
N. P. SUH 
Associate Professor, 

Col lege of Engineering, 
University of South Carol ina, 

Columbia, S. C. Assoc. Mem. ASME 

Helical Coils as impact Load lispersers 
The concept of using tangenlially loaded helical coils as impact load, dispersers was ex­
amined experimentally and theoretically in order to evaluate its effectiveness in minimiz­
ing the amplitude of shock loading. It was found that the initial stress pulse decom­
posed into several pulses of continuously decreasing amplitude as it propagated along 
the coil. The initial elastic compressive pulse became sinusoidal with frequencies 
equal to the natural frequencies of the coil shortly after the initial disturbance. It ivas 
observed experimentally that there was always a component of the stress pulse which 
propagated, along the helical coil at a velocity close to the bar velocity, (E/p)'^. The 
theoretical analysis showed that there are two modes of wave propagation for the radial 
flexural and tangential, deformation. The group velocity for the tangential deformation 
modes increases quickly from zero to the bar velocity as the wavelength decreases, 
especially at a large principal radius of the curvature. The group and the phase 
velocities for the twist and axial flexural deformation of the coil are also given. 

Introduction 
r 
EFFORTS have been made in the past to find ellectivo 

means of dispersing impact loads so that a high amplitude input 
stress pulse would degenerate into a wave of low amplitude to 
minimize the effect of shock loading. The desirability of such a 
system is obvious. Although different approaches have been 
tried, none of the attempts have been successful. This paper 
deals with the use of a helical coil as an impact load dispenser. 

The concept is illustrated in Fig. 1. An impulse of varying 
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duration is applied tangentially to the helical coil. The coil has 
straight sections at each end and the impulse is applied at one 
end. When the stress pulse is incident upon the curved section, 
the pulse cannot continue along the coil with its original linear 
pulse if conservation of momentum is to be satisfied. Therefore, 
it is expected that the shape of the pulse changes as it is partially 
reflected from the lateral surface. 

Another way of explaining what might happen in the coil is to 
recall that in solids an incident distortional wave can generate 
dilatational and distortional waves upon reflection. Similarly, 
an incident dilatational wave may generate distortional and 
dilatational reflected waves, the angles of reflection of which de­
pend on the incident angle and the material properties of the 
wave guide. When a distortional wave is incident upon a free 
boundary, there may not be any dilatational component reflected 
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= shear modulus 
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coils 
= moment of inertia of mass 

per unit length 
= moment of inertia of cross-

sectional area 
= wave number for u-w mode 
= wave number for p-v mode 
= direction cosines defined 

by equation (5) 
= direction cosines defined 

by equation (o) 
= bending moment about 

axis indicated by sub­
scripts 

m = mass per unit length 
Ari, Ar

2, A
r
3 = direction cosines defined 

by equation (5) 
P = arbitrary point on coil 
p = angular frequency for u-w 

mode 
-px = angular frequency for /3-v 

mode 
R = radius of principal curva­

ture of centroidal axis of 
cross section 
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Fig. 1 Part of a helical coil 

if the incident angle exceeds a critical value. The geometry of 
the coil is such that the incident angle to the lateral surface varies 
continuously along its length. As a consequence, a pulse (ravel­
ing in the coil is expected to disperse. I t should lie noted, how­
ever, that if a purely twisting moment is applied to the end of the 
coil, the distortional wave generated in this case is such that it 
travels down the coil without any dispersion. This is the case 
with the usual axially loaded helical spring. 

The foregoing physical consitleration indicates that perhaps a 
tangentially loaded helical coil may serve as an impact load 
disperser by lowering the amplitude of the pulse and by increasing 
the pulse length. I t seems that this concept has not been con­
sidered by others, although the vibrations of curved rods, in­
cluding a helical coil, were investigated by Lamb l l ] , 1 Michell 
[2], and Love [3]. Philipson [4] extended some of the earlier 
work by including the extension of the locus of centroids of the 
cross section of a curved rod. The influence of the thickness of 
rings on flexural vibration was investigated by Buckens [5]. 

This paper establishes that for certain applications, helical 
coils, when tangentially loaded, can disperse stress pulses effec­
tively. The experimental results presented in this paper are 
new. They are evaluated using the results of an approximate 
theoretical analysis of stress wave propagation in an infinite coil. 
The exact mathematical analysis of the experimental results is 
difficult, but a qualitative understanding of the experimental re­
sults can be obtained from the analysis. 

Experiments 
A helical coil was made of a commercially pure aluminum rod 

of VVin. dia as shown in Fig. 2. The internal diameter of the 
coil was 10 in., and the linear length of the coil was 356 in. The 
coil had about 10 turns and the distance between each coil was 
about I in. The coil had straight ends, at one of which a hammer 

1 Numbers in brackets designate References at end of paper. 

was dropped from a known height to generate the stress pulses. 
The length of the straight portion of the coil was made much 
longer than twice the length of the hammer in order to make cer­
tain that the wave reflected from the curved section of the coil 
would not affect the generation of the pulse at the impact end. 
In order to prevent plastic deformation at the impact end of the 
coil a 1.5-in-long spacer made of an aluminum alloy was placed 
between the hammer and coil. The aluminum alloy had the same 
mechanical impedance a,s the commercially pure aluminum. 
The ends of the coil and the spacer were carefully lapped for com­
plete transmission of the stress pulse across the interface. The 
other end of the spacer was rounded off in order to insure that 
the impact occurred at the center of the cross section of the rod for 
purely axial loading without any bending. The coil was sup­
ported near (he end opposite from the impact end so that the 
propagation of the waves was not affected by the supports. 

Three different hammer sizes were used to vary the wavelength 
of the stress pulse. Two of the hammers were made of the same 
aluminum alloy as the spacer. One of the hammers was l/« in. in 
dia and (> in. long. The other was 4.5 in. long and >/2 in. in dia. 
The third hammer was a 1/2-in-dia steel ball. The pulses gen­
erated by the two cylindrical hammers were long enough so that 
dispersion in the straight section did not exist. Although the 
pulse generated by the steel ball is expected to disperse in the 
straight section, the effect may be neglected because of its short 
length. The cylindrical hammers were mounted on two nylon 
sliders which slid down a guide from a predetermined height for 
impact with the coil. The steel ball was dropped through a cop­
per tube, one end of which was placed just above the impact end 
of the coil. The hammers were dropped from 25 in. 

The stress pulses were monitored by using strain gages mounted 
along the coil. The location of the strain gages and the linear 
length from the impact end to the gages, measured along the 
inner radius of the coil, are shown in Fig. 2. At each position, a 
set of two strain gages (designated by A) were mounted along 
the axial direction of the bar at ISO deg apart (or the tangential 
direction of the coil) to measure the axial elongation and another 
set of strain gages (designated by B) 180 deg apart from each 
other was mounted to measure the circumferential expansion of 
the bar. The outputs from the bridge circuits were amplified by 
solid-state amplifiers, the outputs of which were in turn supplied 
to an oscilloscope, Tektronix 555. The strain gages used were 
paper-mount foil gages, BLH FAP-12-12. The beam of the 
oscilloscope was made to trigger when the hammer came into 
contact with the coil. The pair of strain gages were connected 
in series. 

Experimental Results 
The experimental results are shown in Figs. 3-5. Figs. 3 were 

obtained with a 6-in-long aluminum hammer. The designations 

•Nomenclature­

s' = length of coil 
t = time 

U, V, W = functions defined in text 
u, v, iv = displacements along x\, {A, 

and zi-axes, respectively 
x, ,!/, z = coordinate axes defined in 

text 
Z = property of cross section 

defined in text 
13 = direction cosine between x, 

and i/tt 

7 = radius of gyration 

5 = defined by equation (3) 

= axial strain defined by 
equation (6) 

= radius of curvature pro­
jected on y-z plane 

= radius of curvature pro­
jected on x-z plane 

= defined by equation (12) 
= defined by equation (12) 
= wavelength of sinusoidal 

wave 
= Poisson's ratio 
= mass density 
— stress, first subscript desig­

nates axis perpendicular 

to plane and the second 
subscript designates di­
rection 

r = twist 
T — defined by equation (12) 
<p = angle of rotation 

Subscripts 

0 = unstrained 
t = strained 
x = along or about ,-Ci-axis 
y = along or about ;/i-axis 
z = along or about Zi-axis 
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Fig.3 Experimental results obtained using a 6-in-long hammer. The lower beam was amplified 1.5 times
the upper beam. Sweep speed'" 1 X 10-4 em/sec (for all except No.5). (2 X 10-4 em/sec for No.5.)
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Fig. 4 Eltperimental resuUs oblained using a 4 1/t.in.long hammer-otherwiso same as Fig. 3

Fig.S Eltperimental results obtained using a l/~.in.dia steel ball-otherwise same as Fig. 3

nre such that the first number denotes the location of the strain
gages, as shown in Fig. 2. The seconclletter indicates the orien­
tation of the gages, A for t.he axially mounted and B for the
circumferentially mounted gnges. The dnta from typical re­
sults are tabulated in Table 1. These data were obtained by
projecting t.he pictures taken of the oscilloscope trace on a screen
and measuring the Ilecessary information. Efforts were made to
be consistent in measurements of the distances bet.ween the
points.

In Figs. 3-5 the lower beam was amplified 1.5 t.imes the upper
beam. In all the pictures, tJJe upper beam t;race was obtained
from the first set of gages and the lower beams were taken at t.he
stations denoted in the margin. The sweep speed was 10-'
sec/cm except at the last stat.ion, where it was 2 X 10-' sec/cm.
In these pict.ures it should be noted that the incident pulse is in
general decomposed into many small pulses as it propagates down
the coil, as anticipated. The initial pubes al'e followed by a
quasi-steady oscillatory motion of a reasonably constant fre­
quency.

The gL'OUp velocities are shown in the fourth eolumn in Tl\ble 1.
They were obtained by dividing the shortest distance the pulse
traveled, which is the distance along the inner radius of the coil,
by the time taken to reaeh the particular strain gage station from
the first set of strain gages. They indicate that the front of the

200 / FEB RU A RY 1 970

wave reached all strain gage stations with a veloeity close to the
bar veloeit.y, which for this aluminum was 1.08 X 105 ips. The
accuraey of the measurements is within ±:3 pereent. The group
velocit.y seem~, in general, t.o decrease a little as the stress pulse
propagat.es further along the coil, regardless of the initial pulse
length, although it remains fairly close to the bar velocity.

The fifth eolumll lists the pulse length of the first pulse in micro­
seeonds. The first. subcolnmn gives the pulse length measured
at the first station, while the secolld subcolurnn gives the pulse
lellgth as the first pulse reaehes the particular gflge station. The
pulse length at the first station is ]ouger than twice the length of
the hammer. This is due to the fact that the impaet end of the
spacer was rounded oft' and therefore the hammer did not come to
a complete stop until the stress wave made several excursions in
it, the hammer continuing to exert pressure on the coil dnrillg this
period. It should abo be noted that the length of t.he first pube
whieh is at the fl'OlIt of the degenerated wave becomes shorter a.lld
shorter as it travels down t.he coil.

The sixth eolumn gives the relative amplitudes of the pulses in
relat.ion to the ineident pulse amplitude. The second number for
t.he upper trace is t.he amplit.ude of the sinusoidal portion of t.he
Wlwe measured at t.he .first strain gage station. The numbers for
the lower trace give the amplitudes of t.he succeeding pulses and
the amplitude of the oseillittory part. When t.he qnasi-steady
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Table 1 Tabulation of experimental results 

N o . 

1 
2 . 
3 
it 

5 
6 
7 
8 

9 
1 0 
1 1 
1 2 

1 3 
l i i 

1 5 
1 6 

I T 
If. 

i y 
2 0 
21 
2 2 

2 3 
2 4 

2 5 
2 6 

27 
2 8 

2 9 
3 0 

Lower 
Trace 
S t r a i n 
Gage 

1-B 
1-B 
2-A 
2 - A 

' 2 -B 
3-A 
3-A 
3 - B 

it-A 
4 - B 
5-A 
5-B 
1-B 
2-A 
2 - B 
3-A 
3 - B 

* - A 
•4-B 
5-A 
5-B 
1-B 
2 - A 
2 - B 
3-A 
3 - B 
4 -A 
it-B 
5-A 
5-B 

Lover 
Trace 
A r r i v a l 
Time 
( m i l l i s e c ) 

— 
0.067 
0.067 
O.067 
0.206 
0 .203 
0.206 
0 .405 
O.U12 
1.015 
1.00 

0.068 
0.067 
0.200 
0.212 
0.417 
0.417 
1.030 
1.00 

0,063 
0.069 
0 .200 
0.206 
0.420 
0.430 
1.00 
1.00 

Group 
Ve l . 

( 1 0 - 5 i 2 ) 
s e c ' 

2 .029 
2.029 
2.029 
1-996 
2 .026 
1.996 
2.014 
I . 9 8 0 
1.883 
1.911 

a . 000 
2 .029 
2.056 
1.9-tC 
1.955 
1-955 
l.e.56 
1.911 

2 .159 
1 -971 
2.056 
1-996 
1.542 
1.897 
1.911 
1.911 

I n i t i a l 
Length 

Upper 

1 3 3 
1 3 3 
1 3 3 
1 3 3 
1 3 3 
1 3 3 
1 3 3 
1 3 3 
1 3 3 
1 3 3 
1 3 3 
1 3 3 

" 106 
106. 
1 0 6 
1 0 6 
1 0 6 
1 0 6 
1 0 6 
1 0 6 

1 0 6 

35 

3 9 
39 
39 
3 5 
3 5 
39 
39 
39 

Pulse 
(H s e c ) 

Lover 

1 3 3 
1 3 3 

7 8 
8 0 
8 0 
2 8 

3 0 
3 0 

1 5 
2 0 

1 5 
1 5 

1 0 6 
8 0 
8 0 
2 8 

3 0 

1 5 
1 5 
2 0 
2 0 

39 
39 
39 
2 0 
2 0 
1 0 
1 0 
1 0 
1 0 

Upper 

1 s t . 

1 . 0 
1 . 0 
1 . 0 
1 . 0 

i .0 
I'.O 
1 . 0 
1 . 0 
1 . 0 
1 . 0 
1 . 0 
1 . 0 
1 . 0 
1 . 0 
1 . 0 
1 . 0 
1 . 0 
1 . 0 
1 . 0 
1 . 0 
1 . 0 
1 . 0 
1 . 0 
1 . 0 
1 . 0 
1 . 0 
1 . 0 
1 . 0 
1 . 0 
1 . 0 

Trace 

Steady 

0.29 
0.29 
0.29 
0.30 
0 .28 
0 .28 
0 .30 
0 .28 
0 .30 
0.27 
0 .23 
0 .30 
0 .23 
0.24 
0 .23 
0 .23 
0 .23 
0.22 
0 .21 
0 .21 
0.24 
0.14 
0.11 
0.14 
0 .15 
0 .13 
0 .11 
0 .11 
0 .11 
0 .11 

R e l a t i v e Ampli 

1 s t . . 

0 .34 
0 . 3 3 
O.96 
0 .95 
0 .36 
0.39 
0 .33 
0 .18 
0 .11 
0 .08 
0 .09 
0.07 
0 .33 
0 .92 
0.36 
0.32 
0 .20 
0 .11 
0 .05 
0.09 
0 .04 
0 . 3 1 
0 .79 
0.32 
0 .29 
0 .11 
0 .09 
0.07 
0 .05 
0.07 

tudes 
Lover Trace 

2nd. 

0 .39 
0 .36 
0.06 
0 .28 
0 .08 
0 .18 
0 . 25 

0 .51 
0 .09 
0 .31 
0 .05 
0 .18 
0.07 

0 .60 
0 .13 
0 .48 
0 .15 
0.24 
0 . 1 0 

3 rd . 

O.50 
0.47 
0,22 
0 .25 
0.09 
0.20 
0 .15 

0 .35 
0 .20 
0 .20 
0 .13 
0.12 
0.06 

0 .2^ 
0.17 
0 .48 
0 .19 
0 .25 
0.14 

4 t h . 

0 .22 
0.24 

0 .26 
0.08. 
0 .18 
0 .25 

0 .25 

0.42 
o . i r 
0 .20 
0.06 

0 .42 
0 .10 
0 .33 
0 .10 

Steady 

0.09 
0 .10 
0 .80 
0.77 
0.27 
0.24 
0.24 
0.07 
0".21 
0.06 
0 .15 
0.06 
0.07 
0 .60 
0'. 20 
0.24 
0.09 
0.17 
0.08 
0.14 
0.06 
0.02 
0 .25 
0 .10 
0.16 
0.06 
0 .20 
0 .05 
0 .30 
0 .05 

Half I 
( m i l l i 

Upper 

0 .108 
0.110 
0.104 
0.107 
0.107 
0.105 
0 .103 
0.109 
0 .103 
0.109 
0 .130 
0.106 
0.106 
0 .103 
0.089 
0. o°8 
0.109 
0.106 
0.106 
0.114 
0.103 
0 .103 
0.092 
0.097 
0.097 
0 .091 
0 .100 
0 .100 
0 .091 
0 .103 

e r i o d 
s e c . ) 

Lover 

0.124 
0.125 
0.125 
0.125 
0.130 
0.074 
0.074 
0.074 
O.O69 
O.O69 
O.O63 
C.063 
0.125 
0.125 
0.125 
0.075 
0 .075 
0.069 
0.069 
O.063 
O.063 
O.125 
0 .125 
O.125 
0 .075 
0 .075 
O.069 
0.069 
0 .063 
0 .063 

oscillatory motion follows the first pulse immediately, without 
any second or third pulses, the space for the succeeding pulses 
is left blank. I t is interesting to note that in all cases the ampli­
tude of the first pulse is lower than those of the next few succeed­
ing pulses. The ratios of the amplitude of the first pulse to those 
of the succeeding pulses became more pronounced as the distance 
the pulse travels is greater. The ratios increase more with the 
longitudinal components than with the circumferential com­
ponents. 

From the relative amplitude measurements given in Table 1, 
it is seen that in the straight section of the coil the ratio of the 1-B 
to the 1-A measurements yields the value for Poisson's ratio as 
0.33, whicli is the value one obtains from quasi-static experi­
ments. However, at other positions in the curved part of the 
coil, the ratio of the circumferential strain to the longitudinal 
strain becomes much larger than 0.33, indicating the state of 
stress is not uniaxial and is therefore quite complicated. 

The seventh column lists the half periods of the quasi-steady 
oscillatory components. The periods in the curved section are 
all nearly the same, being equal to the natural frequency of os­
cillation as discussed in a later section. 

I t should be noted that since the strain gages were connected in 
series, the measurements made by the "A" gages partly cancelled 
the bending effect, but because of the initial curvature of the rod 
a small fraction of the bending was measured by the gages. The 
•stress in a curved beam is given by [6] 

Alt V Z It + y 
(1) 

where Z for the circular cross section is 

Z = - 1 + 2 
R\* ,, '-? - 1 

y is measured from the centroidal axis, being positive when mea­
sured toward the convex side. Therefore, the stress is not sym­
metrical about // = 0. For the coil under consideration, the 
stress at the outer radius of the coil is 

crAJt 
= 75.375, 

while the stress at the inner radius is 

a AII 

M 
= 81.234. 

Therefore, it is seen that about 7 percent of the bending stress 
is not cancelled out. The " B " gages are not influenced by bend­
ing. 

Theoretical Analysis 
The problem to be considered here is the determination of 

phase velocity, group velocity, and the natural frequency of oscil­
lation of a helical coil in order to investigate the nature of wave 
propagation in a tangentially loaded helical coil. The coil will be 
assumed to be infinitely long and an infinite train of sinusoidal 
waves will be assumed to propagate in the coil. The derivation 
of the basic equations of motion is given in Love [3] and Philipson 
[4] and therefore will not be discussed in detail here. The 
analysis here will disregard any variation across the cross section 
of the coil and the lateral expansion of the coil. 

Basic Relations. Consider a right-handed helical coil whose 
radius projected onto the plane perpendicular to the axis of the 
helix is a. I t can be readily shown that the principal radius of 
curvature of the coil lies on planes parallel to this plane, pointing 
toward the axis of the coil, and is given by 

It = 
s25 

where 8 is given by 

8 = ta (c/a). 

(2) 

(3) 

The principal radius of curvature R may be decomposed into 
components. For this purpose let us define a moving coordinate 
system (x0, yo, Zo) on the unstrained coil at an arbitrary point /V 
The coordinate system is defined such that z0 is tangent to the 
coil at Po and :r0 is parallel to the principal normal, n, the positive 
direction of x0 being the same as that of n. The f/o-axis is oriented 
such that the coordinate system makes a right-handed coordinate 
system. Then, the curvatures projected on the a:<rZo plane and 
the j/o-zo plane are, respective!}', given by 
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(Co' = l/R, 

(Co = 0 . 
(4) 

The configuration of a curved rod can be described completely, if 
in addition to equations (4), the "twist" To is given, which is the 
rate of the change of the binomial along the rod. The binomial 
vector is perpendicular to the principal normal and tangent vec­
tors in such a way that the tangent, principal, and binomial vec­
tors, in this order, have the right-handed sense. 

Now let the coil undergo elastic deformation. The point P0 

on the unconstrained coil will now be at Pi. At Pi construct, a 
reference frame tei, t/\, Zi) such that Z\ is tangent to the coil at P\ 
of the strained coil. x\ is defined such that the :ri and Zi-axes he 
on the plane which is tangent at Pi to the strained rod material 
originally in the (:c0, Zo) plane, j/i is again chosen such that the 
(xi, yi, 21) coordinate system is a right-handed one. After defor­
mation, the original increment of length As0 becomes Asi. The 
coordinate system (x0, i/o, zo) is related to the (x\, yi, zi) system In­
direction cosines as 

(,-,) 

Li, Li, L3, Mi, etc., are direction cosines between the axes indi­
cated. The elongation of the fiber through the centroids may be 
expressed as 

Xi 

2/i 

Z\ 

Xl> 

Li 

L, 

hi 

i/o 

Mi 

Mi 

Mi 

Zo 

Ari 

Ni 

N3. 

(hi 

rfso 
= 1 + €. (6) 

The direction cosines are found to be, to the first order, 

d« w 

u = — + -
dso It 

M3 = 
bv 

bs0 

Ns = 1 

Li = Ah = 1 

Ml = -L, = (i 

Ni = —Ls 

Ar» = -Ah. 

The axial strain may be written as 

bio u 

dso R 

The equations of motion can be written as 

bFx bhi, 
fiP„ + Ki F, = m(l + e) — along the xi-axis 

dso di2 

bF„ b-v 
kj'\ + TiFx = m(l + €) — along the j/i-axis 

bP 

(7) 

(8) 

dso 

dP, bhv 
i<i 'Fx + iiiF = m( 1 -f- e) along the Zj-axis 

OSo ' Ol-

—-T - f,il/„ + KI'MZ - f „(1 + e) = Ix(l + e) - £ 
oso d/2 (9) 

rotation about the cci-axis 

bAh 
bs6 

'' - RiAL + nAh + Fr(l + e) = I„(l + e) d^f 

rotation about the yi-axm 

dAf, 

dso 
ki'AIx + KiAfM = IJ1 + e) 

d/2 

rotation about the zi-axis, 

where the forces acting on the cross section at Pi are defined b,y 

Fx = fcjA 

t \ = S<r,ydA (10)-

I<\ = fa„dA, 

and the couples are defined by 

M, = fyi<r„'lA 

My = fxia^lA ( I t ) 

Ah = S(xiC!U - yicr,x)dA. 

It should be noted that these couples and forces are written with 
respect to the (xi, i/i, Zi)-axes, but for small deformations the x-i, 
2/i, and zi-directions almost coincide with xo, y0, and z0, respec­
tively. (Ci, (Ci', and f i are related to the components of the princi­
pal curvature of the strained rod at Pi, i.e., (Ci, K / , and n , by 

where 

(Ci = (Ci(l + 6) 

(Ci' = (c,'(l + e) 

T, = T,(l + 6), 

0 b2v 

(12) 

1 

ds„2 

d2«. 1 dw 

R oso" R oso 

dso R Vdso 

(13) 

The moments and the axial force given in equations (10) and 
(11) may be related to the curvature and strain as 

Mx = EJX(\ - e) 

EJ„ 
R* 

R 

dso2 

02v 

dso2 

Ah 
/d/3 1 bv 

C [ — + 
\dso R dso 

(14) 

F, = EA 
dw 

dso R 

where Jx and Jv are the moments of inertia of the cross section 
about the .n and j/i-axis, respectively. The angles of rotation 
about the xh yu and Zi-axes are, respectively 

(15) 

Substituting equations (12)—(15) into equations (9) and 
neglecting the higher-order terms, the equations of motion may 
be written as 

<Px 

<Pu 

bv 

bso 

du w 
= dso + 7? 

d P , EA dw 

dso 

dhi 

d/2 
along the Xi-axis 

({16a) Continued next page) 
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EA 

EJ„ 

and 

o 

d 

it 

So' 

>2 

du 

dsQ 

1 

It 

+ 

Ou\ 

d.%) 

d3u 

ds0
s 

- 7. *% = »« 

+ /'V 

d2 i f 

dp 

d2 / d o 

along the zi-axis (16a) 

o7< d2u 
—" = m — 
ds0 dT-

\Ii ds0 

d3y 

ds„3 

672 \d«o It 

rotat ion about the ?/i-axis 

a long the i/i-axis 

d2 / dv 

dp \ ds0J 

rota t ion about the.Ti-axis (166) 

d2/3 1 d2v 

dso'2 A' o\s0
2 /.. 

d 2 £ 

dp 
rotation about the «i-axis. 

It should be noted that equations (16«) consist of only u, w, and 
/<'„ whereas equations (166) are functions of only (3, v, and F,r 

liquations (16a) represent the motion associated with radially 
fiexural deformation. Equations (166) are related to the twist­
ing and deflection along (he //i-axis which will be zero for purely 
tangential loading. To the first order, the u-w displacements are 
not coupled to the j3-v deformation, and therefore they may be 
treated separately. 

The u-w Displacement Models. Eliminating/' ', from the first and 
second equations of equation (\(ki), equations (10a) may be writ­
ten as 

Y2 d2 /d2u 1 d(«\ 

Co2 dp Vdso2 + It dso) ~ 7~ 

d2w; 

os„2 

1 du_ 

It ds-, 
i t ®L I1 "̂ 
Co2 dP \7t dso 

1 d2u 

It2 ds„2 ~ 

1 dw 

It ds„ 

w 

/T2 

d4« 

d.sv1 

u 

' A'2 

+ Y2 

Apds„ 

where 

ly = my'1, 

EA 
= Co2. 

1 dhi 

Rdso1 

Ay2, 

Co"2 d<2 

1 dhv 

CV dP-' 

(17; 

Co is the ba r velocity. 
Assume the solution to equa t ions (16) to be 

u = U(xo,yo) exp [i(kz0 + pi)] 

iv = JF(.fo,!/o) exp [iikzo + pt)], 
(18) 

where 

p = 271-/, 

k-T 
N o t e t h a t z0 = s0 and the phase velocity C„ is given by p/k. S u b ­
s t i tu t ing equa t ions (IS) in to equa t ions (17), the frequency equa­
tion is 

Co4 v + fc2T2 + k2ir 
1 

Co2 

" / 1 
- 2A2 -| 

L V r1 

i 

it 

1 / 1 1 
— + 2 
A2 \A-272 A2//2 p 2 + — (1 - A2//2)2 = 0. (19) 

h 

It is interesting to note that when X -*• <=,&—*• 0, and 

' EA \ 1 / 2 Co 

mli2 It' 
(20) 

Equa t ion (20) is the fundamenta l frequency of the radial mode of 
vibrat ion. 

T h e phase veloci ty as ob ta ined from equat ion (19) is 

1 + 
I 1 C, 

/.2T2 k2R2j \Cg^ 

1 / 1 I 

2 + 
1 3 

fc272 A2//5 

+ A-2//2 \ A 2 7 2 k2IP/ _ 
X \CJ + Mi' 

X (1 - A-2/i>2)2 = 0. (21) 

For an infinite train of waves the phase velocity gives the dif­
ference in phase of the vibration of the helical coil. In a dis­
persive medium the energy is transmitted at the group velocity 
which is given by 

C„ = 
dp 

dk' 

Equation (19) yields 

where 

D = 
C,.V 

c, 

Co 

4A-3 I A2 + — + -
X Y2 It'­

ll 

D' 

(22) 

(23) 

+ 2 © 
A-3 A2 + 

B = 2AS , + , 
Co/ \C0 

r 
C \ 2 

A-3 

+ H2 k2It2 1 1 

A2T2 A2//2, 

2A:3 2A3 

— 4Ar» - — + — (3 - 2A2//2) 
yi It1 

+ '- a - A2//2)(I - 3A2//2). 
It4 ' 

Equation (21) may have two real, positive roots, correspond­
ing to two different modes of wave propagation. The roots for 
Cp are shown in Figs. 6 and 7. The corresponding group velocities 
are shown in Figs. 8 and 9. As the wavelength approaches in­
finity, Cp approaches either infinity or a minimum value at fc = 
1/7/ and then increases again. The group velocity of the first 
mode approaches zero as the wavelength approaches infinity; 
whereas the group velocity of the second mode approaches a 
minimum value at k = 1//J. With further decrease in A, the 
group velocity of the second mode assumes negative values, sig­
nifying that the second mode does not propagate for k < l/R. 
When k becomes very small, the group velocity again becomes 
positive, but it does not have any physical significance. On the 
other hand, as the wavelength becomes smaller, both of these 
phase velocities and the group velocities approach the bar velocity 
C0. If the wavelength becomes too small, i.e., approximately 
X < (r>.67rY2)/7i, the roots for the phase velocity become com­
plex, the complex part being three to four orders of magnitude 
smaller than the real part. The complex part probably does not 
exist in a more exact analysis. 

Each mode will be discussed separately. The group velocity 
of the first mode of the u-w deformation rapidly approaches the 
bar velocity as k increases from zero, especially at large values of 
the principal radius of curvature. In the limit, as the radius of 
curvature approaches infinity (i.e., straight bar), the group and 
the phase velocities are equal to the bar velocity. I t should be 
noted that the first mode shown is not, affected appreciably by 
the change in the radius of gyration, except at small radius of 
curvature as shown by the dotted line of Fig, 8 for // = 2. This 
indicates that the first mode of the u-w deformation is associated 
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k , inch" 

i.O 

6 Phase ve loc i t y versus w a v e number for u-w de fo rmat ion—f i rs t 

with the cxlensional deformation of the locus of the centroids of 
the coil cross section. 

The second mode of the u-w deformation has small phase and 
group velocities at large wavelengths compared to those of the 
first mode. The second mode is nearly independent of the prin­
cipal radius of curvature, but very much dependent upon the ra­
dius of gyration. This second mode is associated with the 
radially flexible deformation of the coil. The group velocities 
exceed the bar velocity in a certain range of wavelengths. These 
curves closely resemble the phase and group velocities predicted 
by the approximate theory of Rayleigh [7] for the flexural wave 
propagation in a straight rod. According to the exact theory for 
a straight rod, the phase and group velocities approach the 
Rayleigh surface wave velocity rather than the bar velocity pre­
dicted by this analysis and by the Rayleigh theory [8], If the 
results shown in Figs. 6-9 for the second mode are replotted by 
replotting the group and phase velocities as a function of a/\, the 
resulting curves are nearly the same as those predicted by the 
Rayleigh theory. 

The propagation velocities for the ff-v deformation modes are 
discussed in the Appendix, since they are not directly related to 
the experimental results. 

Discussion of Experimental and Theoretical Results 
The first mode shown in Figs. 6-9 is associated with the exten­

sion of the coil, as stated earlier. Therefore, the stress pulses 
shown in Figs. 3, 4, and 5 are governed by the group velocity 
shown in Fig. 8. I t is interesting to note that the reason the 
initial pulse length becomes shorter and shorter is because only 
the short wavelength components propagate with the bar velocity 
and the longer wavelength components lag behind. I t should be 
noted that the initial pulse is composed of many waves of various 
frequencies. Since the high-frequency Fourier components of the 
pulse have lower amplitudes than the longer wavelength com­
ponents, the amplitude of the pulse at the front decreases as the 
pulse propagates along the coil. Consequently, the slower-mov­
ing succeeding pulses have higher amplitudes. Also, the length 
of the pulse that arrives at a given station in the coil first be­
comes shorter and shorter since it represents the superposition of 
several short wavelength components. 

The experimentally observed decrease in the group velocity 
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Fig. 7 Phase ve loc i ty versus w a v e number for the u w de fo rmat ion—second mode 
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Fig. 8 Group velocity versus wave number for v-w deformation—first mode 

Fig. 9 Group velocity versus wave number for u-w deformation—second mode 

along the coil may be due to the fact that the short wavelength 
components which travel at the bar velocity must decrease in 
amplitude as the pulse disperses continuously. Therefore, the 
very front of the pulse may have such a low amplitude that it is 
not measurable. This is substantiated by the decrease in the 
pulse length as the distance of wave propagation increases. I t 
should be noted (hat the absolute value of the group velocity 
calculated from the experimental results may be erroneous since 
the distance the wave propagated was measured along the shortest 
path. 

The dispersion of the pulse is expected to be greater as the 
principal radius of curvature decreases, because 1he difference in 
the group velocity becomes greater as the radius decreases. I t 
also implies that if the coil is so made that its principal radius of 
curvature changes continuously, the coil can decompose the 
initial pulse in an arbitrary manner by controlling the group 
velocity. 

The analysis given in the preceding section states that the 
natural frequency varies continuously as a function of wavelength. 
The experimentally measured period decreases, but not in exact 
accordance with the theoretical predictions, indicating that the 
simple theory is not sufficient to predict all the experimental 
results. However, the quasi-steady oscillatory parts have 
natural frequencies corresponding to the basic mode given by 
equation (20). The experimental values compare very favorably 
with the theoretical result of the half period of 0.004 X L0~:i sec. 

The experimental results show that the stress is highest in the 
straight section, when the first incident pulse passes through it. 
Therefore, the maximum mangitude of the impact stress that may 
be applied to the coil is limited by the uniaxial dynamic yield 
stress of the metal, unless a certain amount of plastic deformation 
can be tolerated. For extremely large loads, this type of impact 
load disperse!' may be combined with other shock absorbers in 
order to extend its usefulness. I t may be of interest to note that 
the adjacent coils never touch each other laterally during the 
loading. 

The duration of loading considered in this paper is relatively 
short. Additional work is being done to investigate the case 
of extremely long pulses with high energy. The effects of 
varying the curvature and pitch have been investigated, the 
results of which state that for the coil used in this experiment a 
small variation in the pitch of the coil does not significantly affect' 
the results [9]. 

Conclusion 
A stress pulse in a tangentially loaded helical coil disperses as it 

propagates along the coil, and the coil may be used as an impact 
load disperser. The wave-propagation velocity is a function of 
wavelength, material properties, and the geometry of the coil. 
The information provided in this paper may be used in designing 
an impact load disperser. 
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A P P E N D I X 

The (3-v De fo rmat ion 

The 0-v deformation may be neglected in evaluating the experi­
mental results presented in this paper since the loading was purely 
tangential. However, the analytical results are of interest. 

The shear force term /<'„ may be eliminated from the first and 
the second equations of equations (167;) and the resulting equa­
tions may be written as 

1 d2/} 

It ds„2 " 

1 

" 6V72 

d2/3 

o\sV2 

/ d 2 A I d2 /d 2 v 

\dP/ GV dp \dso2 

I d2;3 1 d2w 

C,2 dt2 It bs/ 

+ dso" 
(24) 

where C,2 = GA/m. 
The solutions for /3 and v may be assumed to be 

(i = 1J>(*<>, Vo) e x p [i(kiz0 + -pit)] 

u = V(x„, ?/o) e x p [i(kiz0 + pd)]. 

Substituting equations (25) into equations (24), the frequency 
equation becomes 

(25) 

Pi4 + 1 

Pi-

C, 2C„ 2 \A- , 2 7 

~~kS ( 1 \ An2' 

The phase velocity is given by 

i 

+ 1 

+ A"< 1 -
A>2Ay 

0 (26) 

W + 1) + $. + 1 
1 

= 0. (27) 

The group velocity is given by 

c'„y l 

Cj \yVcS 
+ 1 

1 
_ _ 

Co 

Co2 

+ 1 + -
G 2 

7«fei» 

1 

2(1 + v) 

KCJ J + V2 kclt* 

I'he shear velocity C, and the bar velocity Co are related by 

'Co 
\C, 

= 0. (28) 

(29) 

Equation (27) may have more than one positive, real root, but 
it is much more complicated than the corresponding equation for 
the u-iv mode. If fci < 1/R, there is only one real, positive root. 
If ki > l/It, there are two positive, real roots, approaching either 
the shear wave velocity or the bar velocity. In the limit as A'i 
approaches infinity, the group velocity approaches the shear or 
bar velocity. At Id = 1/R, C'p may bo either equal to zero or 

Co 

CA2 Ai272 

Co) + 1 + fa2Y2J 
(30) 

However, the former value, i.e., Cp = 0, is not a physically ac­
ceptable solution as the group velocity associated with this phase 
velocity becomes infinite. 

The results are shown in Figs. 10 and 11. It is interesting to 

Fig. 10 Phase velocity versus wave number for the $-v deformation 
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Fig. 11 Group velocity versus wave number for fhe fi-v deformation 

note that the combination of the first mode and the second mode is physically reasonable since such a long period of loading results 
nearly always yields phase and group velocities equal to the 
.shear wave velocity 6\. Since a pure twisting wave propagates 
with the shear wave velocity, it must be that the flexiiral mode 
propagates with velocities ranging between zero and the bar 
velocity, whereas the /3 deformation propagates with the shear 
wave velocity, if A'i > l/'H. If ki < \/R, the disturbance propa­
gates with velocities close to the shear wave velocity. This 

in twisting. The principle of radius of curvature has little in­

fluence on the curves shown, but Poisson's ratio does affect the 

results. Again, the group velocity overshoots the bar velocity 

in a certain wavelength range which was discussed earlier in 

connection with the Rayleigh theory for flexiiral wave propaga­

tion in a straight rod. 
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