
A Semantics-Driven Approach to
Lyrics Segmentation

Adriano Baratè, Luca A. Ludovico, Enrica Santucci

Laboratorio di Informatica Musicale (LIM)

Università degli Studi di Milano

Via Comelico 39, 20135 Milano, Italy

{barate, ludovico, santucci}@di.unimi.it

Abstract—The purpose of this paper is describing a semantics-
driven approach to the automatic segmentation of song lyrics.
The proposed algorithm takes into account the basic formatting
commonly in use for lyrics on CD booklets and specialized Web
sites, in order to extract basic semantic information, such as the
organization in lines and sections. Then the algorithm applies
simple rules to reconstruct lyrics structure, supporting tolerance
margins as regards possible errors and encoding variants. The
output is a sequence of sections labelled according to the
similarity of their contents. The resulting segmenter is publicly
available as a set of methods exposed via a Web application
programming interface (API).

I. INTRODUCTION

In the digital era, huge and comprehensive collections of
song lyrics are available to Web users. In some cases these
contents come from authoritative sources such as music labels
and music publishers; in other cases they are the result of
collaborative efforts by users themselves.

The framework described in this paper addresses the prob-
lem of segmenting song lyrics. The primary goal is developing
an algorithm that takes in input a set of text strings and -
after some computation - outputs a set of symbols representing
the recognized structure. The algorithm is a part of a more
comprehensive framework that can be accessed from the Web
via API1 methods.

The idea is using the basic semantic information usually
present in lyrics to drive the segmentation process. Hopefully,
lyrics should be accurately transcribed and organized in lines
and blocks through carriage returns and blank lines. Neverthe-
less the algorithm has to be in a certain measure fault-tolerant.

As discussed in more detail in Section III, in vocal music
(above all in specific genres) the sections a piece is composed
of can be clearly recognized and sometimes even detected a
priori. For instance, in popular music a common form is verse,
chorus, verse, chorus, bridge, verse, chorus.

The goal of the algorithm is not to label a set of lines in
a given way (e.g. verse, pre-chorus, chorus, etc.), but rather
identifying recurrent as well as non-recurrent groups of lines,
no matter which structural meaning they have in the music

1API is an acronym standing for Application Programming Interface. An
API is a set of functions that accomplish a specific task or allow to interact
with a specific software component.

piece. For example, from this perspective the structure cited
before would become A-B-C-B-D-E-B, as the verse is typically
a variable part whereas the text of the chorus is repeated.

This framework has heterogeneous theoretical and practical
implications. For example, it can be employed for automatic
large-scale investigation on song structures, as regards the
verse-chorus layout as well as the internal composition of
single sections.

Another application can be oriented to the segmentation of
the corresponding audio track, supposing that fixed text parts
are clearly recognizable in the audio signal too. For instance,
this approach can be coupled with the one described in [1],
where an input audio signal is segmented and then aligned
with hand-labelled paragraphs in lyrics through dynamic pro-
gramming algorithms to find the best alignment path. Other
similar works will be cited in Section II.

Finally, it is worth citing a merely practical application
for huge repositories of lyrics. One of the methods in our
framework implements a string metric for measuring the
difference between two character sequences. Even if the main
purpose in this context should be finding string occurrences,
repeated either literally or in varied form, this method could
easily discover typographical errors (e.g. misspelled words)
and unwanted variations (e.g. the adoption in similar lines of
different apostrophes, such as ’ and ‘).

The paper is organised as follows:

• Section II presents a survey about other scientific works
focusing this matter;

• Section III introduces the basic terminology and de-
scribes the main structures available for popular music;

• Section IV discusses which semantic aspects we can rely
on when we parse lyrics archives;

• Section V explains the key design principles of the
segmentation algorithm;

• Section VI declares the methods exposed via Web to
analyse lyrics;

• Section VII finally discusses some clarifying examples.

II. RELATED WORKS

The problem of automatic lyrics segmentation has been
already addressed in many works. In this section we review
some of the most promising and relevant initiatives.

An approach can be found in [2]. In this case, standard
natural language processing (NLP) tools are employed for the

8th International Workshop on Semantic and Social Media Adaptation and Personalization

978-0-7695-5132-6/13 $26.00 © 2013 IEEE

DOI 10.1109/SMAP.2013.15

73

8th International Workshop on Semantic and Social Media Adaptation and Personalization

978-0-7695-5132-6/13 $26.00 © 2013 IEEE

DOI 10.1109/SMAP.2013.15

73

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357405248?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

analysis of music lyrics. Structure extraction occurs after a
phase of language identification. The authors conducted exper-
iments with lyrics from 5 different languages: Spanish, Italian,
French, German and English. Unfortunately, this approach
strongly relies on language detection and recognition tends to
fail in cases where lyrics are written in more than one language
(for example The Beatles’ “Michelle”) or with onomatopoeic
or non sense words (for example Santana’s “Jin-Go-Lo-Ba”).

Another relevant approach is the one described in [3],
which proposes a multimodal structure segmentation of music
using both audio and textual information simultaneously. The
semantic structure of songs is achieved by lyrics processing.
The similarity between each pair of paragraphs is measured
by the longest common subsequence (LCS), a sequence of
matched words whose orderings is unaltered.

A powerful mix of bottom-up and top-down approaches,
combining the complementary strength of low-level features
and high-level music knowledge, is also presented in [4]. The
evolution of this approach based on beat-space segmentation,
chords, singing-voice boundaries, and melody- and content-
based similarity regions can be found in [5].

As mentioned before, lyrics analysis can be profitably
coupled with media segmentation, clustering, and similarity
analysis. To this end, in the previous section we have already
quoted [1]. It is worth citing also the early approach in [6] and
more recent works such as [7], [8], and [9].

With respect to the mentioned works, this paper aims
at improving the lyrics-related part by taking advantage of
semantic information, as explained in Section V.

Finally, [10] proposes an original way to input both au-
dio and lyrics information by using a robust Voice-to-MIDI
system. The user can input MIDI sequence data by naturally
singing melodies with lyrics, then the Voice-to-MIDI system
translates singing voices into digital musical data, i.e., MIDI
sequence data.

III. SONG STRUCTURES IN POPULAR MUSIC

Music structures have been deeply investigated from differ-
ent perspectives: Literature, Musicology, Music Composition,
etc.

First, it is possible to recognize some recurring structures,
dating back to ancient Greek poetry. For instance, strophic
form (also called verse-repeating or chorus form) is the term
applied to songs in which all verses or stanzas of the text
are sung to the same music. A possible representation of its
structure is A-A-A. Many folk and popular songs are strophic
in form, including the twelve bar blues, ballads, hymns and
chants. This simple structure was used also in classical art
songs, such as 19th century German lieder. Relevant examples
are some poems by Johann Wolfgang von Goethe set to music
by Franz Schubert, e.g. “Heidenröslein” and “Der Fischer”.
Besides, several compositions in his song cycle Die schöne
Müllerin use strophic form.

A song that uses the strophic form is “Bridge Over Troubled
Water” by Simon and Garfunkel. Lyrics present three verses,
each consisting of several lines. Each verse is lyrically different
and there is melodic variation in the final verse. At the end

of each verse the line “Like a bridge over troubled water” is
repeated.

Another typical structure is contrasting verse-chorus form, a
binary form that alternates between two sections of music (A-
B-A-B). This kind of song form became predominant on the
chart during the explosion of rock and roll in the 1950’s and
it is still in use. Examples are “Take It Easy” by The Eagles
and “Un-break My Heart” by Toni Braxton.

An extension of the verse-chorus layout is the verse-chorus-
bridge structure, which often uses this pattern: verse-chorus-
verse-chorus-bridge-chorus. The first verse sets-up the theme
of the song with the last line offering a natural progression to
the chorus. The chorus contains the main message of the song
that is worth repeating. Then another verse where new details
are revealed followed by the chorus again. Then a bridge -
often shorter than the verse - is added. The bridge must be
different from the verse - lyrically and rhythmically - and offers
a reason why the chorus needs to be repeated. Currently, most
pop/rock songs adopt this structure, with a number of small
variants.

There exists a correlation between music and lyric struc-
ture. As regards the latter, the set of structure types usually
considered in popular music are:

• Introduction (intro): usually one verse composed by
three or four phrases used to expose the main theme
or to give a context to the listener;

• Verse: a part that roughly corresponds with a poetic
stanza. Lyrics in verses tend to repeat less than they
do in choruses;

• Pre-chorus: the optional song section that occurs before
the chorus. Its main function is to act as a transition be-
tween the verse and chorus, to allow those two sections
to connect together a little better;

• Chorus: the refrain of a song. When two or more sections
of a lyric have almost identical text, these sections
probably are instances of the chorus. This part repeats
at least twice with none or little differences between
repetitions, thus becoming the most repetitive part of a
lyric. It is also where the main theme is more explicit.
Along with the corresponding music, it is intended to be
the part which listeners tend to remember;

• Bridge: it is an interlude that connects two parts of the
song. As verses repeat at least twice, the bridge may
then replace the 3rd verse or follow it thus delaying the
chorus. In both cases it leads into the chorus;

• Outro: not always present, it is the counterpart of the
intro, located at the end of lyrics. It is meant to be a
conclusion about the main theme.

For further detail about music structures, please refer to [11]
and [12].

IV. COMMON CONVENTIONS FOR LYRICS ENCODING

We are experiencing a tremendous increase in the amount
of music-related information made available in digital form.
As regards lyrics in particular, with the creation of large
collections, we need to infer semantic information from het-
erogeneously encoded repositories. The overall quality of a

7474

repository, as regards both the integrity and the reliability of
lyrics, depends on a number of factors. Solving such a problem
goes beyond the goals of our initiative, nevertheless it has to
be considered. A possible solution could be extracting from
the Web multiple versions of the same lyrics, as described in
[13].

In any case, we cannot assume that lyrics are encoded
following fixed rules. A typical example is the repetition of
lines, above all in the chorus: in some cases all the lines
are written out, in other cases they are abbreviated through
indications such as (x4) or (4 times). Another typical example
is the recurrence of the chorus, often replaced by indications
such as [Chorus], [Hook], or the first line followed by ellipsis.

Fortunately, there are also commonly accepted conventions
that can help the segmentation process. Usually, lyrics lines
correspond to different text lines and they are separated by
control characters such as carriage return and line feed (with
slight variations among Windows, Mac and Unix systems).
Besides, lyrics are often pre-segmented by leaving blank
lines between sections. In this way, verses and refrains are
visually recognizable by a human reader and automatically
distinguishable by a computer system.

Finally, the use of parentheses inside lyrics is a typical way
to specify additional information. Their adoption implies a
great number of different meanings:

• vocal sound effects, e.g. (yeah-yeah-yeah);
• background lyrics, e.g. (anyway the wind blows);
• alternate lyrics, e.g. Karma police, arrest this man

(Karma police, arrest this girl);2
• section identification, e.g. [Chorus];
• singer identification, e.g. [Women Singing];
• performance indications, e.g. [fade out] or [x4];
• additional metadata, e.g. the title of the song.

Nevertheless, our approach aims at taking advantage from
semantic information originally encoded in lyrics. The indica-
tions implying repetitions can be managed through ad hoc text
expansions, carried out on lines or whole verses. A semantic
parsing is required to determine the number of repetitions to
perform. The problem of parenthesized contents can be easily
solved by ignoring their contents. When parentheses occur
within a line, their content is ignored in similarity measures;
when they constitute a whole line, the line is deleted from
lyrics.

As a final remark, since our algorithm takes formatted text
in input, we could impose a set of typographical and semantic
conventions to be strictly observed. However, this would imply
loss in generality: for instance, most Web archives do not
adhere to them.

V. THE ALGORITHM

The segmentation algorithm works in two steps. First, user-
defined lyrics are parsed taking into account the original
semantic information. The result of the first phase is to label
each line through an identifier. Completely identical lines are

2In an early version of Radiohead’s “Karma Police”, the first verse was
completely different.

given the same identifier, ignoring their case, whereas pro-
gressive symbols from an ordered sequence (in our examples
alphabet letters) are assigned to different lines. However, slight
alterations in lines - due to intended variations or typos - should
be recognized and managed.

Consequently, a strategic decision concerns the metric which
evaluates similarities in text strings. This problem is well
known in Information Technology and has been treated in
a number os scientific works. For example, an exhaustive
discussion of algorithms to compare text strings is provided
in [14]. Other approaches have been listed in Section II. Our
implementation employs a normalized Levenshtein distance, as
described in [15]. In short, the Levenshtein distance between
two character sequences is the minimum number of single-
character edits (insertion, deletion, substitution) required to
change one sequence into the other. The concept of distance is
needed to establish if two lines are equal, similar, or completely
different. In our implementation the user can set the threshold
value as a percentage of tolerated edit distances, since line
length can vary significantly.

As a result of the first step, the algorithm produces an array
of identifiers - one per each lyrics line - that put in relationship
the lines. Such a list has been conceived to keep trace of
detected variants. In the examples below the star symbol *
is employed, whereas the computer implementation adopts
different letter case: capital letters for new lines and lower
case for varied occurrences. In this way, comparison between
strings - either ignoring or honouring slight differences - can
be easily achieved in both cases.

The second step works with lyrics divided into paragraphs.
The strategy to recognize block structures is based on weight-
ing a number of descriptors, in order to tag sections with a
label. The list of descriptors include:

• The labelling of lines resulting from the previous step;
• Paragraphs in which lyrics are explicitly divided (namely

song sections);
• Absolute and relative position of each section in lyrics;
• Number of lines or verses of each section;
• Section similarity.

Another version of the algorithm has been implemented to
ignore the original semantic information submitted in input
(e.g. line blocks), since in certain cases this can give better
results. A trivial answer to this apparent paradox is that the
user can input wrong structural information; if the algorithm
considers such information reliable it infers wrong results.
But a subtler case can happen. As Section III outlined, in a
song not all variable sections are verses and all fixed ones
are choruses. For instance, also a pre-chorus - if present -
is repetitive, as well as the outro can recall the chorus. The
version of the algorithm where blank lines are ignored tries
to detect sections as long as possible. Lines are evaluated as
regards their similarity and then grouped into either variable
or repetitive blocks.

Depending on the purpose of the analysis, this behaviour
can represent an advantage or a disadvantage. For instance,
when the algorithm is used to get the finest classification of
lyrics sections, maintaining the original structural information
can be relevant; on the contrary, when the goal is retrieving

7575

Twinkle twinkle little star,
How I wonder what you are.

Up above the world so high,
Like a diamond in the sky.

Twinkle twinkle little starsss
HOW I WONDER WHAT YOU ARE.

Fig. 1. Misspelled lyrics of Twinkle Twinkle Little Star

correspondences in the audio signal, a simple distinction
between repetitive and non-repetitive sections can be sufficient.

VI. WEB-BASED API METHODS

The algorithm described in Section V has been implemented
as an API, which includes a number of methods publicly
available via Web. In this section only the main methods
will be declared and commented. The following subsections
will define the API request and response in all the available
output formats. Responses are returned in one of the following
formats:

1) HTML (MIME3 Content-Type: text/html);
2) JSON4 (MIME Content-Type: text/plain);
3) plain text (MIME Content-Type: text/plain);
4) XML (MIME Content-Type: text/XML).

Plain text is the simplest way to return results. In case of
multiple outputs, comma-separated values notation is adopted.
HTML has been included mainly for Web applications. Finally,
JSON and XML allow to represent structured information and
they are particularly fit for those methods that return multiple
values.

The root URL to access API methods is located at
http://www.lim.di.unimi.it/segmenter/

For ease of use, if nothing more is specified, this address
redirects to a Web page where a graphical interface allows the
user to input lyrics and launch API methods.

In order to show how API methods work, the lyrics of
a classic children’s song will be used (see Figure 1). For
demonstration purposes, such a text intentionally contains
a limited amount of misspellings and typographical errors
(e.g. capitalized letters, multiple blank spaces, etc.).

Please note that UTF-8 is the format to encode arguments
when calling API methods.

A. word.count and other counter methods
This method returns the number of words in the input text,

considering white spaces as word delimiters.

3Multipurpose Internet Mail Extensions (MIME) is an Internet standard
originally conceived to extends the format of email to support text and header
information in character sets other than ASCII, non-text attachments, multi-
part messages etc. Now MIME is used to describe content type in general,
including for the web.

4JavaScript Object Notation (JSON) is a lightweight data-interchange for-
mat, easy for humans to read and write as well as for machines to parse and
generate. JSON is based on a subset of the JavaScript Programming Language.

Parameters:

• lyrics_body: the lyrics to analyse
• response_type: the output format. Supported val-

ues: html, json, text and xml
Launched on the lyrics in Figure 1, this method will return

32 in HTML and text format, {"word.count":32} in
JSON format, and <word_count>32</word_count> in
XML format.

Besides word.count, other methods to evaluate quantitative
characteristics of lyrics are word.count.per.line, line.count, and
line.count.per.section.

In accordance with their names, these methods return the
total amount of words per line, the number of lines in the input
text, and the amount of lines section by section respectively.
Carriage return / line feed characters are line delimiters and
blank lines are section delimiters. In some cases an additional
parameter can be specified, i.e. blank_lines, a boolean
value to count or ignore blank lines.

For example, the method line.count.per.section launched on
the lyrics in Figure 1 will return 2,2,2 both in HTML and
in text format,

[{"section":{"number":1,"line.count":2}},
{"section":{"number":2,"line.count":2}},
{"section":{"number":3,"line.count":2}}]}

in JSON format, and finally

<line_count_per_section>
<section>

<number>1</number>
<line_count>2</line_count>

</section>
<section>

<number>2</number>
<line_count>2</line_count>

</section>
<section>

<number>3</number>
<line_count>2</line_count>

</section>
</line_count_per_section>

in XML format.

B. line.label
This method returns a sequence of identifiers which repre-

sent the identity, similarity or inequality among lines.
Parameters:

• lyrics_body: the lyrics to analyse
• threshold: a value to set the maximum percentage

of differences tolerated in the normalized measure of
distance between lines. The percentage always refers to
the longest string. Default value: 0.2, corresponding to
2 edit differences each 10 characters.

• mark_differences: a boolean value to highlight
slightly different lines or not. Supported values: true
(default) or false

• response_type: the output format. Supported val-
ues: html, json, text and xml

Launched on the lyrics in Figure 1 with the default value
for threshold, in text format this method will return ei-
ther AB CD AB or AB CD ab depending on the settings of

7676

mark_differences. The JSON and XML result provides
additional information on the edit distance (-1 stands for not
available), both in absolute terms and as a percentage referred
to the length of the longest string:

<line_label>
<line>

<text>Twinkle twinkle little star,</text>
<label>A</label>
<distance>-1</distance>
<distance_perc>-1</distance_perc>

</line>
<line>

<text>How I wonder what you are.</text>
<label>B</label>
<distance>-1</distance>
<distance_perc>-1</distance_perc>

</line>
...
<line>

<text>Twinkle twinkle little starsss</text>
<label>a</label>
<distance>3</distance>
<distance_perc>0.1</distance_perc>

</line>
<line>

<text>HOW I WONDER WHAT YOU ARE.</text>
<label>b</label>
<distance>5</distance>
<distance_perc>0.1613</distance_perc>

</line>
</line_label>

in XML format.

Please note that for the last line the Levenshtein distance is
5, since casing is not considered: in other case, it would be
31 − 2 − 5 − 1 = 23, namely the full length of the second
string minus capitalized characters, blank spaces and the final
period. Both the last lines are recognized as varied occurrences
of the first two, since the threshold is set to 0.2; e.g. with
threshold=0.15 the last one would be marked through a
new identifier.

C. song.segment

This method is probably the most important one, since
it returns a sequence of identifiers representing the identity,
similarity or inequality among sections. Please note that this
method relies on line.label in order to mark lines.

Parameters:

• lyrics_body: the lyrics to analyse

• threshold: a value to set the maximum percentage
of differences tolerated in the normalized measure of
distance between sections. Default value: 0.2.

• mark_differences: a boolean value to highlight
slightly different sections or not. Supported values:
true (default) or false

• response_type: the output format. Supported val-
ues: html, json, text and xml

Some results will be presented and discussed in the next
section.

VII. RELEVANT EXAMPLES AND EXPERIMENTAL

RESULTS

Now we present some clarifying examples, showing how
the algorithm deals with the increasing complexity of the
structures to decode.

A first example is California Girls by The Beach Boys.
The structure of this song is a contrasting verse-chorus form
that can be represented through the sequence A-A-B-A-A-B-
B, where A represents the variable part (namely the verse) and
B the repetitive one (namely the chorus). The last column of
Table I shows the segmentation of the lyrics reported in the
first column. The first step of the algorithm simply recognizes
new occurrences of lines already present in the data structure.
In the verses all lines differ, whereas the chorus is made by
almost identical lines. The fact that the third line in the chorus
is recognized as a new line or a repetition of the previous
ones clearly depends on the tolerance set for the Levenshtein
distance. After the first step, the algorithm parses and compares
user-defined blocks of lines. Repetitions or similar blocks
are identified by the same letter, whereas variable blocks are
marked through different letters.

TABLE I. LYRICS OF California Girls BY THE BEACH BOYS

Well East coast girls are hip A A
I really dig those styles they wear B
And the Southern girls with the way they talk C
They knock me out when I’m down there D

The Midwest farmer’s daughters E B
Really make you feel alright F
And the Northern girls with the way they kiss G
They keep their boyfriends warm at night H

I wish they all could be California I C
I wish they all could be California I
I wish they all could be California girls I

The West coast has the sunshine J D
And the girls all get so tanned K
I dig a French bikini on Hawaii island dolls L
By a palm tree in the sand M

I been all around this great big world N E
And I seen all kinds of girls O
Yeah, but I couldn’t wait to get back in the states P
Back to the cutest girls in the world Q

I wish they all could be California I C
I wish they all could be California I
I wish they all could be California girls I

I wish they all could be California I C
I wish they all could be California I
I wish they all could be California I
I wish they all could be California I

A more challenging example is Alejandro by Lady Gaga.
The structure of this pop song is more complex. Lyrics have
been reported in Table II, together with their segmentation.
Once again, the columns represent respectively the original
lyrics from MusixMatch5 (including typos, in bold), labelled
lines, and the corresponding segmentation. This time, we
use also the variant of the algorithm with the removal of

5MusixMatch is one of the largest lyrics catalog, containing more than 7
million song lyrics in 32 languages, available through Web API calls.

7777

parentheses and other special characters. The new results are
reported in the additional columns.

The first step of the algorithm aims at discovering similari-
ties in lines, also supporting slight variations. In the table, the
latter case is graphically rendered through the star (*) symbol.
Here the Levenshtein distance for measuring the difference be-
tween two character sequences was set to 20%. Consequently,
lines containing typos are recognized as occurrences of the
same text (see the bold line in Table II), as well as lines that
share most characters (see K and K*).

The second step organizes line occurrences in blocks by
using the original semantic information about block structures
and analysing the composition of each block. The final result is
shown in the rightmost column of Table II. In order to evaluate
the performances of the algorithm, we provide a short analysis
of the song, based on its audio. The first lines (identified by A)
represent a sort of intro and in the audio track they are spoken.
After the first section, marked as B, there is a pre-chorus C,
followed by the chorus D and the post-chorus E . In accordance
with many statistical analyses on pop/rock repertoire, such a
layout is literally repeated. Then, the bridge occurs and the
chorus is exposed again.

It is worth noting that the last section is better analysed by
the algorithm when the contents of parentheses are ignored. In
fact, in this case the last block is automatically recognized as a
new occurrence of the chorus plus a final line. As mentioned in
Section IV, often parentheses are used to indicate non-relevant
parts of the text (repetitions, performance indications, etc.) and
ignoring them can improve the quality of the segmentation.

A further step, based on the analysis of the number of lines
constituting each section, could provide information on meta-
sections: 2 + 4 (verse, variable), 4 + 5 + 4 (chorus, repeated),
2+ 4 (verse, variable), 4+ 5+ 4 (chorus, repeated), 4+ 5+ 5
(bridge/chorus, partially repeated), n (outro, repeated).

VIII. CONCLUSION AND FUTURE WORKS

The algorithm proposed here virtually addresses vocal music
from any historical period, genre, geographical area, etc. Nev-
ertheless, this early implementation mainly focuses pop/rock
music and its application to other forms should be better
investigated. For instance, some tests conducted through our
framework have shown that rap songs have structures difficult
to be recognized.

This paper represents only the first step towards an auto-
matic semantics-based segmentation of lyrics. The described
algorithm is very easy to implement and it has revealed to be
efficient and effective on relatively short texts as song lyrics.
Needless to say, hyphenation and phonemes - aspects clearly
depending on the language - could add further analysis tools.
Other improvements could be achieved by performing a pre-
clustering and classification of lyrics, in order to use ad hoc
analyses depending on text features.

As future work, the idea is investigating different algorithms
to obtain lyrics segmentation and using supervised neural
networks with two goals in mind: 1) setting the numeric
parameters of the proposed algorithm to improve performances
on a given repertoire, and 2) weighting the results of different

TABLE II. LYRICS OF Alejandro BY LADY GAGA

I know that we are young and I know you may love me A A A A
But I just can’t be with you like this anymore, Alejandro B B

She’s got both hands in her pockets C B C B
And she won’t look at you, won’t look at you D D

She hides true love, en su bolsillo E E

She’s got a halo around her finger around you F F

You know that I love you, boy G C G C
Hot like Mexico, rejoice H H

At this point I gotta choose I I

Nothing to lose J J

Don’t call my name, don’t call my name, Alejandro K D K D
I’m not your babe, I’m not your babe, Fernando L L

Don’t wanna kiss, don’t wanna touch M M

Just smoke one cigarette and hush N N

Don’t call my name, don’t call my name, Roberto K* K*

Alejandro, Alejandro O E O E
Ale-Alejandro, Ale-Alejandro P P

Alejandro, Alejandro O O

Ale-Alejandro, Ale-Alejandro P P

Stop please, just let me go Q F Q F
Alejandro, just let me go R R

She’s not broken, she’s just a baby S G S G
But her boyfriend’s like a dad, just like a dad T T

And all those flames that burned before him U U

Now he’s gonna firefight, got cool the bad V V

You know that I love you, boy G C G C
Hot like Mexico, rejoice H H

At this point I gotta choose I I

Nothing to lose J J

Don’t call my name, don’t call my name, Alejandro K D K D
I’m not your babe, I’m not your babe, Fernando L L

Don’t wanna kiss, don’t wanna touch M M

Just smoke one cigarette and hush N N

Don’t call my name, don’t call my name, Roberto K* K*

Alejandro, Alejandro O E O E
Ale-Alejandro, Ale-Alejandro P P

Alejandro, Alejandro O O

Ale-Alejandro, Ale-Alejandro P P

Don’t bother me, don’t bother me, Alejandro W H W H
Don’t call my name, don’t call my name, bye Fernando K* K*

I’m not your babe, I’m not your babe, Alejandro L* L*

Don’t wanna kiss, don’t wanna touch, Fernando X X

Don’t call my name, don’t call my name, Alejandro K D K D
I’m not your babe, I’m not your babe, Fernando L L

Don’t wanna kiss, don’t wanna touch M M

Just smoke one cigarette and hush N N

Don’t call my name, don’t call my name, Roberto K* K*

Alejandro, Alejandro O E O E
Ale-Alejandro, Ale-Alejandro P P

Alejandro, Alejandro O O

Ale-Alejandro, Ale-Alejandro P P

Don’t call my name, don’t call my name, Alejandro K I K D
(Alejandro, Alejandro) O* -

nI’m not your babe, I’m not your babe, Fernado L* L*

(Ale-Alejandro, Ale-Alejandro) P* -

Don’t wanna kiss, don’t wanna touch M M

(Alejandro, Alejandro) O* -

Just smoke one cigarette and hush N N

Don’t call my name, don’t call my name, Roberto K* K*

(Ale-Alejandro, Ale-Alejandro) P* -

Alejandro Y Y

7878

segmentation algorithms still not implemented in our frame-
work.

REFERENCES

[1] K. Lee and M. Cremer, “Segmentation-based lyrics-audio alignment
using dynamic programming,” in Proceedings of the 9th International
Conference on Music Information Retrieval (ISMIR), 2008, pp. 395–
400.

[2] J. P. Mahedero, Á. Martı́nez, P. Cano, M. Koppenberger, and F. Gouyon,
“Natural language processing of lyrics,” in Proceedings of the 13th
Annual ACM International Conference on Multimedia. ACM, 2005,
pp. 475–478.

[3] H.-T. Cheng, Y.-H. Yang, Y.-C. Lin, and H. H. Chen, “Multimodal
structure segmentation and analysis of music using audio and textual
information,” in IEEE International Symposium on Circuits and Systems
(ISCAS). IEEE, 2009, pp. 1677–1680.

[4] N. C. Maddage, C. Xu, M. S. Kankanhalli, and X. Shao, “Content-
based music structure analysis with applications to music semantics
understanding,” in Proceedings of the 12th Annual ACM International
Conference on Multimedia. ACM, 2004, pp. 112–119.

[5] N. C. Maddage, “Automatic structure detection for popular music,”
Multimedia, vol. 13, no. 1, pp. 65–77, 2006.

[6] J. Foote, “Visualizing music and audio using self-similarity,” in Pro-
ceedings of the 7th ACM International Conference on Multimedia (Part
1). ACM, 1999, pp. 77–80.

[7] M. Cooper and J. Foote, “Summarizing popular music via structural
similarity analysis,” in IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics. IEEE, 2003, pp. 127–130.

[8] E. Peiszer, T. Lidy, and A. Rauber, “Automatic audio segmentation:
Segment boundary and structure detection in popular music,” Proceed-
ings of the 2nd International Workshop on Learning Semantics of Audio
Signals (LSAS), pp. 45–59, 2008.

[9] F. Kaiser and T. Sikora, “Music structure discovery in popular music
using non-negative matrix factorization,” in Proceedings of the 11th
International Society for Music Information Retrieval Conference (IS-
MIR), 2010, pp. 429–434.

[10] N. Itou and K. Nishimoto, “A voice-to-midi system for singing melodies
with lyrics,” in Proceedings of the International Conference on Ad-
vances in Computer Entertainment Technology. ACM, 2007, pp. 183–
189.

[11] P. Tagg, “Analysing popular music: Theory, method and practice,”
Popular Music, vol. 2, no. 1, pp. 37–67, 1982.

[12] D. Brackett, Interpreting popular music. University of California Press,
1995.

[13] G. Geleijnse and J. H. Korst, “Efficient lyrics extraction from the web,”
in Proceedings of the 7th International Society for Music Information
Retrieval Conference (ISMIR), 2006, pp. 371–372.

[14] M. Crochemore, C. Hancart, and T. Lecroq, Algorithms on Strings.
Cambridge University Press, 2007.

[15] L. Yujian and L. Bo, “A normalized levenshtein distance metric,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 29,
no. 6, pp. 1091–1095, 2007.

7979

