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Abstract: By the means of the Green’s function, the boundary value problem of fractional differential equa-
tion can be reduced to the equivalent integral equation. Recently, this method is used successfully to discuss
the existence of the solution to boundary value problem of nonlinear fractional differential equation. By ap-
plying Carathéodory conditions and continuous condition on the nonlinear terms f , we obtain an existence
results for solution. Our analysis relies on the concept of measures of noncompactness, the Mönch′s fixed
point theorem and the Schaefer’s fixed point theorem. Example is provided to illustrate the theory.
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1 Introduction
This paper is mainly concerned with the existence of solutions of boundary value problems (BVP for short) for a nonlinear
fractional differential equation

cDq
0+u(t) = f(t, u(t)), t ∈ J := [0, T ]. (1)

u(0) + β

∫ T

0

u(s)ds = u(T ), (2)

where 0 < q ≤ 1 is a real number, cDq
0+ is the Caputo’s fractional derivative, f : J×R → R is a given function satisfying

some assumptions that will be specified later, and R is a Banach space with norm ∥ · ∥, β > 0 is real number.
In the last few years, fractional differential equations (in short FDEs) have been studied extensively. The motivation

for those works stems from both the development of the theory of fractional calculus itself and the applications of such
constructions in various sciences such as physics, mechanics, chemistry, engineering, and so on. For an extensive collec-
tion of such results, we refer the readers to the monographs by Kilbas et al [1], Miller and Ross [2], Oldham and Spanier
[3], Podlubny [4] and Samko et al [5].

Some basic theory for the initial value problems of FDE involving Riemann-Liouville differential operator has been
discussed by Lakshmikantham [6–8], Babakhani and Daftardar-Gejji [9–11] and Bai [12], and so on. Also, there are some
papers which deal with the existence and multiplicity of solutions(or positive solution) for nonlinear FDE of BVPs by
using techniques of nonlinear analysis(fixed-point theorems, Leray-Shauder theory, topological degree theory, etc.). see
[13], [14], [15]–[19], [21], [22], [24]–[26] and the references therein.

In [15], based on the Krasnoselskii′s fixed point theorem and Leggett-Williams fixed point theorem, Bai and Lü
obtained positive solutions of the two-point BVP of FDE

Dq
0+u(t) + f(t, u(t)) = 0, u(0) = u(1) = 0, 0 < t < 1, 1 < q ≤ 2.

Dq
0+ is the standard Riemann-Liouville fractional derivative.
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In [19], Daftardar-Gejji extended the results in [24] to show the existence of at least one positive solution of the system
of fractional differential equations

Dqiui = fi(t, u1, u2, · · · , un), ui(0) = 0, 0 < qi < 1, 1 ≤ i ≤ n.

In [25, 26], Zhang discussed the existence of solutions of the nonlinear FDE

cDq
0+u(t) = f(t, u(t)), 0 < t < 1, 1 < q ≤ 2. (3)

with the boundary conditions
u(0) = v ̸= 0, u(1) = ρ ̸= 0, (4)

u(0) + u′(0) = 0, u(1) + u′(1) = 0, (5)

respectively. Since conditions (4) and (5) are nonzero boundary values, the Riemann-Liouville fractional derivative Dq
0+

is not suitable. Therefore, the author investigated the BVPs (3)-(4) and (3)-(5) by involving in the Caputo fractional
derivative cDq

0+.
From above works, we can see a fact, although the BVPs of nonlinear FDE have been studied by some authors, to the

best of our knowledge, under the noncompactness measure condition of nonlinearity f(t, u), it is seldom considered for
FDE. Motivated by the above mentioned work, the main aim of this paper is to study the existence of the problem (1)-(2)
under the new conditions via applying the specified Kuratowski measure of noncompactness and Mönch′s fixed point
theorem.

The remainder of this article is organized as follows. In Section 2, we provide some basic definitions, preliminaries
facts and various lemmas which will be used throughout this paper. In Section 3, we give main result of the problem
(1)-(2). The last section is devoted to an example illustrating the applicability of the imposed conditions. The result can
be considered as a contribution to this emerging field.

2 Preliminaries and lemmas
Let J := [0, T ]. By C(J,R) denote the Banach space of all continuous mapping u : J → R with norm ∥u∥∞ :=
sup{∥u(t)∥ : t ∈ J}. L1(J,R) denote the Banach space of measurable functions u : J 7→ R which are Bochner
integrable, equipped with the norm ∥u∥L1 :=

∫
J
∥u(t)∥dt. L∞(J,R) be the Banach space of measurable functions

y : J 7→ R which are Bounded, equipped with the norm ∥y∥L∞ := inf{c > 0 : ∥y(t)∥ ≤ c, a.e. t ∈ J}. AC1(J,R) be
the space of functions y : J 7→ R, whose first derivative is absolutely continuous. Moreover, for a given set V of functions
v : J 7→ R, let us denote by V (t) = {v(t), v ∈ V }, t ∈ J , and V (J) = {v(t) : v ∈ V, t ∈ J}.

Definition 1 A map f : J × R 7→ R is said to be Carathéodory if f satisfying the following conditions:

(i) for each u ∈ R, the mapping f(·, u) : t ∈ J 7→ f(t, u) is measurable;

(ii) for almost all t ∈ J , the mapping f(t, ·) : u ∈ R 7→ f(t, u) is continuous.

Definition 2 [1, 4] The fractional order integral of the function h ∈ L1([a, b],R+) of order α ∈ R+ is defined by

Iαa h(t) =

∫ t

a

(t− s)α−1

Γ(α)
h(s)ds,

where Γ is the gamma function. When a = 0, we write Iαh(t) = [h ∗ φα](t), where φα(t) = tα−1

Γ(α) for t > 0, and
φα(t) = 0 for t ≤ 0, and φα → δ(t) as α → 0, where δ is the delta function.

Definition 3 [1, 4] For a function h given on the interval [a, b], the αth Riemann-Liouville fractional-order derivative of
h, is defined by

(Dα
a+h)(t) =

1

Γ(n− α)

( d

dt

)n ∫ t

a

(t− s)n−α−1h(s)ds.

Here n = [α] + 1 and [α] denotes the integer part of α.
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Definition 4 [1, 4] For a function h given on the interval [a, b], the Caputo fractional-order derivative of order α of h, is
defined by

(cDα
a+h)(t) =

1

Γ(n− α)

∫ t

a

(t− s)n−α−1h(n)(s)ds,

where n = [α] + 1.

Definition 5 A function u ∈ AC1(J,R) whose q-derivative exists on J is said to be a solution of the problem (1)–(2) if u
satisfies the equation cDq

0+u(t) = f(t, u(t)) on J , and satisfy the condition (2).

Definition 6 [20] Assume that S is a bounded set in R. Let
α(S)=inf

{
δ > 0 : S can be expressed as the union S =

∪m
i=1 Si of a finite number of sets Si with diameter

diam(Si) ≤ δ
}

.

α(S) is said to be the Kuratowski measure of noncompactness and is called the noncompactness measure for short.
For details and properties of the noncompactness measure see [20].

The following lemmas are of great importance in the proof of our main results.

Lemma 1 [23] Let D be a bounded, closed and convex subset of a Banach space such that 0 ∈ D, and let A be a
continuous mapping of D into itself. If the implication

V = convA(V ) or V = A(V ) ∪ {0} ⇒ α(V ) = 0.

holds for every subset V of D, then A has a fixed point.

Lemma 2 [23] Let D be a bounded, closed and convex subset of the Banach space C(J,E), G a continuous function on
J ×J , and a function f : J ×E → E which satisfies the Carathéodory conditions, and there exists p ∈ L1(J,R+) such
that for each t ∈ J and each bounded set B ⊂ E one has

lim
k→0+

α
(
f(Jt,k ×B)

)
≤ p(t)α(B); where Jt,k = [t− k, t] ∩ J.

If V is an equicontinuous subset of D, then

α
(
{
∫
J

G(s, t)f(s, y(s))ds : y ∈ V }
)
≤

∫
J

∥G(t, s)∥p(s)α(V (s))ds.

Lemma 3 [26] Let α > 0, then differential equation
cDα

0+u(t) = 0,

has solutions

u(t) = C0 + C1t+ C2t
2 + · · ·+ Cn−1t

n−1 , Ci ∈ R, i = 0, 1, 2, · · · , n. n = [α] + 1.

Lemma 4 [26] Assume that h ∈ C[0, 1] ∩ L(0, 1) with a derivative of order q that belongs to C[0, 1] ∩ L(0, 1). Then

Iq0+
c
Dq

0+h(t) = h(t) + c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1

for some ci ∈ R, i = 0, 1, 2, . . . , n− 1, where n is the smallest integer greater than or equal to q.

Lemma 5 Let h(t) ∈ C(J,R) and 0 < q ≤ 1, then the unique solution of
cDq

0+u(t) = h(t), 0 < t < T, (6)

u(0) + β

∫ T

0

u(s)ds = u(T ), 0 < β ∈ R. (7)

is given by

u(t) =

∫ T

0

G(t, s)h(s)ds, (8)

where G(t, s) is the Green’s function given by

G(t, s) =


qT (t−s)q−1−(T−s)q

TΓ(q+1) + (T−s)q−1

βTΓ(q) , if 0 ≤ s ≤ t ≤ T,

−(T−s)q

TΓ(q+1) + (T−s)q−1

βTΓ(q) , if 0 ≤ t ≤ s ≤ T,
(9)
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Proof. By the Lemma 4, we can reduce the equation of problem (6) to an equivalent integral equation

u(t) = Iq0+h(t)− c0 = −c0 +
1

Γ(q)

∫ t

0

(t− s)q−1h(s)ds. (10)

for some constants c0 ∈ R.
Applying the boundary conditions (7) , we have

c0 =
1

T

∫ T

0

[
(T − s)q

Γ(q + 1)
− (T − s)q−1

βΓ(q)

]
h(s)ds.

Therefore, the unique solution of problem (6)-(7) is

u(t) = −c0 +
1

Γ(q)

∫ t

0
(t− s)q−1h(s)ds

= − 1
T

∫ T

0

[
(T−s)q

Γ(q+1) −
(T−s)q−1

βΓ(q)

]
h(s)ds+ 1

Γ(q)

∫ t

0
(t− s)q−1h(s)ds

=
∫ t

0

[
qT (t−s)q−1−(T−s)q

TΓ(q+1) + (T−s)q−1

βTΓ(q)

]
h(s)ds+

∫ T

t

[
−(T−s)q

TΓ(q+1) + (T−s)q−1

βTΓ(q)

]
h(s)ds

=
∫ T

0
G(t, s)h(s)ds.

which completes the proof.

Remark 1 From the expression of G(t, s), it is obvious that G(t, s) is continuous on J × J . Denote by

G∗ = sup
{
∥G(t, s)∥ : (t, s) ∈ J × J

}
.

3 Main results
In this section, we present and prove our main results. The first result is based on concept of measures of noncompactness
and Mönch′s fixed point theorem.

Theorem 1 Assume that:

(H1) The function f : J × R 7→ R satisfies the Carathéodory conditions.

(H2) There exists pf ∈ L∞(J,R+), such that
∥f(t, u)∥ ≤ pf (t) · ∥u∥, for a.e. t ∈ J and each u ∈ R.

(H3) For almost each t ∈ J and each bounded set B ⊂ R. one has

lim
k→0+

α
(
f(Jt,k ×B)

)
≤ pf (t) · α(B); where Jt,k = [t− k, t] ∩ J.

If

G∗
∫ T

0

pf (s)ds < 1. (11)

then the problem (1)-(2) has at least one solution on J .

Proof. Let the operator A : C(J,R) → C(J,R) defined by the formula

(Au)(t) :=

∫ T

0

G(t, s)f(s, u(s))ds. (12)

Where G(t, s) is given by (9). It is well known the fixed points of the operator A are solutions of the problem (1)-(2). Let
R > 0 and consider the set DR =

{
y ∈ C(J,R) : ∥y∥∞ ≤ R

}
. It was patently obvious that DR is closed, bounded and

convex. We will show that A satisfies the assumptions of Lemma 1. The proof will be given in three steps.
Step 1: We will show that the operator A : C(J,R) → C(J,R) is continuous.
For any un, u ∈ C(J,R), n = 1, 2, 3, · · · with limn→∞ ∥un − u∥ = 0, we get

lim
n→∞

un(t) = u(t), t ∈ J.
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Thus, by the condition (H1), we have

lim
n→∞

f(t, un(t)) = f(t, u(t)), a.e. t ∈ J.

So, for a.e. t ∈ J , we can conclude that

∥f(t, un(t))− f(t, u(t))∥ → 0, as n → ∞. (13)

On the other hand,

∥(Aun)(t)− (Au)(t)∥ = ∥
∫ T

0
G(t, s) · [f(s, un(s))− f(s, u(s))]ds∥

≤
∫ T

0
∥G(t, s)∥ · ∥f(s, un(s))− f(s, u(s))∥ds

≤ G∗ ·
∫ T

0
∥f(s, un(s))− f(s, u(s))∥ds.

Hence, by (13) and the Lebesque dominated convergence theorem, we have

∥A(un)−A(u)∥∞ → 0 as n → ∞.

This means that the operator A is continuous.
Step 2: We will show that the operator A maps bounded sets DR into itself.
For each u ∈ DR, by the condition (H2) and (11), for each t ∈ J , we have

∥(Au)(t)∥ ≤
∫ T

0
∥G(t, s)∥ · ∥f(s, u(s))∥ds

≤
∫ T

0
∥G(t, s)∥ · pf (s) · ∥u∥ds

≤ RG∗ ∫ T

0
pf (s)ds

≤ R.

This means that ∥A(u)(t)∥ ≤ R, that is, the operator A maps DR into itself.
Step 3: We will show that A(DR) is bounded and equicontinuous.
By Step 2 we have A(DR) = {A(u) : u ∈ DR} ⊂ DR. Thus, for each u ∈ DR we have ∥A(u)∥∞ ≤ R which

means that A(DR) is bounded.
Now, we shall show that the equicontinuity of A(DR). Let τ1, τ2 ∈ J, τ1 < τ2 and ∀u ∈ DR, then we have the

estimate

∥A(u)(τ2)−A(u)(τ1)∥ = ∥
∫ T

0
[G(τ2, s)−G(τ1, s)] · f(s, u(s))ds∥

≤
∫ T

0
∥G(τ2, s)−G(τ1, s)∥ · pf (s) · ∥u∥ds

≤ R∥pf∥∞
∫ T

0
∥G(τ2, s)−G(τ1, s)∥ds.

Since G(t, s) is continuous in J × J , as τ1 → τ2, we can conclude that the right-hand side of the above inequality tends
to zero.

Now let V be a subset of DR such that V ⊂ conv
(
N(V ) ∪ {0}

)
. V is bounded and equicontinuous and therefore

the function v → v(t) = α(V (t)) is continuous on J . By the condition (H3), Lemma 2 and the properties of the
noncompactness measure, we have, for each t ∈ J ,

v(t) ≤ α
(
(AV )(t) ∪ {0}

)
≤ α

(
(AV )(t)

)
≤

∫ T

0
∥G(t, s)∥ · pf (s) · α(V (s))ds

≤ ∥v∥∞ ·G∗ ∫ T

0
pf (s)ds.

which gives

∥v∥∞ ≤ ∥v∥∞ ·G∗
∫ T

0

pf (s)ds.

This means that

∥v∥∞ ·

[
1−G∗

∫ T

0

pf (s)ds

]
≤ 0.

IJNS email for contribution: editor@nonlinearscience.org.uk



W. Zhou, H. Liu: Existence Result to Boundary Value Problem for Fractional Differential Equations with Integral · · · 443

By (11) it follows that ∥v∥∞ = 0, that is v(t) = 0 for each t ∈ J , and then V (t) is relatively compact in R. By the
Ascoli−Arzelà theorem, V is relatively compact in DR. In view of lemma 1, we deduce that A has a fixed point which
is obviously a solution of the problem (1)-(2). This completes the proof.

The second result is based on Schaefer’s fixed point theorem.

Theorem 2 Assume that:
(H4) The function f : J × R 7−→ R is continuous.
(H5) There exists a constant M > 0 such that

∥f(t, u)∥ ≤ M for each t ∈ J and all u ∈ R.

then the problem (1)-(2) has at least one solution on J .

Proof. We shall use Schaefer’s fixed point theorem to prove that A defined by (12) has a fixed point. The proof will be
given in several steps.

Step 1: A is continuous.
Let un, u ∈ C(J,R), n = 1, 2, 3, · · · with limn→∞ ∥un − u∥ = 0. Then for each t ∈ J we get

∥(Aun)(t)− (Au)(t)∥ = ∥
∫ T

0
G(t, s) · [f(s, un(s))− f(s, u(s))]ds∥

≤
∫ T

0
∥G(t, s)∥ · ∥f(s, un(s))− f(s, u(s))∥ds

≤ G∗ · ∥f(·, un(·))− f(·, u(·))∥∞.

Since f is a continuous function, we have

∥A(un)−A(u)∥∞ ≤ G∗ · ∥f(·, un(·))− f(·, u(·))∥∞ → 0 as n → ∞.

This means that the operator A is continuous.
Step 2: We will show that the operator A maps bounded sets into bounded sets in C(J,R).
Indeed, it is enough to show that for any η > 0, there exists a positive constant ξ > 0 such that for each u ∈ Bη ={

u ∈ C(J,R) : ∥u∥∞ ≤ η
}

, we have ∥A(u)∥∞ ≤ ξ.
By the condition (H5), for each t ∈ J , we have

∥(Au)(t)∥ ≤
∫ T

0
∥G(t, s)∥ · ∥f(s, u(s))∥ds

≤
∫ T

0
∥G(t, s)∥ ·Mds

≤ G∗ · TM.

Thus
∥A(u)∥∞ ≤ G∗ · TM := ξ.

This means that ∥A(u)∥∞ ≤ ξ, that is, the operator A maps bounded sets into bounded sets in C(J,R).
Step 3: A maps bounded sets into equicontinuous sets of C(J,R).
Let τ1, τ2 ∈ J, τ1 < τ2, Bη be a bounded set of C(J,R) as in Step 2, and let u ∈ Bη. Then we have the estimate

∥A(u)(τ2)−A(u)(τ1)∥ ≤ ∥
∫ T

0
[G(τ2, s)−G(τ1, s)] · f(s, u(s))ds∥

≤ M
∫ T

0
∥G(τ2, s)−G(τ1, s)∥ds.

Since G(t, s) is continuous in J × J , as τ1 → τ2, we can conclude that the right-hand side of the above inequality
tends to zero. As a consequence of Steps 1 to 3 together with the Ascoli − Arzelà theorem, we can conclude that
A : C(J,R) → C(J,R) is continuous and completely continuous.

Step 4: A priori bounds.
Now it remains to show that the set

ρ =
{
u ∈ C(J,R) : u = λA(u) for some 0 < λ < 1

}
.

is bounded.
Let u ∈ ρ, then u = λA(u) for some 0 < λ < 1. Thus, for each t ∈ J we have

u(t) = λ(Au)(t) = λ

∫ T

0

G(t, s)f(s, u(s))ds.
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This implies by (H3) that for each t ∈ J we have

∥(Au)(t)∥ ≤
∫ T

0
∥G(t, s)∥ · ∥f(s, u(s))∥ds

≤
∫ T

0
∥G(t, s)∥ ·Mds

≤ G∗ · TM.

Thus for every t ∈ J , we have

∥A(u)∥∞ ≤ G∗ · TM := R.

This shows that the set ρ is bounded. As a consequence of Schaefer’s fixed point theorem, we deduce that A has a fixed
point which is obviously a solution of the problem (1)-(2). This completes the proof.

4 An example

In this section we give an example to illustrate the usefulness of theorem 1.

Example 1 Let us consider the following fractional boundary value problem

cDqu(t) =
2

19 + et
u(t), t ∈ J := [0, 1], 0 < q ≤ 1, (14)

u(0) +

∫ 1

0

u(s)ds = u(1). (15)

Here f(t, u(s)) = 2
19+etu(s), (t, u) ∈ J × R, β = 1, T = 1. Clearly condition (H1), (H2) hold with pf (t) =

2
19+et .

we have

G(t, s) =


q(t−s)q−1−(1−s)q

Γ(q+1) + (1−s)q−1

Γ(q) , if 0 ≤ s ≤ t ≤ 1,

−(1−s)q

Γ(q+1) + (1−s)q−1

Γ(q) , if 0 ≤ t ≤ s ≤ 1,
(16)

From (16), we have

∫ 1

0
G(t, s)ds =

∫ t

0

[
q(t−s)q−1−(1−s)q

Γ(q+1) + (1−s)q−1

Γ(q)

]
ds+

∫ 1

t

[
−(1−s)q

Γ(q+1) + (1−s)q−1

Γ(q)

]
ds

= − tq

Γ(q+1) −
q[1−(1−t)q+1]

Γ(q+2) + [1−(1−t)q ]
Γ(q+1) − q(1−t)q+1

Γ(q+2) + (1−t)q

Γ(q+1) .

A simple computation gives

G∗ <
4

Γ(q + 1)
+

3

Γ(q + 2)
. (17)

We shall check that condition (11) is satisfied. Indeed

G∗
∫ 1

0

pf (s)ds < 1 ⇐⇒ 4

Γ(q + 1)
+

3

Γ(q + 2)
< 10. (18)

which is satisfied for some q ∈ (0, 1]. Then by Theorem 1 the problem (14)-(15) has at least one solution on [0, 1] for
values of q satisfying (18).
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