
GPUfs: The Case for Operating System Services on GPUs

Mark Silberstein Bryan Ford Emmett Witchel
UT Austin and Technion Yale University UT Austin

Due to their impressive price/performance and performance/watt
curves, GPUs have become the processor of choice for many types
of intensively parallel computations from data mining to molecular
dynamics simulations [14]. As GPUs have matured and acquired
increasingly general-purpose processing capabilities, a richer and
more powerful set of languages, tools, and computational algorithms
have evolved to make use of GPU hardware.

Unfortunately, GPU programming models are still almost entirely
lacking core system abstractions, such as files and sockets, that CPU
programmers have taken for granted for decades. Today’s GPU is
capable of amazing computational feats when fed with the right data
and managed by application code on the host CPU, but it is inca-
pable of initiating basic system interactions for itself, such as read-
ing an input file from a disk. Because core system abstractions are
unavailable to GPU code, GPU programmers today face many of
the same challenges CPU application developers did a half-century
ago—particularly the constant reimplementation of system abstrac-
tions such as data movement and management operations.

We feel the time has come to provide GPU programs with the use-
ful system services that CPU code already enjoys. This goal emerges
from a broader trend to integrate GPUs more cleanly with operat-
ing systems (OS), as exemplified by recent work to support pipeline
composition of GPU tasks [15] or improve the OS’s management
of GPU resources [4]. This article focuses on making core OS ab-
stractions available to GPU code, and on the challenges, design, and
lessons we learned from building GPUfs [18, 19], our prototype file
system layer for GPU software.

Two key GPU characteristics make developing OS abstractions
for GPUs challenging: data parallelism, and independent memory
system. GPUs are optimized for Single Program Multiple Data (SPMD)
parallelism, where the same program is used to concurrently process
many different parts of the input data. GPU programs typically use
tens of thousands of lightweight threads running similar or identical
code with little control-flow variation. Conventional OS services,
such as the POSIX file system API, were not built with such an ex-
ecution environment in mind. In GPUfs, we had to adapt both the
API semantics and its implementation to support such massive par-
allelism, allowing thousands of threads to efficiently invoke open,
close, read, or write calls simultaneously.

To feed their voracious appetites for data, high-end GPUs usu-
ally have their own DRAM storage. A massively parallel memory
interface to this DRAM offers high bandwidth for local access by
GPU code, but GPU access to the CPU’s system memory is an or-
der of magnitude slower, because it requires communication over
bandwidth-constrained, higher latency PCI Express bus. In the in-
creasingly common case of systems with multiple discrete GPUs—

c© ACM, 2014. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Communications of the ACM, Volume
57 Issue 12, Pages 68-79, December 2014.
http://doi.acm.org/10.1145/2656206

standard in Apple’s new Mac Pro, for example—each GPU has its
own local memory, and accessing a GPU’s own memory can be an
order of magnitude more efficient than accessing a sibling GPU’s
memory. GPUs thus exhibit a particularly extreme non-uniform
memory access (NUMA) property, making it performance-critical
for the OS to optimize for access locality in data placement and reuse
across CPU and GPU memories. GPUfs, for example, distributes its
buffer cache across all CPU and GPU memories to enable idioms
like process pipelines that read and write files from the same or dif-
ferent processors.

To highlight the benefits of bringing core OS abstractions such as
files to GPUs, we show the use of GPUfs in a self-contained GPU
application for string search on NVIDIA GPUs. This application il-
lustrates how GPUfs can efficiently support irregular workloads, in
which parallel threads open and access dynamically-selected files of
varying size and composition, and the output size might be arbitrar-
ily large and determined at runtime. Our version is about seven times
faster than a parallel 8-core CPU run on a full Linux kernel source
stored in about 33,000 small files.

While currently our prototype benchmarks represent only a few
simple application data points for a single OS abstraction, they sug-
gest that OS services for GPU code are not only hypothetically de-
sirable, but are feasible and efficient in practice.

1. GPU ARCHITECTURE OVERVIEW
We provide a simplified overview of the GPU software/hardware

model, highlighting properties that are particularly relevant to GPUfs.
An in-depth description can be found elsewhere (e.g. [7]). We
use NVIDIA CUDA terminology because we implement GPUfs on
NVIDIA GPUs, but most other GPUs that support the cross-platform
OpenCL standard [6] share the same concepts.

Hardware model.
GPUs are parallel processors which expose programmers to hi-

erarchically structured hardware parallelism. At the highest level
GPUs are similar to CPU shared-memory multicores – they com-
prise several powerful cores called multiprocessors (MPs). GPUs,
therefore, support coarse-grain task-level parallelism via concurrent
execution of different tasks on different MPs.

The main architectural difference between CPUs and GPUs lies
in the way GPUs execute parallel code on each MP. A single GPU
program, termed a kernel (unrelated to an OS kernel) comprises tens
of thousands of individual threads. Each GPU thread forms a ba-
sic sequential unit of execution. Unlike CPU threads which usually
exclusively occupy one CPU core, hundreds of GPU threads are con-
currently scheduled to run on each MP. The hardware scheduler in-
terleaves instructions from alternate threads to maximize hardware
utilization when threads get stalled, for example while waiting on
a slow memory access. This type of parallelism, sometimes called
thread-level parallelism, or fine-grained multithreading, is essential
to achieving high hardware utilization and performance in GPUs.

http://doi.acm.org/10.1145/2656206

At the lowest level, the hardware scheduler manages threads in
small groups called warps (32 threads in NVIDIA GPUs). All threads
in a warp are invoked in a SIMD (Single Instruction Multiple Data)
fashion enabling fine-grained data-parallel execution similar to the
execution of vector instructions on a CPU.

Software model.
A GPU program looks like an ordinary sequential program, but it

is executed by all GPU threads. The hardware supplies each thread
with a unique identifier allowing different threads to select different
data and control paths. Developers are no longer limited to shader
programming languages like GLSL, and may write GPU programs
in plain C++/C or Fortran with only few restrictions and minor lan-
guage extensions 1. The programming model closely matches the
hierarchy of parallelism in the hardware. Threads in a GPU kernel
are subdivided into threadblocks – static groups of up to a thousand
threads which may communicate, share state and synchronize effi-
ciently, enabling coordinated data processing within a threadblock.
A threadblock is a coarse-grain unit of execution that matches the
task-level parallelism support in the hardware: all threads in a single
threadblock are scheduled and executed at once on a single MP.

An application enqueues a kernel execution request into a GPU by
specifying the desired number of threadblocks comprising the kernel
and the number of threads per threadblock. The number of thread-
blocks in a kernel may range from tens to hundreds, and typically
exceeds the number of MPs improving load balancing and portabil-
ity across GPU systems. Once a threadblock has been dispatched to
an MP, it occupies the resources of that MP until all of the thread-
block’s threads terminate. Most importantly, a threadblock cannot be
preempted in favor of another threadblock waiting for execution in
the global hardware queue. The hardware executes different thread-
blocks in an arbitrary, non-deterministic order. Therefore, thread-
blocks generally may not have data dependencies, because such de-
pendencies could lead to deadlock.

System integration model.
From the software perspective, GPUs are programmed as periph-

eral devices: they are slave processors that must be managed by a
CPU application which uses the GPU to offload specific computa-
tions. The CPU application prepares the input data for GPU pro-
cessing, invokes the kernel on the GPU, and then obtains the results
from GPU memory after the kernel terminates. All these operations
use GPU-specific APIs, which offer a rich set of functions covering
various aspects of memory and execution state management.

From the hardware perspective, there are two classes of GPUs:
discrete GPUs and hybrid GPUs. Discrete GPUs are connected to
the host system via a PCI Express (PCIe) bus and feature their own
physical memory on the device itself. Moving the data in and out
of GPU memory efficiently requires direct memory access (DMA)2.
The GPU’s bandwidth to local memory is an order of magnitude
higher – over 30× in current systems – than the PCIe bandwidth to
the memory on the host. Hybrid GPUs are integrated on the same die
with the host CPU and share the same physical memory with CPUs.

In this paper we focus on discrete GPUs, but discuss our work in
the context of hybrid GPUs in section §6.

1There are many productivity frameworks that do not require any low-
level GPU programming. Some examples are available at https://
developer.nvidia.com/cuda-tools-ecosystem.
2Traditionally, discrete GPUs had a separate address space that could not
be directly referenced by CPU programs and required developers to manage
CPU-GPU transfers explicitly. The recent NVIDIA CUDA 6 release intro-
duces runtime support for automatic data movement.

2. GPU PROGRAMMING: BARRIERS AND
OPPORTUNITIES

Despite their popularity in high-performance and scientific com-
puting, the use of GPUs for accelerating general-purpose applica-
tions in commodity systems is quite limited. The list of 200 popular
general-purpose GPU applications recently published by NVIDIA [14]
has no mention of GPU-accelerated desktop services, such as real-
time virus scanning, text search, or data encryption, although GPU
algorithms for encryption and pattern matching are well-known and
provide significant speedups [8, 2]. We believe that enabling GPUs
to access host resources directly, via familiar system abstractions
such as files, will hasten GPU integration in widely deployed soft-
ware systems.

Current GPU programming model requires application developers
to build complicated CPU-side code to manage access to the host’s
network and storage. If an input to a GPU task is stored in a file, for
example, the CPU-side code handles system-level I/O issues, such
as how much of the file to read into system memory, how to overlap
data access with the GPU execution, and how to optimize the size
of memory transfer buffers. This code dramatically complicates the
design and implementation of GPU-accelerated programs, turning
application development into a low-level systems programming task.

Operating systems have historically been instrumental in eliminat-
ing or hiding this complexity from ordinary CPU-based application
development. GPUfs aims to address these same data management
challenges for GPU-based application code.

2.1 Difficulties of programming GPUs
Consider an application that searches a set of files for text pat-

terns. It is trivial to speed up this task using multi-core CPUs, for
example by scanning different files in parallel on different cores. Al-
gorithmically, this task is also a good candidate for acceleration on
GPUs, given the speedups already demonstrated for pattern match-
ing algorithms on GPUs [8].

Using GPUs present several system-level caveats, however.
Complex low-level data management code. Since GPU code

cannot directly access files, CPU code must assist in reading the file
data and managing data transfers to the GPU. Thus, a substantial part
of an overall GPU program is actually CPU-based code needed to
manage data for the GPU. This CPU-based code needs to understand
low-level GPU details and performance characteristics to allocate
GPU memory and manage data transfers efficiently.

No overlap between data transfer and computations. Unlike in
CPUs, where operating systems use threads and device interrupts to
overlap data processing and I/O, GPU code traditionally requires all
input to be transferred in full to local GPU memory before process-
ing starts. Further, the application cannot easily retrieve partial out-
put from GPU memory until the GPU kernel terminates. Optimized
GPU software alleviates these performance problems via pipelining:
it splits inputs and outputs into smaller chunks, and asynchronously
invokes the kernel on one chunk, while simultaneously transferring
the next input chunk to the GPU, and the prior output chunk from
the GPU. While effective, pipelining often complicates the algorithm
and its implementation significantly.

Bounded input/output size. If a file’s contents are too large to
fit into an input buffer in GPU memory, the application must split
the input and process it in smaller chunks, tying the algorithm to
low-level hardware details. The size of any output buffer for a GPU
program’s results must be specified when the program starts, not
when it generates its output, further complicating algorithms that
produce unpredictable amounts of output. To prevent running out of
buffer space, a common practice is to allocate overly large buffers,
making inefficient use of GPU memory.

https://developer.nvidia.com/cuda-tools-ecosystem
https://developer.nvidia.com/cuda-tools-ecosystem

No support for data reuse. A CPU application deallocates all of
its GPU-side memory buffers that hold file contents when it termi-
nates. For example, the pattern matching application might read (and
not modify) many input files, but when it is invoked again, the files
are read again from CPU memory or disk. In contrast, CPU appli-
cations rely on the operating system’s buffer cache to transparently
protect them from expensive redundant reads.

No support for data-dependent accesses. A program’s inputs
can depend on its execution history. For example, a program might
search for a string in an HTML file and in any file referenced by the
HTML file. The list of files that must be searched is only known
during execution because it depends on the link structure within the
HTML files themselves. A CPU implementation might read the next
input file the moment it encounters a reference to it. In GPU code,
however, the file reading logic occurs on the CPU separately from
the GPU-based processing code. The application’s CPU and GPU
code must therefore coordinate explicitly on which files to read next.

2.2 GPUfs makes GPU programming easier
GPUfs is intended to alleviate these problems. GPUfs is a soft-

ware layer providing native support for accessing host files on dis-
crete GPUs. It offers tasks running on GPUs a convenience well-
established in the CPU context: to be largely oblivious to where data
is located – whether on disk, in main memory, in a GPU’s local mem-
ory, or across several GPUs. Further, GPUfs lets the operating sys-
tem optimize data access locality across independently-developed
GPU compute modules, using application-transparent caching, much
like a traditional operating system’s buffer cache optimizes access
locality across multi-process computation pipelines. A familiar file
API abstracts away the low-level details of different GPU hardware
architectures and their complex inter-device memory consistency
models, improving code and performance portability. Finally, users
of GPUfs can build self-sufficient GPU applications without devel-
oping the complex CPU support code required to feed data to GPU
computations. We further illustrate these benefits in the code exam-
ple in Section 5.

We think of GPUfs as GPU system-level code, but modern GPUs
do not support a publicly documented privileged mode. Therefore,
GPUfs cannot run in privileged mode on the GPU, and our GPUfs
prototype is a library linked with the application. However, the li-
brary is structured in two layers, with the top layer intended to re-
main a library. The bottom layer would execute in privileged mode
when GPUs add such a capability. We believe that GPU vendors will
eventually provide some combination of software and hardware sup-
port for executive-level software, e.g., to explicitly manage memory
permissions across multiple GPU kernels.

The host OS and the GPU OS-level code work together to provide
a single file system shared across all processors in the system, though
with some semantics that are closer to distributed file systems. In
contrast, current GPU-like accelerators such as Intel’s Xeon-Phi run
an independent operating system that only supports block-level ex-
clusive access to storage or distributed systems protocols to com-
municate with the host OS. We believe that our approach results in
a system that is easier to use, enables whole system optimizations,
e.g., scheduling of data transfers, and provides finer control of shared
resources like system memory.

3. DESIGN
We describe the GPUfs API and file system semantics, focusing

on the similarities and differences from the standard APIs used in
CPU programs, and the properties of GPUs that motivate these de-
sign choices. For lack of space we omit the detailed description of
some APIs and refer the interested reader to our full paper [19].

Figure 1: GPUfs architecture

Figure 1 illustrates the architecture of GPUfs. CPU programs are
unchanged, but GPU programs can access the host’s file system via
a GPUfs library linked into the application’s GPU code. The GPUfs
library works with the host OS on the CPU to coordinate the file
system’s namespace and data.

There are three properties of discrete GPUs that make designing
GPUfs challenging: massive hardware parallelism, a fast and sepa-
rate physical memory, and non-preemptive hardware scheduling. We
first summarize their implications on the design of GPUfs in Table 1,
with the detailed analysis in the rest of this section.

3.1 Buffer cache for GPUs
Operating systems strive to minimize slow disk accesses by in-

troducing a buffer cache, which stores file contents in memory when
file data is first accessed. The OS serves subsequent accesses directly
from the buffer cache, thereby improving performance transparently
to applications. Moreover, buffer cache enables whole-system per-
formance optimizations such as read-ahead, data transfer schedul-
ing, asynchronous writes, and data reuse across process boundaries.

Imagine a GPU program accessing a file. Even if the file data
is resident in the CPU buffer cache, it must be transferred from
CPU memory to the local GPU memory for every program access.
However, GPUs provide far more bandwidth and lower latencies to
access local GPU memory than to access the main CPU memory.
For GPUfs performance, it is therefore critical to extend the buffer
cache into GPUs by caching file contents in GPU memory. In multi-
processor, multi-GPU systems the buffer cache spans multiple GPUs
and serves as an abstraction hiding the low-level details of the shared
I/O subsystem.

File system data consistency.
One important design decision is the choice of a file system data

consistency model, which determines how and when file updates per-
formed by one processor are observed by other processors in a sys-
tem. For example, if a file is cached by one GPU and then changed
by another GPU or a CPU, then cached data becomes stale, and
must be refreshed by a consistency mechanism. Strong consistency
models (e.g., sequential consistency) permit no or little disparity in
the order different processes can observe updates. For example, in
Linux, file writes executed by one process become immediately visi-
ble to all other processes running on the same machine. On the other
hand, the popular NFS distributed file system provides no such guar-
antee if processes are running on different machines. In general, dis-
tributed file systems tend to provide weaker consistency than local
file systems, because weaker consistency permits less frequent data
synchronization among caches, and is thus more efficient in systems
with higher communication costs.

GPUfs is a local file system in the sense that it is used by proces-
sors in the same physical machine. However, the disparity between

Behavior on CPU GPU hardware char-
acteristics

GPUfs design implications

Buffer cache Caches file contents in CPU
memory to hide disk access la-
tency

Separate physical
memory

Caches file contents in GPU memory to hide accesses to disks
and CPU memory

File system data
consistency

Strong consistency: file writes
are immediately visible to all
processes

Slow CPU-GPU
communications

Close-to-open consistency: file writes are immediately visible
to all GPU-local threads, but require explicit close and open to
be visible on another processor

Cache replacement
algorithm

Approximate LRU invoked asyn-
chronously and periodically in a
background thread

Non-preemptive hard-
ware scheduling

Synchronous and fast but inaccurate

API call granularity File APIs are called indepen-
dently in every thread

Data-parallel lock-
step execution of
threads in a warp

File APIs are invoked collaboratively by all threads in the
same warp

File descriptors Each descriptor is associated
with a file pointer

Massive data
parallelism

No file pointers at OS level, but library supports per-warp or
per-threadblock local file descriptors

Table 1: Implications of the GPU hardware characteristics on the GPUfs design.

Figure 2: Close-to-open file system data consistency in GPUfs.

the bandwidth from the GPU to system memory and to local GPU
memory, makes the system more similar to a distributed environment
with a slow communication network rather than a tightly coupled lo-
cal environment.

GPUfs therefore implements a weak file system data consistency
model (close-to-open consistency), similar to the Andrew file sys-
tem (AFS [3]) and NFS clients (since Linux 2.4.20). Once a file’s
content is cached on a GPU, its threads can read and write the file lo-
cally without further communication with other processors—even if
the host and/or other GPUs concurrently read and/or modify that file.
GPUfs guarantees that local file changes propagate to other proces-
sors when the file is closed on the modifying processor first, and sub-
sequently opened on other processors. In the example in Figure 2,
GPU2 writes two different values to a file. However GPU1 will see
“1” and may not see “2”, because close-to-open consistency permits
postponing updates to other processors operating on the same file
instead of propagating them as they happen.

For the GPU threads running on the same GPU, GPUfs provides
strong consistency, which guarantees that file updates are immedi-
ately visible to all the threads in that GPU. To achieve this guarantee,
writes explicitly bypass the L1 cache via write-through L2 write in-
structions, and are followed by memory fences. We found the over-
head of doing so sufficiently small to make such a strong consistency
model affordable. If a file is mapped using mmap, however, GPUfs
naturally inherits the memory consistency model implemented by
the hardware.

Buffer cache management.
CPUs handle buffer cache management tasks in daemon threads,

keeping costly activities such as flushing modified (dirty) pages out
of an application’s performance path. GPUs unfortunately have a
scheduling-related weakness that makes daemon threads inefficient.
GPU threadblocks are non-preemptive, so a daemon would require
its own permanently running threadblock. This dedicated thread-
block could be either an independent, constantly running GPU ker-
nel, or it could be part of each GPU application. Both approaches

permanently consume a portion of GPU hardware resources, thereby
reducing the performance of all GPU applications including those
not using GPUfs.

Alternatively, offloading all of the GPU cache management func-
tionality to a CPU daemon is impractical on existing hardware due
to the lack of atomic operations over a PCIe bus 3. This limitation
precludes the use of efficient one-sided communication protocols.
A CPU cannot reliably lock and copy a page from GPU memory,
for example, without GPU code being involved in acknowledging
that the page has been locked. Consequently, our design uses a less
efficient message-passing protocol for synchronization.

Organizing GPUfs without daemon threads has important design
consequences, such as the need to optimize the page replacement
algorithm for speed. GPUfs performs page replacement as a part
of regular file operations such as write, with the GPUfs code hi-
jacking the calling thread to perform the operation. The call is often
on the critical path, so reducing the latency of the replacement algo-
rithm is important. It is unclear, however, how to implement standard
replacement mechanisms, such as the clock algorithm [16], because
they require periodic scanning of all pages in use. Performing the
scan as a part of the file system operations is aperiodic and expen-
sive. Instead, the GPUfs prototype implements a simple heuristic
that evicts a page with the oldest allocation time. While it works
well for streaming workloads, the best replacement policy across di-
verse workloads is an area for future work.

Although GPUfs must invoke the replacement algorithm synchro-
nously, writing modified pages from the GPU memory back to the
CPU can be done asynchronously. GPUfs enqueues dirty pages in
a ring buffer which it shares with the CPU so the CPU can asyn-
chronously complete the transfer. This single producer, single con-
sumer pattern does not require atomic operations.

3.2 GPUfs API
It is not clear whether the traditional single-thread CPU API se-

mantics is necessary or even appropriate for massively parallel GPU
programs. Consider a program with multiple threads accessing the
same file. On a CPU, each thread that opens a file obtains its own file
descriptor, and accesses the file independently of other threads. The
same semantics on a GPU would result in tens of thousands of file
descriptors, one for each GPU thread. But such semantics are likely
to be of little use to programmers, because they do not match GPU’s
data-parallel programming idioms and hardware execution model.

Our key observation is that GPU and CPU threads have very dif-

3The PCIe 3.0 standard includes atomics, but implementation is optional and
we know of no hardware currently supporting it.

ferent properties, and thus are used in different ways in programs.
A single GPU thread is slow. GPUs are fast when running many

threads, but drastically slower when running only one. For exam-
ple, multiplying a vector by a scalar in a single thread is about two
orders of magnitude slower on C2070 TESLA GPU than on Xeon
L5630 CPU. Hence, GPUs invoke thousands of threads to achieve
high throughput.

Threads in a warp execute in lockstep. Even though GPU threads
are independent according to the programming model, the hardware
executes threads in SIMD groups, or warps (see more detail in § 1).
The threads in the same warp are executed in lockstep. Thus, pro-
cessing is efficient when all threads in a warp follow the same code
paths, but highly inefficient if they follow divergent paths: all the
threads must explore all possible divergent paths together, masking
instructions applicable only to some threads at every execution step.
Similarly, memory hardware is optimized for a warp-strided access
pattern in which all the warp threads jointly access a single aligned
memory block: the hardware coalesces multiple accesses into a sin-
gle large memory transaction to maximize memory throughput.

As a result, GPU programs are typically designed to execute a
task collaboratively in a group of threads, such as a warp or a thread-
block, rather than in each thread separately. In such a group all the
threads execute data-parallel code in a coordinated fashion. Hence,
data-parallel file API calls might be more convenient to use than
the traditional per-thread API used in CPU programs. Furthermore,
per-thread file API calls would be highly inefficient: their imple-
mentations are control-flow heavy, they require synchronization on
globally shared data structures, e.g. a buffer cache, and they often
involve large memory copies between system and user buffers, as in
write and read. Therefore, if GPUfs allowed API calls at thread
granularity, the threads would quickly encounter divergent control
and data paths within GPUfs, resulting in hardware serialization and
inefficiency in the GPUfs layer.

Consequently, GPUfs requires applications to invoke the file sys-
tem API at threadblock—rather than thread—granularity. All appli-
cation threads in a threadblock must invoke the same GPUfs call,
with the same arguments, at the same point in application code.
These collaborative calls together comprise one logical GPUfs oper-
ation. The threadblock granularity of the API allows the GPUfs im-
plementation to parallelize the handling of API calls across threads
in the invoking threadblock—parallelizing file table search opera-
tions, for example. We also support a more fine-grained per-warp
API granularity of function calls. However the code relies on lock-
step execution of the warp’s threads, because the hardware does not
provide intra-warp synchronization primitives. Making this assump-
tion, however, is generally discouraged because intra-warp schedul-
ing may change in future GPU architectures. In fact, we found per-
threadblock calls to be more efficient than per-warp calls, and suffi-
cient for the GPUfs applications we implemented.

Layered API design.
File descriptors in GPUfs are global to a GPU kernel, just as they

are global to a CPU process. Each GPU open returns a distinct
file descriptor available to all GPU threads that must be closed with
close. This design allows to initialize a file descriptor only once,
and then reuse it by all other GPU threads to save the slow CPU file
system accesses. Unfortunately, implementing such globally-shared
objects on a GPU is a non-trivial task due to the lack of GPU-wide
barriers and subtleties of the GPU memory model.

GPUfs balances programmer convenience with implementation
efficiency by layering its API. The open call on the GPU is wrapped
into a library function gopen that may return the same file de-
scriptor when given the same file name argument. GPUfs reference

counts these calls, so a gopen on an already-open file just incre-
ments the file’s open count without CPU communication. In our
experiments with GPUfs we found gopen to be more convenient
and efficient to use than the low-level GPU open call.

Similarly, at the lowest level, GPUfs removes the file pointer from
the global file descriptor data structure to prevent its update from be-
coming a serializing bottleneck. It implements a subset of POSIX
file system functionality, for example by providing the pread and
pwrite system calls, which take an explicit file offset parame-
ter. At a higher level, however, GPUfs provides programmer con-
venience, such as per-threadblock or per-warp file pointers. Thus a
programmer can choose to program to the low-level pread inter-
face, or she can initialize a local file offset and make calls to the
more familiar read interface. This division of labor is somewhat
similar to the division on the CPU between system calls like read
and C library functions like fread.

File mapping.
GPUfs allows GPU threads to map portions of files directly into

local GPU memory via gmmap/gmunmap. As with traditional mmap,
file mapping offers two benefits: the convenience to applications of
not having to allocate a buffer and separately read data into it, and
opportunities for the system to improve performance by avoiding
unnecessary data copying.

Full-featured memory mapping functionality requires software pro-
grammable hardware virtual memory, which current GPUs lack. Even
in future GPUs that may offer such control, traditional mmap se-
mantics might be difficult to implement efficiently in data parallel
contexts. GPU hardware shares control plane logic, including mem-
ory management, across compute units running thousands of threads
at once. Thus, any translation change has global impact, likely re-
quiring synchronization too expensive for fine-grained use within
individual threads.

GPUfs therefore offers a more relaxed alternative to mmap, per-
mitting more efficient implementation without frequent translation
updates. There is no guarantee that gmmap will map the entire
file region the application requests—instead it may map only a pre-
fix of the requested region, and return the size of the successfully
mapped prefix. Further, gmmap is not guaranteed ever to succeed
when the application requests a mapping at a particular address: i.e.,
MMAP_FIXED may not work. Finally, gmmap does not guarantee
that the mapping will have only the requested permissions: map-
ping a read-only file may return a pointer to read/write memory, and
GPUfs trusts the GPU kernel not to modify that memory.

These looser semantics ultimately enable efficient implementation
on the existing hardware by allowing GPUfs to give the applica-
tion pointers directly into GPU-local buffer cache pages, residing in
the same address space (and protection domain) as the application’s
GPU code.

3.3 Failure semantics
GPUfs has failure semantics similar to the CPU page cache: on

GPU failure, file updates not yet committed to disk may be lost.
From the application’s perspective, successful completion of gfsync
or gmsync ensures that data has been written to the host buffer
cache and, if requested, to stable storage. While a successful com-
pletion of gclose in all GPU threads guarantees that another pro-
cessor reopening the file will observe consistent updates, it does not
guarantee that the data has been written to disk, or even to the CPU
page cache, as the transfers might be performed asynchronously.

In existing systems, unfortunately, a GPU program failure—such
as an invalid memory access or assertion failure—may require restart-
ing the GPU card. As a result, the entire GPU memory state of all

resident GPU kernels is lost, including GPUfs data structures shared
across all of them. This lack of fault isolation between GPU kernels
makes maintaining long-living OS data structures in GPU memory
impractical. As GPUs continue to become more general-purpose, we
expect GPU hardware and software to provide better fault isolation
and gain more resilience to software failures.

3.4 Resource overheads
Operating systems are known to compete with user programs for

hardware resources such as cachesand are often blamed for decreased
performance in high-performance computing environments. GPUfs
is system software co-resident with GPU programs, but it is less in-
trusive than a complete OS in that it has no active, continuously run-
ning components on the GPU. GPUfs by design imposes no over-
head on GPU kernels that use no file system functionality. We delib-
erately avoided design alternatives involving “daemon” threads: i.e.,
persistent GPU threads dedicated to file system management, such
as paging or CPU-GPU synchronization. While enabling more ef-
ficient implementation of the file system layer, such threads would
violate this “pay-as-you-go” design principle.

GPUfs necessarily adds some overhead, however, in the form of
memory consumption, increased program instruction footprint, and
use of GPU hardware registers. We expect the relative effect of these
overheads on performance to decrease with future hardware gener-
ations, which will provide larger memory, larger register files, and
larger instruction caches.

3.5 Discussion
With GPU hardware changing so rapidly, a key design challenge

for GPUfs has been to focus on properties likely to be essential to
the performance of future as well as current GPUs. Current tech-
nological trends, such as a constantly increasing on-card memory
capacity and bandwidth, as well as increasing fine-grained hardware
parallelism indicate that the non-uniform memory performance and
structured fine-grained parallelism of today’s GPUs will persist as
GPU architectures evolve. Therefore, we believe that data paral-
lel API semantics and locality optimized caching in GPUfs, being
motivated by these hardware characteristics, will remain important
design traits in future GPU systems software.

Some GPUfs design choices, however, are dictated by potentially
transient constraints of the current hardware and software. This is
the case, for example, for a synchronous buffer cache replacement
algorithm, gmmap limitations and the lack of buffer cache memory
protection. The replacement algorithm, for example, could be im-
proved by offloading it to a CPU outside of the critical path provided
the hardware support for atomics across PCI Express. While these
aspects of our design may potentially become obsolete in the future,
they may influence hardware designers to include the necessary ar-
chitectural support for efficient OS abstractions in next-generation
accelerators.

4. IMPLEMENTATION
This section briefly describes our GPUfs prototype for NVIDIA

Fermi and Kepler GPUs.
Most of GPUfs is a GPU-side library linked with application code.

The CPU-side portion consists of a user-level thread in the host ap-
plication, giving it access to the application’s GPU state and host
resources, and an OS kernel module for buffer cache consistency
management.

GPU buffer cache pages. GPUfs manages its buffer cache at the
granularity of an aligned power-of-two sized memory page, which
can differ in size from the hardware-supported page. Performance
considerations typically dictate page sizes larger than the standard

4KB OS-managed pages on the host CPU, e.g., 256KB.
Lock-free buffer cache. The buffer cache uses a radix tree that

can be a contention point among threads accessing the same file.
GPUfs uses lockless reads and locked updates, similar to Linux’s
seqlocks [20]. Specifically, readers access the tree without locks or
memory atomics, but they may need retry if the tree gets concur-
rently modified by a writer.

GPU-CPU RPC mechanism. GPUfs implements an RPC pro-
tocol to coordinate data transfers between the CPU and GPU. The
GPU serves as a client that issues requests to a file server running
on the host CPU. This GPU-as-client design contrasts with the tradi-
tional GPU-as-coprocessor programming model, reversing the roles
of CPU and GPU. One of the main challenges of implementing an
efficient RPC protocol lies in the CPU/GPU memory consistency
model. For arbitrary file contents to be accessible from a running
GPU kernel, a GPU and a CPU must be able to access shared mem-
ory and provide the means to enforce a global write order (e.g., via
fences). Currently only NVIDIA GPUs provide this functionality 4

File consistency management. The current prototype implements
the locality-optimized file consistency model described in Section 3.
If a GPU is caching the contents of a closed file, this cache must be
invalidated if the file is opened for write or unlinked by another GPU
or CPU. GPUfs propagates such invalidations lazily, if and when the
GPU caching this stale data later reopens the file. The GPUfs API
currently offers no direct way to push changes made on one GPU to
another GPU, except when the latter reopens the file.

Implementation limitations.
GPUfs currently implements a private GPU buffer cache for each

host CPU process: the buffer cache is not shared across host appli-
cations, as it is in the OS-maintained buffer cache on the host CPU.
Unfortunately, GPUs still lack the programmable memory protec-
tion that is necessary to protect a shared GPUfs buffer cache from
errant host processes or GPU kernels. We anticipate that the neces-
sary protection features will become available in newer GPUs.

The lack of interface to memory protection also means that GPUfs
cannot protect its GPU buffer caches from corruption by the applica-
tion it serves. GPUfs uses host OS to enforce file access protection,
however. The host OS prevents a GPUfs application from opening
host files the application does not have permission to access, and it
denies writes of dirty blocks back to the host file system if the GPUfs
application has opened the file read-only.

Our prototype does not yet support directory operations.

5. EVALUATION
We implemented GPUfs for NVIDIA GPUs and evaluated its util-

ity and performance with micro-benchmarks and realistic I/O inten-
sive applications. GPUfs enabled simpler application design and
implementation, and resulted in high application performance on
par with fine-tuned, hand-written versions not using GPUfs. The
complete results of the evaluation are presented in our prior publica-
tions [18, 19]. The source code of the benchmarks and the GPUfs
library are available for download [17].

Here we show only an example of a string search GPU application
as an illustration of a typical use of GPUfs. Given a dictionary and
a set of text files, for each word in the dictionary, the program de-
termines how many times and in which files the word appears. This
workload is an example of a broad class of applications performing
a full input scan, like n-gram generation or an index-free search in
databases [9]. One of the challenges in implementing these applica-

4OpenCL 2.0 will enable GPU-CPU RPC via shared virtual memory, how-
ever no implementation has been made available publicly yet.

/∗ l i s t o f words , i n p u t and o u t p u t f i l e names ∗ /
gpu_string_search(char* gWords,

char* gInputfile,
char* gOutfile)

{
tbFin=gopen(gInputfile,O_RDONLY);
tbFout=gopen(gOutfile,O_WRONLY);
tbWords=getTBwords(gWords,TBID);

/∗ a l l t h r e a d s i n a TB read an i n p u t chunk ∗
∗ i n t o a TB−sh ar ed b u f f e r ∗ /
while (gread(tbFin, tbInput,

tbInputSize, tbReadOffset)>0)
{

/∗ TB−p a r a l l e l s e a r c h i n a f i l e chunk , t h e n ∗
∗ s t o r e each t h r e a d ’ s o u t p u t i n t b O u t p u t ∗ /
tb_string_search(tbInput,tbWords, tbOutput);

/∗ w a i t f o r a l l TB t h r e a d s t o f i n i s h ∗ /
wait_for_all_tb_threads();
/∗ run o n l y i n one t h r e a d o f each TB ∗ /
EXECUTE_IN_ONE_THREAD
{

/∗ r e s e r v e space i n t h e o u t p u t f i l e ∗ /
tbWriteOffset=

atomicAdd(gOutOffset,tbOutputSize);
/∗ proceed t o t h e n e x t i n p u t chunk ∗ /
tbReadOffset+=tbInputSize;

}
/∗ w r i t e o u t p u t b u f f e r t o f i l e by a l l TB
∗ t h r e a d s t o g e t h e r ∗ /

gwrite(tbFout, tbOutput,
tbWriteSize, tbWriteOffset);

}
/∗ c l o s e i n p u t / o u t p u t f i l e s i n TB∗ /
gclose(fin);
gclose(fout);

}

Figure 3: A sketch of a GPU string search implementation us-
ing GPUfs. The names of the variables shared across all GPU
threads are prefixed with “g”, and of those shared only across a
single threadblock (TB) are prefixed with “tb”.

tions without GPUfs (a detailed analysis is in Section 2) is that the
output size is unknown and potentially large, which usually requires
pre-allocation of large amounts of memory to avoid buffer overflow.
GPUfs eliminates this problem by writing the output directly to a
file.

We choose a simple algorithm where each threadblock opens one
file at a time, then each thread scans the file for a subset of the dictio-
nary that it is allocated to match. This workload places high pressure
on GPUfs because most of the files are small (a few kilobytes on av-
erage), leading to frequent calls to gopen and gclose.

Figure 3 shows a sketch of the self-contained GPU program used
in this experiment. The program does not require CPU code develop-
ment. For simplicity, this example handles only a single input file,
and does not show the details of the string search algorithm. This
code is executed in every GPU thread, but the threads of a given
threadblock obtain the unique set of search words by calling the
getTBWords function. Threads in the same threadblock collab-
oratively fetch a chunk of the input file, scan through it, write the
output, and continue until the file is fully scanned. Note that if the
file fits in the GPUfs buffer cache, only the first threadblock will ef-
fectively access the disk, while all others will fetch the data directly
from the GPU buffer cache without CPU communication.

The code structure is very similar to a standard CPU implemen-
tation. Developers require no special expertise in low-level system
programing, and may focus entirely on optimizing the parallel string
search algorithm.

This implementation demonstrates one important property shared
by all applications in our benchmarking suite: the GPUfs imple-

Input CPUx8 GPU-GPUfs GPU-vanilla
Linux source 6.1h 53m (6.8×) 50m (7.2×)
Shakespeare 292s 40s (7.3×) 40s (7.3×)

Table 2: GPU string search performance.

mentation requires almost no CPU code development: functionality
entirely resides in the GPU kernel. In fact, for all the workloads, the
CPU code is identical, save the name of the GPU kernel to invoke.
This is a remarkable contrast to standard GPU development, which
always requires substantial CPU programming effort. We found that
eliminating CPU code made development easier.

We ran two experiments with this code counting the frequency of
modern English words in two datasets: the works of William Shake-
speare, and the Linux kernel source code. We search for a dictio-
nary of 58,000 modern English words5, within the complete works
of Shakespeare as a single 6MB text file6, and within the Linux 3.3.1
kernel source containing about 33,000 files holding 524MB of data.
The list of input files is itself specified in a file.

As a point of reference we compared two other implementations:
a simple CPU program performing the same task on 8 cores (us-
ing OpenMP), and a “vanilla” GPU version implemented without
GPUfs. Both implementations prefetch the contents of the input files
into a large memory buffer first, and do not read from the file system
during the matching phase. The vanilla GPU version only supports
inputs and outputs that fit in the GPU’s physical memory. In con-
trast, the GPUfs implementation has no such limitations.

We perform the evaluation on a SuperMicro server with two 4-
core Intel Xeon L5630 CPUs and NVIDIA C2075 GPU. The re-
sults are presented in Table 2. Even for such a file-system intensive
workload, a single GPU outperforms the 8-core CPU by 6.8×. The
GPUfs version performs similarly to the vanilla GPU implementa-
tion on one large input file, with the GPUfs version being only 9%
slower than the vanilla one on the Linux kernel input. Yet, GPUfs-
based code is about half the length of the vanilla version.

6. DISCUSSION
This article advocates for providing standard operating system

services and abstractions on GPUs to facilitate their harmonious in-
tegration with the rest of the computer system. Such integration is
key to broader adoption of GPUs now and in the future. In fact, our
work marks yet another turn of the “wheel of reincarnation” [10],
demonstrating inevitable evolution of GPUs toward providing more
general-purpose functionality. We implement a file system for dis-
crete GPUs to demonstrate the feasibility and value of this goal on
real GPU hardware.

However, our work has limitations. We focus primarily on a file
system layer, which might not reflect the challenges and tradeoffs
for other operating system services on GPUs. However, we believe
that the main principles underpinning the file system layer design are
general, as they address the core characteristics of GPU hardware:
massive parallelism, slow sequential execution, and NUMA memory
organization. In fact, we found them equally applicable to the design
of a networking layer for GPUs, which is ongoing work.

GPUfs makes standard system abstractions and interfaces com-
monly used in CPU systems available on GPUs, but such abstrac-
tions might not be the most suitable for GPU programs. Prior work
casts the GPU as a coprocessor with the CPU managing the inter-
action between the GPU and the rest of the system. As a result,

5http://www.mieliestronk.com/wordlist.html
6http://www.gutenberg.org/ebooks/100

http://www.mieliestronk.com/wordlist.html
http://www.gutenberg.org/ebooks/100

the bulk of GPU research has been on devising new CPU-side ab-
stractions to make this interaction easier to manage. For example,
flow graph execution frameworks like PTask [15], facilitate the de-
velopment of complex applications but treat GPU tasks as opaque
monolithic execution units. In contrast, we propose to offer a GPU
program the flexibility of managing its own input and output data. In
our experience, using the familiar CPU file system abstractions and
API adapted to suit GPU programming idioms has been a natural
and convenient way to provide I/O functionality to GPU programs.

This work targets discrete GPUs and does not directly address
emerging hybrid processor architectures like AMD Kaveri and mo-
bile System-on-Chip (SoC) that combine a CPU and a GPU on the
same die. The most recent processors add support for shared phys-
ical memory and virtual address space between a CPU and GPU.
Communicating through shared memory makes CPU-GPU data trans-
fers unnecessary, providing a much faster and easier way to ex-
change data between the processors. Consequently, such tight CPU-
GPU coupling might seem to obviate the need for the separate sys-
tem abstraction layer on GPUs advocated here, making sufficient the
GPU-as-coprocessor model with its reliance on the CPU operating
system.

We argue that shared memory hardware is only a low-level in-
terface that optimizes CPU-GPU interaction, it does not eliminate
the software complexities of implementing interactions between the
GPU and the rest of the system. Just as with discrete GPUs, the
inability to directly access host resources from GPU code compli-
cates natural program design, necessitating CPU management code
to prepare data for GPU processing. While calling CPU functions
from GPU code becomes possible with integrated GPUs [1], using
this mechanism for implementing file or network I/O from thousands
of GPU threads would overwhelm the CPU operating system, and
warrants explicit handling of massive parallelism on both the GPU
and the CPU, as done in GPUfs. Moreover, CPU-GPU coordination
requires an intimate knowledge of the memory consistency seman-
tics of CPU-GPU shared memory, which is not only complicated
but also constantly evolving, as evident from successive revisions to
the OpenCL standard. In contrast, familiar system abstractions and
portable, platform-optimized APIs hide these and other low-level de-
tails and naturally facilitate the code development on hybrid archi-
tectures, as they do in CPUs and discrete GPUs.

Discrete GPUs remain relevant.
We believe discrete and integrated GPUs will continue to co-exist

for years to come. They embody different tradeoffs between power
consumption, production costs and system performance, and thus
serve different application domains. Discrete GPUs have consis-
tently shown performance and power efficiency growth over the past
few hardware generations. This growth is facilitated by discrete
GPUs residing on a stand-alone, add-on peripheral device, which
gives the designers much greater hardware design flexibility than in-
tegrated systems. The aggressively throughput-optimized hardware
designs of discrete GPUs heavily rely on a fully-dedicated, multi-
billion transistor budget, tight integration with specialized high-through-
put memory, and increased thermal design power (TDP). As a result,
discrete GPUs offer the highest compute performance and compute
performance per watt which make them the computational accelera-
tor of choice in data centers and supercomputers. In contrast, hybrid
GPUs are allocated only a small fraction of the silicon and power
resources available to discrete processors, and thus offer an order of
magnitude lower computing capacity and memory bandwidth.

Discrete architectures have been so successful that manufactur-
ers continue to migrate functions to the GPU that previously re-
quired CPU-side code. For example, NVIDIA GPUs support nested

parallelism in hardware, allowing invocation of new GPU kernels
from GPU code without first stopping the running kernel. Similarly,
GPUs now provide direct access to peripheral devices, such as stor-
age and network adapters, eliminating the CPU from the hardware
data path. Future high throughput processors [5] are expected to en-
able more efficient sequential processing, and some indications of
this trend can already be observed. For example, the AMD Graph-
ics Core Next 1.1 used in all modern AMD GPUs, contains a scalar
processing unit. In addition, NVIDIA-IBM recently announced a
partnership that aims to integrate NVIDIA GPUs and IBM Power
CPUs targeting data center environments. These trends reinforce the
need for high level services on GPUs themselves. Besides making
GPUs easier to program, these services will naturally exploit emerg-
ing hardware capabilities and avoid performance and power penal-
ties of switching between the CPU and the GPU to perform I/O calls.

Intel’s Xeon-Phi is an extreme example of GPUs gaining more
CPU-like capabilities. Xeon-Phi shares many conceptual similari-
ties with discrete GPUs, such as slow sequential performance and
fast local memory. However, it uses more traditional CPU cores,
and runs a full Linux operating system, providing a familiar exe-
cution environment for the programs it executes. Xeon-Phi’s soft-
ware architecture supports standard operating system services. The
current Xeon-Phi system stack, however, does not allow efficient
access to host files and network, and programmers are encouraged
to follow a more traditional co-processor programming model as in
GPUs. The recently announced next processor generation, Knight’s
Landing, is expected to serve as the main system CPU, eliminating
the host-accelerator separation. The processor memory subsystem
will include high-bandwidth, size-limited 3D stacked memory. This
stacked memory will have exaggerated NUMA properties, and the
ideal system stack design on such memory remains to be seen. We
expect that many aspects of GPU system abstractions described here,
e.g., NUMA-aware file cache locality optimizations, will be relevant
to the coming and future generations of these processors.

GPU productivity efforts.
Recent developments make it significantly easier to accelerate com-

putations on GPUs without writing any GPU code. There are com-
prehensive STL-like libraries of GPU-accelerated algorithms [12],
efficient domain-specific APIs [11], and offloading compilers [13]
that parallelize and execute specially annotated loops on GPUs.

These and other GPU productivity projects use the GPU as a co-
processor and passive consumer of data. Applications that need to
orchestrate data movement are cumbersome to implement because
GPU code cannot perform I/O calls directly. System-wide support
for operating system services, as demonstrated by GPUfs, alleviates
this basic constraint of the programming model, and could benefit
many GPU applications including those developed with the help of
other GPU productivity tools.

7. REFERENCES
[1] I. Bratt. HSA Queuing, Hot Chips Tutorial 2013. Retrieved 05/2014.

http://www.slideshare.net/hsafoundation/hsa-
queuing-hot-chips-2013.

[2] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: a
GPU-accelerated software router. SIGCOMM Comput. Commun. Rev.,
40:195–206, August 2010.

[3] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West. Scale and
performance in a distributed file system. ACM Transactions on
Computing Systems, 6(1), February 1988.

[4] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt. Gdev: First-class
GPU resource management in the operating system. In USENIX
Annual Technical Conference, June 2012.

http://www.slideshare.net/hsafoundation/hsa-queuing-hot-chips-2013
http://www.slideshare.net/hsafoundation/hsa-queuing-hot-chips-2013

[5] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco.
GPUs and the future of parallel computing. Micro, IEEE, 31(5):7–17,
2011.

[6] Khronos. Khronos Group: The OpenCL Specification, 2013.
[7] D. B. Kirk and W.-m. W. Hwo. Programming massively parallel

processors: a hands-on approach. Morgan Kaufmann, 2010.
[8] D. Lehavi and S. Schein. Fast Regexp parsing on GPUs, Retrieved

09/14. http://on-demand.gputechconf.com/gtc/2012/
presentations/S0043-GTC2012-30x-Faster-GPU.pdf.

[9] T. Mostak. An overview of mapd (massively parallel database).
Technical report, 2013.

[10] T. H. Myer and I. E. Sutherland. On the Design of Display Processors.
In Communications of the ACM, volume 11, June 1968.

[11] NVIDIA. GPU-accelerated high performance libraries, Retrieved on
09/14. https://developer.nvidia.com/gpu-
accelerated-libraries.

[12] NVIDIA. NVIDIA Thrust library, Retrieved 09/2014.
https://developer.nvidia.com/thrust.

[13] NVIDIA. PGI accelerator compilers with OpenACC directives.
Retrieved 09/2014.
www.pgroup.com/resources/accel.htm.

[14] NVIDIA. Popular GPU-accelerated applications. http:
//www.nvidia.com/object/gpu-applications.html.

[15] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and E. Witchel.
PTask: operating system abstractions to manage GPUs as compute
devices. In Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, pages 233–248, 2011.

[16] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating Systems
Principles, pages 378–379. Wiley, 2008.

[17] M. Silberstein. GPUfs home page, Retrieved on 09/14.
https://sites.google.com/site/silbersteinmark/
Home/gpufs.

[18] M. Silberstein, B. Ford, I. Keidar, and E. Witchel. GPUfs: integrating
file systems with GPUs. In Proceedings of the Eighteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’13. ACM, 2013.

[19] M. Silberstein, B. Ford, I. Keidar, and E. Witchel. GPUfs: integrating
file systems with GPUs. ACM Transactions on Computer Systems,
32(1):1:1–1:31, Feb. 2014.

[20] Wikipedia. Seqlock. Retrieved 03/2014, 2002.
http://en.wikipedia.org/wiki/Seqlock.

http://on-demand.gputechconf.com/gtc/2012/presentations/S0043-GTC2012-30x-Faster-GPU.pdf
http://on-demand.gputechconf.com/gtc/2012/presentations/S0043-GTC2012-30x-Faster-GPU.pdf
https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/thrust
www.pgroup.com/resources/accel.htm
http://www.nvidia.com/object/gpu-applications.html
http://www.nvidia.com/object/gpu-applications.html
https://sites.google.com/site/silbersteinmark/Home/gpufs
https://sites.google.com/site/silbersteinmark/Home/gpufs
http://en.wikipedia.org/wiki/Seqlock

	GPU architecture overview
	GPU programming: barriers and opportunities
	Difficulties of programming GPUs
	GPUfs makes GPU programming easier

	Design
	Buffer cache for GPUs
	GPUfs API
	Failure semantics
	Resource overheads
	Discussion

	Implementation
	Evaluation
	Discussion
	References

