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Voltage stability assessment and control form the core function in a modern energy control centre. This
paper presents an improved Genetic algorithm (GA) approach for voltage stability enhancement. The pro-
posed technique is based on the minimization of the maximum of L-indices of load buses. Generator volt-
ages, switchable VAR sources and transformer tap changers are used as optimization variables of this
problem. The proposed approach permits the optimization variables to be represented in their natural
form in the genetic population. For effective genetic processing, the crossover and mutation operators
which can directly deal with the floating point numbers and integers are used. The proposed algorithm
has been tested on IEEE 30-bus and IEEE 57-bus test systems and successful results have been obtained.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Due to the continuous growth in the demand for electricity with
unmatched generation and transmission capacity expansion, volt-
age instability is emerging as a new challenge to power system
planning and operation. Contingencies such as unexpected line
outages in stressed system may often result in voltage instability
which may lead to voltage collapse. After a voltage collapse, the
system becomes dismantled owing to the wide spread operation
of protective devices. Unavailability of sufficient reactive power
sources to maintain normal voltage profiles at heavily loaded buses
are the prime reasons for the voltage collapse. Research efforts
have been made in understanding the phenomenon associated
with the voltage instability [1–5] and suggesting the remedial
measures to protect the power system networks against such fail-
ures [6–11]. There are two different approaches to take control ac-
tion against voltage instability: preventive and corrective control.
The preventive control involves taking preventive actions so as to
ensure that the operating point is sufficiently away from the point
of collapse under a selected set of contingencies. The corrective
control, on the other hand is activated when a contingency has oc-
curred endangering voltage stability. The main objective of this
work is to study the voltage instability problem in the framework
of the short-term operation planning, where the optimal corrective
action has to be found to improve the voltage stability by consid-
ering just the existing facilities and equipment operational limits.
ll rights reserved.
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Several approaches have been proposed in the literature to
identify the most effective action to improve the voltage stability.
Tiranuchit and Thomas [6] have proposed minimum singular value
of the load flow Jacobian as voltage stability index. The sensitivity
of the minimum singular value to power adjustments at each bus
was used to identify the VAR support needed to maintain the volt-
age profile when an increase in power flow is required. Bansilal
et al. [7] have proposed a non-linear least squares optimization
algorithm for voltage stability enhancement. They have used the
L-index proposed in [1] for voltage stability assessment. A linear
programming-based reactive power dispatch algorithm was pro-
posed in [8] for voltage stability improvement. In Ref. [9] two con-
trol methods for improving voltage stability based on the concept
of Voltage Instability Proximity Index (VIPI) have been proposed.
The first method maximizes the value of VIPI by using a Successive
Quadratic Programming method to find optimal controls in various
system conditions. The second approach determines the controls
needed to maintain the specified threshold value, based on the
sensitivities of VIPI with respect to control variables. Tare and
Bijwe [10] have reported a voltage stability monitoring and
enhancement algorithm based on the angle between P and Q gra-
dient vectors at the load bus. In this approach a simple quadratic
objective function is formed using sensitivities of the proposed
voltage stability index and the minimization of this objective func-
tion leads to improvement in voltage stability limit. Sequential pri-
mal dual LP algorithm was used in [11] for the improvement of the
static voltage stability. Choube et al. [12] presented a corrective
scheduling method based on the linear relationship between static
voltage stability index and reactive power control variables. The
validity of the sensitive approaches is restricted to small incre-
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ments in reactive power variables only. Although linear program-
ming methods are fast and reliable they have some disadvantages
with the piecewise linear cost approximation. Quadratic program-
ming based techniques have some disadvantages with the piece-
wise quadratic cost approximation.

Recently, evolutionary computation techniques [13] like genet-
ic algorithm and evolutionary programming have been applied to
solve the reactive power optimization problems. In [14], a differ-
entially evolutionary algorithm has been proposed for optimal
dispatch for reactive power and voltage control in power system
operation studies. The inequality operational constraints were
handled by penalty parameterless approach. He et al. [15] pro-
posed a multi objective optimization approach to minimize both
losses and payment for the reactive power service while main-
taining voltage security margin of the system. In this paper, the
problem of voltage stability enhancement is formulated as a
non-linear optimization problem and a genetic algorithm-based
approach is proposed to obtain the optimal settings of reactive
power control variables. The algorithm is based on the minimiza-
tion of an objective function which is the maximum of the L-indi-
ces at load buses.

Generally, binary strings are used to represent the decision vari-
ables of the optimization problem in the genetic population irre-
spective of the nature of the decision variables. The conventional
binary-coded GA has Hamming cliff problems [16] which some-
times may cause difficulties in the case of coding continuous vari-
ables. Also, for discrete variables with total number of permissible
choices not equal to 2k (where k is an integer) it becomes difficult
to use a fixed length binary coding to represent all permissible val-
ues. To overcome the above difficulties this paper proposes a flex-
ible algorithm to solve the optimization problem. The proposed
GA-based approach is applied to obtain the optimal control vari-
ables so as to improve the voltage stability level of the system un-
der base case and against the critical single line outages in the
system. The effectiveness of this algorithm is demonstrated
through voltage stability improvement in IEEE 30-bus system
and IEEE 57-bus test system.
2. Voltage stability index

Voltage stability analysis involves both static and dynamic fac-
tors. As dynamic computations are time consuming, the static ap-
proach is generally preferred for stability assessment and control.
Static voltage stability analysis involves determination of an index
called voltage stability index. This index is an approximate mea-
sure of closeness of the system to voltage collapse. There are vari-
ous methods of determining the voltage stability index. One such
method is L-index proposed in [1]. It is based on load flow analysis.
Its value ranges from 0 (no load condition) to 1 (voltage collapse).
The bus with the highest L-index value will be the most vulnerable
bus in the system. The L-index calculation for a power system is
briefly discussed below:

Consider a N-bus system in which there are Ng generators. The
relationship between voltage and current can be expressed by the
following expression:

IG

IL

� �
¼

YGG YGL

YLG YLL

� �
VG

VL

� �
ð1Þ

where IG, IL and VG, VL represent currents and voltages at the gener-
ator buses and load buses.

Rearranging the above equation we get,

VL

IG

� �
¼

ZLL FLG
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� �
ð2Þ
Here

FLG ¼ �½YLL��1½YLG� ð3Þ

The L-index of the jth node is given by the expression,

Lj ¼ 1�
XNg

i¼1
Fji

V i

Vj
\ ðhij þ di � djÞ

����
���� ð4Þ

where Vi, Vj are the voltage magnitude of ith and jth generator, hij is
phase angle of the term Fji, di, dj are the voltage phase angle of ith
and jth generator unit.

The values of Fji are obtained from the matrix FLG. The L-indices
for a given load condition are computed for all the load buses and
the maximum of the L-indices (Lmax) gives the proximity of the sys-
tem to voltage collapse. The indicator Lmax is a quantitative mea-
sure for the estimation of the distance of the actual state of the
system to the stability limit.

3. Problem formulation

We introduce the following notation:
Gij, Bij
 conductance and susceptance of transmission line
connected between ith and jth bus
Pi,Qi
 real and reactive power injection of ith bus

Ps
 real power generation of slack bus

Qci
 Reactive power generation of ith capacitor bank

Vgi
 generator voltage magnitude at bus i

tk
 tap setting of transformer at branch k

Nl
 number of transmission lines

NC
 number of capacitor banks

NT
 number of tap-setting transformer branches

NPV
 number of voltage buses

NB
 total number of buses

NPQ
 number of load buses

NB�1
 total number of buses excluding slack bus
Maintaining the specified voltage stability level under normal and
contingency state is a major concern in the operation of power sys-
tem. The basic idea behind the proposed voltage stability improve-
ment scheme is to minimize the Lmax value of the system through
rescheduling of reactive power control variables while satisfying
the unit and system constraints. This is mathematically stated as,

Minimize ðLmaxÞ ð5Þ

Subject to

(i) Real power balance equation:

Pi � Vi

XNB

j¼1
Vj½Gij cos dij þ Bij sin dij� ¼ 0; i ¼ 1;2; . . . NB�1 ð6Þ

(ii) Reactive power balance equation:

Qi � Vi

XNB

j¼1
Vj½Gij cos dij � Bij sin dij� ¼ 0; i ¼ 1;2; :::NPQ ð7Þ

(iii) Slack bus real power generation limit:

Pmin
s 6 Ps 6 Pmax

s ð8Þ

(iv) Generator reactive power generation limit:

Qmin
gi 6 Q gi 6 Qmax

gi i � NPV ð9Þ
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Fig. 1. Schematic representation of BLX-a crossover.
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(v) Generator bus voltage limit:

Vmin
gi 6 Vgi 6 Vmax

gi i � NB ð10Þ

(vi) Capacitor bank reactive power generation limit:

Q min
ci 6 Q ci 6 Q max

ci i � NC ð11Þ

(vii) Transformer tap setting limit:

tmin
k 6 tk 6 tmax

k i � NT ð12Þ

(viii) Line flow limit:

Sl 6 Smax
l l � Nl ð13Þ

From the above formulation it is found that the voltage stability
enhancement problem is a combinatorial non-linear optimization
problem. The discrete variables appear in the form of transformer
tap setting and reactive power generation of capacitor bank. Con-
ventional optimization techniques are not efficient in solving this
complex optimization problem. The next section presents the de-
tails of the GA-based approach for solving this complex optimiza-
tion problem.

4. Proposed genetic algorithm

Genetic algorithms (GA) [17] are search algorithms based on the
mechanics of natural genetics. They combine solution evaluation
with randomized, structured exchanges of information between
solutions to obtain optimality. Starting with an initial population,
the genetic algorithm exploits the information contained in the
present population and explores new individuals by generating off-
spring using the three genetic operators namely, reproduction,
crossover and mutation which can then replace members of the
old generation. Genetic algorithms maintain a population of solu-
tion structures throughout the process; therefore they are not lim-
ited by the selection of initial solution guesses. In this way the
entire solution space may be explored and multiple solutions de-
tected. Evaluation of the individuals in the population is accom-
plished by calculating the objective function value for the
problem using the parameter set. The result of the objective func-
tion calculation is used to calculate the fitness value of the individ-
ual. Fitter chromosomes have higher probabilities of being selected
for the next generation. After several generations, the algorithm
converges to the best chromosome, which hopefully represents
the optimum or near optimal solution.

A number of modifications have been made to the original bin-
ary-coded GA in order to improve the effectiveness of the GA to
solve the reactive power dispatch problem. First, in the proposed
algorithm, the candidate solutions are represented as the combina-
tion of floating point numbers and integers instead of binary
strings. Each number in the candidate solution represents one var-
iable, whereas in the binary-coded GA, each such value would be a
substring. This form of representation has a number of advantages
over binary coding. The efficiency of the GA is increased as there is
no need to convert the solution variables to the binary type. More-
over, less memory is required. With mixed form of representation,
the evaluation procedure and reproduction operator remain the
same as that in binary-coded GA, but modifications are necessary
in the case of crossover and mutation operators. The details of
the genetic operators used in the proposed GA are presented
below:
(a) Selection

Selection emphasizes good solutions and eliminates bad solu-
tions while keeping the population size constant. The goal here is
to allow the ‘‘fittest” individuals to be selected more often to repro-
duce. There are a number of operators proposed for selection oper-
ation [18]. In this work, we use ‘‘tournament selection”. In
tournament selection, ‘n’ individuals are selected in random from
the population, and the best of the n individuals is inserted into
the new population for further genetic processing. This procedure
is repeated until the matting pool is filled. Tournaments are often
held between pairs of individuals (tournament size = 2), although
larger tournaments can also be held.

(b) Crossover

The crossover operator is mainly responsible for the global
search property of the GA. Crossover basically combines substruc-
tures of two parent chromosomes to produce new structures, with
the selected probability typically in the range of 0.6–1.0. As each
individual in the population consists of two types of variables: real
and integer, a ‘‘two-point crossover” which takes advantage of the
special structure of the problem representation is developed. First,
the two parents are cut at the boundary between the float and inte-
ger variables. Then separate crossover operators are applied on the
floating point and integer parts. The blend crossover operator
(BLX-a) [16,18], which is based on the theory of interval schemata
is employed in this study for real variables, and simple crossover is
applied to the integer part. The features of the BLX-a operator are
presented in this section.

For the values uðjÞi and uðkÞi of the variable ui in the parents j and
k, BLX-a operator creates new points uniformly at random from a
range extending an amount ajuðjÞi � uðkÞi j on either side of the region
bounded by the parents. Fig. 1 illustrates the BLX-a crossover oper-
ation for the one dimensional case. In this figure, u1 and u2 repre-
sent two parents from a particular variable. The value of off springs
e1 and e2 are given by the expressions:

e1 ¼ u1 � aI ð14Þ
e2 ¼ u2 � aI ð15Þ

where I = u2 � u1

It is to be noted that e1 and e2 will lie between umin and umax, the
variable’s lower and upper bound respectively. In a number of test
problems, it was observed that a = 0.5 provides good results. One
interesting feature of this type of crossover operator is that the cre-
ated point depends on the location of both parents. If both parents
are close to each other, the new point will also be close to the par-
ents. On the other hand, if parents are far from each other, the
search is more like a random search.

(c) Mutation

The mutation operator is used to inject new genetic material
into the population. Mutation randomly alters a variable with a
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small probability. In this work, ‘‘Uniform mutation” operator is ap-
plied to the mixed variables with some modifications. First a vari-
able is selected from an individual randomly. If the selected
variable is a real number then it is set to a uniform random number
between the variable’s lower and upper limit. On the other hand, if
the selected variable is an integer then the integer is randomly
incremented or decremented by one.
5. Genetic algorithm implementation

In solving the reactive power dispatch problem, the following
variables need to be determined by the optimization algorithm:
generator bus voltages (Vgi), reactive power generation of capacitor
bank (Qci), and transformer tap setting (tk). Hence, each individual
in the population consists of a combination of these variables. The
fitness value of each string is evaluated by running the power flow
algorithm using the control variables represented by the string.
Then the genetic operators are applied on the genetic population
to improve the solution. This process is continued until the conver-
gence criterion is satisfied. This is pictorially represented in Fig. 2.

While applying GA for the reactive power optimization problem
the following issues need to be addressed:

� Problem representation.
� Fitness evaluation.

(a) Problem representation

Each individual in the GA population represents a candidate
solution for the given problem. The elements of that solution con-
sist of all the optimization variables of the problem. For the reac-
tive power optimization problem under consideration, generator
terminal voltages (Vgi), capacitor bank reactive power generation
(Qci) and the transformer tap positions (tk) are the optimization
variables. Generator bus voltages are represented as floating point
Run power flow& 
evaluate fitness value 

Select parents for     
reproduction 

Apply crossover 
and   mutation 

Evaluate fitness of 
Chromosomes 

No 

 Initialize population 

  Stop 

Yes

Converged ? 

Fig. 2. Flowchart of GA-based algorithm.
numbers, whereas the transformer tap position and the reactive
power generation of capacitor bank are represented as integers.
The transformer tap setting with tapping ranges of � 10% and a
tapping step of 0.025 p.u is represented from the alphabet
(0,1, . . . 8) and the shunt capacitor with limits of 1 and 5 p.u and
step size of 1 p.u is represented from the alphabet (0,1, . . . 5). With
this representation, a typical chromosome of the RPD problem will
look like the following:

0:981|fflffl{zfflffl}
V1

0:970|fflffl{zfflffl}
V2

. . . 1:05|ffl{zffl}
Vn

4|{z}
Qc1

3|{z}
Qc2

. . . 1|{z}
Qcn

�2|{z}
t1

þ1|{z}
t2

. . . . . . þ3|{z}
tn

This type of representation for the candidate solutions alleviates
the problems associated with the binary-coded GA to deal with
real variables and integers with total number of permissible
choices not equal to 2k, where k is an integer.

(b) Evaluation function

Genetic algorithm searches for the optimal solution by maxi-
mizing a given fitness function, and therefore an evaluation func-
tion which provides a measure of the quality of the problem
solution must be provided. In the reactive power optimization
problem under consideration, the objective is to minimize the Lmax

of the system satisfying the constraints (6–13). For each individual,
the equality constraints are satisfied by running the Newton Raph-
son power flow algorithm. The inequality constraints on the con-
trol variables are taken into account in the problem
representation itself, and the constraints on the state variables
are taken into consideration by adding a quadratic penalty function
to the objective function. With the inclusion of penalty function
the new objective function becomes,

Min f ¼ Lmax þ SP þ
XNPQ

j¼1
VPj þ

XNg

j¼1
QPj þ

XN1

j¼1
LPj ð16Þ

Here, SP, VPj, QPj and LPj are the penalty terms for the reference
bus generator active power limit violation, load bus voltage limit
violation, reactive power generation limit violation and line flow
limit violation respectively. These quantities are defined by the fol-
lowing equations:

SP ¼
KsðPs � Pmax

s Þ2 if Ps > Pmax
s

KsðPs � Pmin
s Þ

2 if Ps < Pmin
s

0 otherwise

8><
>: ð17Þ

VPj ¼
KvðVj � Vmax

j Þ2 if Vj > Vmax
j

KvðVj � Vmin
j Þ

2 if Vj < Vmin
j

0 otherwise

8><
>: ð18Þ

QPj ¼
KqðQ j � Q max

j Þ2 if Q j > Q max
j

KqðQ j � Q min
j Þ

2 if Q j < Q min
j

0 otherwise

8><
>: ð19Þ

LPj ¼
KlðLj � Lmax

j Þ2 if Lj > Lmax
j

0 otherwise

(
ð20Þ

where Ks, Kv, Kq and Kl are the penalty factors. The success of the
penalty function approach lies in the proper choice of these penalty
parameters. Using the above penalty function approach, one has to
experiment to find a correct combination of penalty parameters Ks,

Kv, Kq and Kl. Since GA maximizes the fitness function, the minimi-
zation objective function f is transformed to a fitness function to be
maximized as,

Fitness ¼ k
f

ð21Þ

where k is a large constant.
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6. Results and discussion

The proposed GA-based approach was applied to IEEE 30-bus
and 57-bus test systems for voltage stability improvement under
normal and contingency states. The real and reactive loads are
scaled up according to predetermined weighting factors to analyse
the system under stressed condition. The L-indices for a given load
condition are computed for all load buses and the maximum of L-
indices gives the proximity of the system to voltage collapse. Gen-
erator excitation, switchable VAR compensators and transformer
tap settings are considered as control variables for voltage stability
improvement. The program was written in MATLAB and executed
on a PC with Pentium IV processor. The results of the simulation
are presented below:
Table 1
Controller settings under base case for IEEE 30-bus system.

S. no Control variables Initial setting Optimal setting

1 V1 1.0500 1.0500
2 V2 1.0400 1.0256
3 V3 1.0100 1.0063
4 V4 1.0100 0.9895
5 V5 1.0500 1.0584
6 V6 1.0500 1.0806
7 t1 0.9780 1.0500
8 t2 0.9690 0.9000
9 t3 0.9320 0.9250

10 t4 0.9680 0.9500
11 Q30 0 5
12 Q29 0 5
13 Q26 0 5
14 Q25 0 1
15 Q24 0 3

PLoss 10.76 10.55
Lmax 0.1978 0.1807

Table 2
Results of optimization under contingency state for IEEE 30-bus system.

Line outage 28–27 (125% loaded
condition)

Line outage 27–30 (125% loaded
condition)

Before
optimization

After
optimization

Before
optimization

After
optimization

Lmax 0.6805 0.04700 0.3432 0.3031
Vmin 0.7078 0.9214 0.8614 0.9639
Ploss 16.1240 13.7018 11.3840 11.2595

Fig. 3. Voltage profile und
(a) IEEE 30-bus system

The IEEE 30-bus system has six generators, 24 load buses and 41
transmission lines, of which four branches (6–9), (6–10), (4–12)
and (28–27) are with the tap changing transformer. The initial con-
trol variable setting of the system under base load are taken from
[19]. The upper and lower voltage limits at all the bus bars except
slack bus are taken as 1.10 p.u and 0.95 p.u respectively. The slack
bus bar voltage is fixed to its specified value of 1.06 p.u. In order to
analyse the system under stressed condition, active and reactive
powers of each bus are multiplied by 1.25. Corresponding to this
setting, the L-indices of all the load buses are computed. From this
computation it is found that Lmax = 0.1978 and the five weakest
buses are 30, 29, 26, 25 and 24. These five buses have been selected
for reactive power injection. The proposed voltage stability
enhancement algorithm was applied with generator bus voltage
magnitude, reactive power generation of capacitor bank and OLTC
position as control variables keeping the generator active power
generation fixed except for the slack bus. Generator voltage magni-
tudes are treated as continuous variables whereas transformer tap-
settings and shunt capacitor banks are treated as discrete variables
with nine levels and six levels respectively. The GA-based algo-
rithm was tested with different parameter settings and the best re-
sults are obtained with the following setting:

No. of generations: 100
Crossover probability: 0.9
Mutation probability: 0.01
Population size: 30

The optimal values of the control variables from the algorithm
are given in Table 1 along with the initial control variable setting.
From the result of the optimization algorithm it is found that the
maximum value of L-index has decreased from the initial value
of 0.1978–0.1807 in 40.2 s. For comparison, a binary-coded GA
with two-point crossover and bit-wise mutation was applied to
solve the RPD problem. In this case, the Lmax obtained is
0.1974 MW and the algorithm took 57.3 s to reach the optimal va-
lue. This shows that the proposed algorithm is effective in reaching
the optimal solution for the RPD problem.

To analyse the system under disturbance, contingency analysis
was conducted at 1.25 times the base load condition. From the con-
tingency analysis, line outages 28–27 and 27–30 have found to be
the most severe cases with the Lmax values of 0.6805 and 0.3432
respectively. The GA-based algorithm was applied to enhance the
voltage stability under contingency state. The optimal control var-
iable setting after the application of the proposed algorithm are gi-
ven in Table 1. The system performance before and after the
application of the algorithm for the two contingencies are summa-
er line outage 28–27.



Table 3
System performance for IEEE 57-bus test system.

Line outage 46–47 (125% loaded condition)

Before optimization After optimization

Lmax 0.5548 0.4499
Vmin 0.8041 0.9304
Ploss 50.43 48.63

Table 4
Improvement of voltage profile for IEEE 57-bus test system.

S. no. Bus
no.

Before optimization After optimization

L-
index

Voltage
magnitude

L-
index

Voltage
magnitude

1 25 0.4422 0.8722 0.3712 1.0017
2 26 0.2455 0.8837 0.2201 1.0243
3 30 0.4886 0.8434 0.4042 0.9840
4 31 0.5548 0.8041 0.4499 0.9583
5 32 0.5053 0.8241 0.4189 0.9858
6 33 0.5105 0.8208 0.4223 0.9838
7 34 0.3365 0.8554 0.3049 0.9879
8 35 0.3194 0.8658 0.2909 0.9228
9 39 0.2860 0.8889 0.2626 0.9356

10 57 0.3322 0.8738 0.2960 0.9609
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rized in Table 2. From this table, it is found that the value of Lmax

decreases and voltage stability is improved after the application
of the algorithm. The voltage profile of the system before and after
the application of the algorithm under contingency 28–27 are dis-
played in Fig. 3. Improvement in the voltage profile of the system
after the application of the algorithm is evident from this diagram.
Further, before the application of the algorithm voltage violations
were present in buses but they are corrected after the control. This
shows the effectiveness of the proposed algorithm for voltage sta-
bility improvement.

(b) IEEE 57-bus test system:

The IEEE 57-bus system has 7 generators, 5 synchronous con-
densers and 17 tap changing transformers. The base load of the
system is 1272 MW and 298 MVAR. The voltage magnitude limits
of all buses are set to 0.94 p.u for lower bound and to 1.06 p.u for
upper bound. Based on the contingency study, line outage 46–47
was identified as severe case with Lmax value of 0.5548. From the
weak bus ranking, buses 30, 32, 31, 33 and 34 were selected for
reactive power injection. The proposed GA was applied to improve
the voltage stability as in the previous case. The result of the sim-
ulation is summarized in Table 3. From this table it is found that
voltage stability level of the system has improved after the applica-
tion of the proposed algorithm. Table 4 gives the voltage magni-
tude and L-index values for a selected list of buses for
contingency 46–47. Improvement in voltage profile and reduction
in L-index values at the load buses are evident from this result.
7. Conclusion

In this paper, the security enhancement problem is formulated
as an optimization problem with minimization of the maximum L-
index as the objective function. The weak buses in the system were
selected for reactive power injection. An improved genetic algo-
rithm was proposed to identify the optimal control variable setting
under normal and contingency state. To improve the efficiency of
the genetic algorithm in the search process, the optimization vari-
ables were represented in their natural form. Further, to deal with
the mixed string used in the genetic population, modifications
were made in the crossover and mutation operations. The simula-
tion results on IEEE 30-bus and IEEE 57-bus test systems shows
that the proposed algorithm is effective for voltage stability
improvement in the normal and contingency states.
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