋅r ,

(10)t
23

= t0
23
,

(11)
∑
k

|t
23
|2

� − �k + i�
+
= −i

Γ
3

2
,

(12)
∑
k

t∗
13

� − �k + i�
+
= R(r,�) + iI(r,�),

(13)R(r,�) = �
3 ∫

1

−1

dx

�

D
− x

(
�

D
− x)2 + �

2
J
0
(kFr

√
1 + x),

(14)I(r,�) = −��
3
J
0

(
kFr

√
1 +

�

D

)
,

Figure 2. The Green functions of 
the impurity g(�), substrate gk(�)
, and tip g

p
(�). Notes: Feynman 

diagrams for the hybridizations 
t
23

, t
12

 and t
13

. The self-energy 
�
tun

 include two tunneling 
events: an electron can tunnel 
from the impurity to the 
substrate and from the impurity 
to the tip. The interaction t̃

12
 

contains the physical event that 
an electron from the tip jump 
to the surface and then to the 
impurity.
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with kF being the Fermi wave number and D the band width. In the wide band limit, the real part R 
and the imaginary part I reduce to

and

We work in terms of the non-equilibrium Keldysh Green functions therefore expressions are written 
in a matrix form.

Integrating out the tip and surface electrons, we obtain an effective action for the interacting 
electrons for the electrons in the impurity.

where the set of indices � =
{
k
�
,�

�
, �

�

}
 contain the Keldysh index, frequency, and spin, and  

repeated indices are summed or integrated over. In this work, we use the triangular representation 
of the Keldysh–Green’s functions

and the self-energy

The Keldysh-Green’s function in the triangular representation couple together the retarded,  
advanced, and Keldysh Green’s functions Gr

�
, Ga

�
 and Gk

�
. The direct antysymmetrized electron–elec-

tron vertex is given by

The free retarded Green’s function of the impurity can be written as

where Γ̃
1
= 2𝜋𝜌

1

[
Imt̃

12
(r,𝜔)

]2
 with �

1
 the (STM) tip’s density of states and q = M∕N is the Fano 

parameter with M = Ret̃
12
(r,𝜔) and N = Imt̃

12
(r,𝜔). The advanced Green function Ga

�
 and the 

Keldysh Green function Gk
�
 are given by

(15)R(r) = �
3

k2F r
2

2
,

(16)I(r) = −��
3
J
0

(
kFr

)
.

(17)S[d̄,d] = d̄
𝛼

[
G−1

0

]
𝛼𝛽
d
𝛽
−
1

4
𝜈
𝛼𝛽𝛾𝛿

d̄
𝛼
d̄
𝛽
d
𝛾
d
𝛿
,

(18)G
�
=

(
Gr
�

Gk
�

0 Ga
�

)
,

(19)
Σ
�
=

(
Σr
�

Σk
�

0 Σa
�

)
.

(20)
𝜈
𝛼,𝛽,𝛾 ,𝛿

= 2𝜋𝛿
�
𝜔

𝛼
+ 𝜔

𝛽
− 𝜔

𝛾
+ 𝜔

𝛿

�
U

2

�
𝛿
𝜎
𝛼

𝛿
𝜎
𝛾

𝛿
𝜎
𝛽

𝛿
𝜎
𝛿

− 𝛿
𝜎
𝛼

𝛿
𝜎
𝛿

𝛿
𝜎
𝛽

𝛿
𝜎
𝛾

�
𝛿
𝜎̄
𝛼
𝜎
𝛿

×

⎛⎜⎜⎜⎜⎝

�
0 1

1 0

�

𝛼,𝛾

�
1 0

0 1

�

𝛼,𝛾�
1 0

0 1

�

𝛼,𝛾

�
0 1

1 0

�

𝛼,𝛾

⎞⎟⎟⎟⎟⎠
𝛽,𝛿

,

(21)

gr
𝜎
(𝜔) =

(
𝜔 − 𝜖d + i

Γ
3

2
+ i

Γ̃
1

2

{
q2 + 1

})−1

, (22)

ga
�
(�) = gr

�
(�)∗,

gk
�
(�) = gr

�
(�)Σktung

a
�
(�),

(23)

(24)
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with

3. Functional renormalization group
After integrating out the tip and surface, we treat the problem of the interacting electrons in the 
impurity with the functional renormalization group. We use the Keldysh formulation developed in 
Jakobs et al. ( 2007). We use the hybridization to an auxiliary tip, Λ, as the flow parameter and trun-
cate the hierarchy of FRG equations at second order.

The functional renormalization group is set up by making the bare Green’s function grd� as depend-
ing on a flow parameter Λ

Most commonly Λ is chosen to suppress Low-energy degrees of freedom. Being functionals of the 
bare Green’s function gr

�
, the retarded Green’s function gr

�
 and higher vertex functions acquire a Λ 

dependence as well, which are described by an infinite hierarchy of coupled flow equations. In the 
Keldysh version of the functional renormalization group we need to express the Green’s functions as 
matrices

The exact FRG flow equation (Figure 3) for the irreducible vertices can be obtained from the gen-
eral FRG flow equations given in Metzner et al. (2012), Schuetz et al. (2005), Bartosch et al. (2009), 
Jakobs et al. (2007, 2010), Gezzi et al. (2007).

while the four-point vertex or effective interaction

where the single-scale propagator is given by

(25)Σrtun = −iΓ̃
1
(r,𝜔) − iΓ

3
,

Σktun(𝜔) = −i
[
1 − 2f

1
(𝜔)

]
Γ̃
1
(r,𝜔) − i

[
1 − 2f

3
(𝜔)

]
Γ
3
,

fj =
1

e(𝜔−𝜇j )∕Tj + 1
.

(28)gr
𝜎Λ
(𝜔) =

(
𝜔 + i

(Γ
3
+ Λ)

2
+ i

Γ̃
1

2

{
q2 + 1

})−1

.

(29)𝜕
Λ
𝛾
(1)

Λ,𝛼
1
𝛼
2

= ∫
𝛽
1

∫
𝛽
2

̇[G
Λ
]
𝛽
1
𝛽
2

𝛾
(2)

Λ,𝛽
1
𝛽
2
𝛼
1
𝛼
2

,

(30)𝜕
Λ
𝛾
(2)

Λ,𝛼
1
𝛼
2
𝛼
3
𝛼
4

= ∫
𝛽
1

∫
𝛽
2

∫
𝛽
3

∫
𝛽
4

̇[G
Λ
]
𝛽
1
𝛽
2

[G
Λ
]
𝛽
3
𝛽
4

𝛾
(2)

Λ,𝛽
2
𝛽
3
𝛼
3
𝛼
4

𝛾
(2)

Λ,𝛽
4
𝛽
1
𝛼
1
𝛼
2

,

Figure 3. Flow equations. Notes: 
The dots over the vertices 
indicate a derivative with respect 
to the flow parameter �, the lines 
connecting different vertices 
are different Green’s functions 
in the Keldysh formalism. Each 
of the Green’s functions have a 
contribution from the self-energy 
in Figure 2 which is denoted by 
a contribution � to the Green’s 
function.

(26)

(27)
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the elements of this matrix are

with the effective distribution function

and the total hybridization

The equation for the self-energy Equation (29) is after integration

and for the effective interaction is

Once the self-energy and the vertex function are determined at the end of the FRG flow, we obtain 
the differential conductance. We assume that STM tip and the absorbate–substrate complex are 
each in local equilibrium and use the formula for the calculation of the differential conductance 
given in Plihal and Gadzuk (2001).

where e is the electron charge, q the Fano parameter, eV the applied bias and

Here � is the dimensionless energy parameter, and the term

is the contribution from the tip and surface states that couple to the impurity. The formula for the dif-
ferential conductance is valid for arbitrary interaction U ≠ 0 in the Hamiltonian H

2
 and hold in the 

Kondo and mixed-valent regimes of the model. The properties of the impurity enter through the impu-
rity Green function G

�
. The problem is thus reduced to finding the one-electron Green’s function G

�
.

4. Parameters and numerical results
In our Calculation, we take Γ

3
 as the energy scale, the impurity on-site interaction U = 10Γ

3
, tip 

chemical potential �
1
= −eV∕2, host chemical potential �

3
= eV∕2 and decaying factor of t

12
, 

(31)Ġ
Λ
= −G

Λ
(𝜕

Λ
[g

Λ
]−1)G

Λ
,

(32)

Ġr
𝜎Λ
(𝜔) = −

i

2
[Gr

𝜎Λ
(𝜔)]2,

Ġa
𝜎Λ
(𝜔) = Ġr

𝜎Λ
(𝜔)∗

Ġk
𝜎Λ
(𝜔) = −i

[
1 − 2feff (𝜔)

]
Gr
𝜎Λ
(𝜔)Ga

𝜎Λ
(𝜔),

(33)
feff (�) =

∑
j

Γj

Γ
fj(�),

(34)Γ = Γ
1
+ Γ

3
.

(35)
𝜕
Λ
Σrd𝜎 =

Ū

2𝜋

∑
i

Γi

Γ

Σ
𝜎
− 𝜇i(

Σ
𝜎
− 𝜇i

)2
+ (Λ + Γ)2

,

(36)𝜕
Λ
Ū =

Ū2

𝜋

∑
i

Γi

Γ

(
Σ
𝜎
− 𝜇i

)2
((

Σ
𝜎
− 𝜇i

)2
+ (Λ + Γ)2

)2 .

(37)dI

dV
= 2�e�

1

∑
�

∣ N ∣2

ImΣr
�
(eV)

q2 − 1 + 2q�
�

�
2

�
+ 1

,

(38)�
�
= −[� − Ed − ReΣ

r
�
(eV)]∕ImΣr

�
(eV).

(39)

∣ N ∣2

ImΣr
�
(eV)

,
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r
0
= 1∕kF. The factor t

23
 is taken as Γ

3
∕
√
10 and the ratio t

12
∕t
13

= 1.5. The parameter r
0
 controls 

how fast the coupling t
12

 decays in space when the tip moves away from the adatom. We take equal 
to k−1F . Hereafter k−1F  is used as a length scale. With these parameters, the equations for the self- 
energy and effective interaction (35 and 36) are solved numerically. Figures (4) and (5) show the dif-
ferential conductance at different lateral distances. We notice that for short distances, the line 
shape of the differential conductance is an antiresonance. Nevertheless as the distance of the STM 
distance is increased, the line shape becomes more symmetric and a positive Lorentzian is devel-
oped. This can be explained in terms of the amplitude of the interference from the different channels 
produce the asymmetric form in the differential conductance on and near the impurity becoming a 
Lorentzian when the tip is away from the impurity. The differential curves reproduce qualitatively the 
form of the differential conductance when changing its shape from a antiresonance to a Lorentzian 
shape in different STM experiments but fail to reproduce the strong coupling limit since the static 
approximation is not sufficient. For a more realistic calculation we have to consider the electronic 
structure of the surface rather than the very crude wide band limit. In a future work, we would like 
to extend our calculation to a non-static approximation.

Figure 5. The differential 
conductance for r = 2 in units 
of k−1

F
. A positive Lorentzian is 

developed when the STM tip is 
away from the impurity.

Figure 4. The differential 
conductance for r = 0 in units 
of k−1

F
. A negative differential 

conductance develops over the 
whole range.
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5. Discussion and conclusions
We have studied a microscopic theory of a single impurity on a surface starting from the single im-
purity Anderson model-type Hamiltonian which contains the tip of an STM modeled by a continuum 
band of electrons coupled to the impurity and to the host surface. We have derived perturbatively 
expressions for the correction to the self-energy due to the presence of the tip. This correction has 
been added to the non-interacting Green’s function which in turn has been used in the functional 
renormalization group in order to calculate the self-energy of the quantum impurity. The calculation 
of the self-energy has been performed numerically in the case where the on-site energy U is much 
larger than the hybridization energy Γ

3
.

We have used the functional renormalization group FRG in its Keldysh version that allows to cal-
culate numerically the retarded self-energy as a function of the lateral distance.

In this work, we have made extreme simplifications regarding to the electrons in the tip and the 
host surface which we consider as a gas of free electrons. A material-specific electronic structure 
calculation combined with the strongly correlated method FRG is needed. For example in the work 
Ujsaghy, Kroha, Szunyogh, and Zawadowski (2001), the authors perform calculations using the 
semi-relativistic, screened Korringa–Kohn–Rostoker method in combination with Non-Crossing 
Approximation obtained an oscillating line shape with the known Fermi wave numbers of the host-
surface. Since in our model the host-surface is structureless we do not obtain such an oscillating line 
shape. Thus, we expect a quantitative distance dependence of the line shape sensitive to details of 
the conduction band structure. Instead we obtain a qualitative change when we go from long dis-
tances to small distances where the differential conductance changes from an antiresonance to a 
Lorentzian as the STM moves away from the impurity. We notice that as the distance of the STM tip 
to the impurity is increased, the lineshape becomes more symmetric and a positive Lorentzian is 
developed this indicates that the interference between the tip and the impurity is fading away. This 
means that in Equation (37) the Fano parameter q is becoming large and positive giving rise to a 
positive Lorentzian. This feature is a characteristic of any theory that starts with free electron 
wavefunctions.

The differential conductance at r = 0 in Figure (4) is negative in the whole range since we have 
taken a structureless surface leading to a Fano parameter which is really small. Physically this means 
that the contribution from the electrons scattering from the tip to the surface and then from the 
surface to the impurity is big compared to the contribution of the self-energy, at least in this 
model.

Our results reproduce qualitatively the features observed in experiments of differential conduct-
ance when the differential conductance changes from an antiresonance to a Lorentzian shape of a 
quantum impurity measured with an STM (Schneider et al., 2005).
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