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ABSTRACT
Loops are pervasive in numerical programs, so high-level
synthesis (HLS) tools use state-of-the-art scheduling tech-
niques to pipeline them efficiently. Still, the run time per-
formance of the resultant FPGA implementation is limited
by data dependences between loop iterations. Some of these
dependence constraints can be alleviated by rewriting the
program according to arithmetic identities (e.g. associativ-
ity and distributivity), memory access reductions, and con-
trol flow optimizations (e.g. partial loop unrolling). HLS
tools cannot safely enable such rewrites by default because
they may impact the accuracy of floating-point computa-
tions and increase area usage. In this paper, we introduce
the first open-source program optimizer for automatically
rewriting a given program to optimize latency while con-
trolling for accuracy and area. Our tool, SOAP3, reports a
multi-dimensional Pareto frontier that the programmer can
use to resolve the trade-off according to their needs. When
applied to a suite of PolyBench and Livermore Loops bench-
marks, our tool has generated programs that enjoy up to a
12× speedup, with a simultaneous 7× increase in accuracy,
at a cost of up to 4× more LUTs.

1. INTRODUCTION
There are many reasons why FPGA implementations of

numerical algorithms are best obtained via high-level syn-
thesis (HLS) from C: less development effort, the abundance
of software engineers compared to hardware designers, the
relative ease of testing C code on an ordinary microproces-
sor, the opportunities for rapid design space exploration,
and so on [1]. Great advances have been made in this area
recently, and the output from HLS tools is nowadays com-
petitive with hand-crafted designs [2].

Numerical C programs typically spend most of their time
in loops. For this reason, HLS tools adopt state-of-the-art
scheduling algorithms to synthesize loops to run as fast as
possible [3]. This is achieved by pipelining them to maxi-
mally exploit parallelism across loop iterations. However,
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their ability to perform pipelining is fundamentally con-
strained by data dependences that are carried across iter-
ations, i.e. inter-iteration dependences. To relax these con-
straints, we must use equivalence rules in real arithmetic
(e.g. associativity and distributivity), in tandem with con-
ventional rules (e.g. partial loop unrolling and array access
pattern changes) to enable much more efficiently pipelined
RTL designs. A simple example of this is the summation of
all elements in an array:

float sum = 0;
for (int i = 0; i < N; i++)
sum += a[i];

This code can be partially unrolled and the sequence of addi-
tions can be rewritten using tree adders to reduce its latency,
and we will see in Sec. 8 that more efficient implementations
are possible.

Unfortunately, in the presence of floating-point arithmetic,
these program transformations could affect numerical ac-
curacy. For instance, under single-precision floating-point
arithmetic with rounding to the nearest, the result of (2−24+
2−24) + 1 = 1.00000012. . . is exact, but (1 + 2−24) + 2−24

is rounded to 1. The difference between the actual result
in real arithmetic and the rounded result is known as the
round-off error. Round-off errors, when accumulated, can
have a devastating effect on numerical accuracy [4]. Round-
off errors in a numerical program are dependent on every
arithmetic operation and every input value, and with the
impact on floating-point accuracy being so esoteric, it is
challenging for engineers to understand the repercussions of
switching between “(a + b) * c” and “a * c + b * c”
in their programs.

Experienced engineers apply expression rewriting intu-
itions in numerical programs. For instance, when summing
a sequence of floating-point values, one can sometimes re-
duce round-off error in the result by summing the inputs in
ascending order. On the other hand, one can often reduce
latency by applying expression balancing, i.e. rearranging
operators in an expression to construct a balanced tree, so
that more operators can work in parallel. These heuristics
cover a very limited number of possible transformations and
may not always improve the original code. A straightforward
process therefore does not exist to apply steps of transforma-
tions using equivalence rules to optimally trade off latency,
resources and numerical accuracy.

Existing HLS tools consider these rewrites to be unsafe,
and thus make little of them when restructuring floating-
point data-paths. For instance, Vivado HLS (VHLS) [5]
has only a simple expression balancing feature that uses as-



sociativity to improve latency, and only expressions with
either additions or multiplications are optimized. Moreover,
it does not produce optimal loop pipelining, because it does
not take into account the implications of these transforma-
tions on inter-iteration dependences and does not explore
partial loop unrolling. In addition, VHLS cannot reason
about how this feature affects numerical accuracy; there is
no guarantee that this transformation will not result in a
catastrophically inaccurate implementation.

In response, we have developed a tool, SOAP3—a fully au-
tomatic source-to-source optimizer—that augments VHLS
by optimizing a given program using these transformations.
Our optimizer discovers not only one, but a wide spectrum
of program candidates. When synthesized in VHLS, these
candidates trade off three performance metrics of great im-
portance to engineers: run time, resource usage and round-
off error. Here, run time refers to the latency in clock cy-
cles, resource usage refers to the number of look-up tables
(LUTs) and digital signal processing (DSP) elements. Some
of these performance metrics could be in conflict. For ex-
ample, higher performance tends to require more circuitry,
and how to resolve this trade-off depends on the user’s re-
quirements. As a result, SOAP3 produces a set of optimized
programs, known as the Pareto frontier : those programs P
for which the tool has found no P ′ that improves on P in
all three metrics.

In contrast to the expression balancing optimization pass
in VHLS, SOAP3 automatically produces results that are
significantly better than manually tuning partial unrolling
factors and expression balancing #pragmas in VHLS, be-
cause it is fully aware of how data dependences are carried
across iterations, and uses this to steer the optimization pro-
cess. SOAP3 also considers the impact these transformations
could have on round-off errors, and minimizes them in the
optimization process, as we treat numerical accuracy as one
of the three simultaneous objectives. Furthermore, VHLS
only generates one result which does not necessarily improve
over the original code.

Generating candidate optimizations näıvely would pro-
duce a combinatorial explosion, even for small input pro-
grams. For instance, a simple summation of n variables
could have (2n−1)!!1 equivalent expressions [6, 7]. We there-
fore base our optimizer on the open-source SOAP2 frame-
work [6, 8], which specifically tackles the efficient discov-
ery of equivalent structures in numerical programs, by in-
telligently pruning the set of candidates as it progresses up
the input program’s abstract syntax tree. We also exploit
SOAP2’s ability to analyze the numerical accuracy of a given
program. To analyze the run time and resource utilization
of a given program, we use a variant of the iterative modulo
scheduling algorithm [9] that computes fundamental lower
bounds of these metrics.

We evaluated SOAP3 on a suite of 11 programs from the
Livermore Loops [10] and PolyBench [11] benchmark suites.
Our tool obtained a wide selection of Pareto-optimized pro-
grams. Programs with the best latency obtained speedups
of up to 12× (7× on average across the suite), and increases
in accuracy of up to 7× (2.7× on average), while using up
to 4× (2.5× on average) more LUTs. We were unable to
decrease the resource utilization in any of the benchmarks,
as they have no redundant computations.

1(2n− 1)!! = 1× 3× 5× · · · × (2n− 1).

Our contributions

• We described how standard program equivalences that
do not affect program behavior (e.g. partial loop un-
rolling, and rules that remove extraneous array ac-
cesses) can enable non-standard transformation rules
(e.g. arithmetic rules) to significantly impact latency,
resource usage and accuracy in a loop (Sec. 5.2).

• We significantly improved the performance of the al-
gorithm for discovering equivalent programs through
improved accuracy analysis (Sec. 6.3), graph partition-
ing, and intelligent pruning of optimization candidates
(Sec. 5.1).

• We designed a new scheduling analysis that estimates
the latency and resource usage of a given optimization
candidate (Sec. 6).

• Incorporating the above-mentioned techniques, we de-
veloped the first optimizer to automatically and safely
produce optimized programs (and subsequent RTL im-
plementations with Vivado HLS) on the four-dimensional
Pareto frontier of options that trade off run time, ac-
curacy, and area (LUTs and DSP elements). Our im-
provements in latency are significantly better than the
only ones produced by Vivado HLS’s unsafe optimiza-
tions. We have evaluated SOAP3 on a suite of Liver-
more Loops and PolyBench benchmarks (Sec. 8).

2. MOTIVATION
Figure 1 gives an implementation of the 5-point Seidel

stencil computation, modified from PolyBench’s 9-point ver-
sion [11], where initially all values in the array A are single-
precision floating-point values between 0 and 1. It resembles
the code frequently used in fluid dynamic simulations for
solving partial differential equations and systems of linear
equations.

for (int t = 0; t < 20; t++)
for (int i = 1; i < 1023; i++)
for (int j = 1; j < 1023; j++)

A[i][j] = 0.2 * (A[i-1][j] +
A[i][j-1] + A[i][j] +
A[i][j+1] + A[i+1][j]);

Figure 1: An excerpt from the Seidel stencil [11]. The inter-
iteration data dependence of the innermost loop is under-
lined.

We start by synthesizing this program in VHLS. We en-
able loop pipelining in VHLS, which asks it to optimize the
loop by overlapping its iterations. However, we can observe
that this program has very limited opportunity for pipelin-
ing, because each iteration j of the innermost loop ends by
writing to A[i][j], and the next iteration j+1 begins by
reading from A[i][j]; this inter-iteration dependence is
highlighted in Figure 1. Hence, it serves as our example to
demonstrate the power of SOAP3.

VHLS generates a schedule where each iteration requires
49 cycles (the depth, D, of the loop), and there are 46 cy-
cles between the starts of consecutive loop iterations (the
initiation interval, II ), as enforced by the data dependences
above. The innermost loop runs for 1022 iterations (the trip
count, N), so the overall latency of the innermost loop is
((N − 1)× II ) + D = 47015 cycles.



We then enable VHLS’s expression balancing (EB) opti-
mization. When synthesized, this optimization pass tries to
reorder the sequence of additions in the loop body into a
tree structure, thus reducing the II to 28 cycles, and D to
42 cycles, while N = 1022 remains the same, thus L = 28630
cycles. The overall resource usage remains roughly the same.
However, as we mentioned in Sec. 1, VHLS is not aware of
the inter-iteration data dependence. Although enabling EB
did produce a faster implementation, there is still room for
improvement. We further discovered that if we partially un-
roll the loop, VHLS’s EB did not improve the total run time,
despite using a lot more resources. As we have explained in
Sec. 1, EB only makes use of associativity, and does not
make use of other equivalence rules. These limitations pose
great restrictions on VHLS’s ability to produce a signifi-
cantly faster implementation. Most importantly, VHLS does
not guarantee that this optimization will not result in catas-
trophic numerical inaccuracies.

We then use SOAP3 to automatically discover equivalent
programs from the program in Figure 1. Because SOAP3
explores a large number of paths that lead to a Pareto fron-
tier of implementations, here we illustrate one of the many
paths that could be taken by minimizing latency, while try-
ing to optimize accuracy and resource usage. By using just
arithmetic equivalences, SOAP3 specifically applies trans-
formations to alleviate the constraints on the inter-iteration
dependence, and discovers that the innermost loop can be
rewritten to minimize latency in the following form:

for (int j = 1; j < 1023; j++)
A[i][j] = 0.2 * (A[i][j-1] +
((A[i][j] + A[i][j+1]) +
(A[i+1][j] + A[i-1][j])));

Although this loop still has a data dependence between con-
secutive iterations, this transformation greatly reduces la-
tency because most of the loop iterations can now be over-
lapped. We find that this simple transformation can reduce
II to 19, which speeds up the original program by 2.3×,
using almost the same number of LUTs and DSP elements
as the original program. At the same time, the sequence
of additions are now reordered to minimize round-off errors,
improving the accuracy by 18%.

SOAP3 also supports more complex control flow restruc-
turing transformations, such as partial loop unrolling, in
tandem with rules that optimize memory accesses and arith-
metic calculations. This can further reduce the loop’s la-
tency. In this example, unrolling the loop by a factor of two
(i.e. updating two matrix elements on every iteration and
halving the trip count) and applying other rules, results in
a program with II = 19, D = 152, N = 511. When imple-
mented on a device it is 4.8× faster than the original, and
almost twice as accurate, at a cost of 17% more LUTs:

for (int j = 1; j < 1023; j += 2) {
float t0 = A[i][j-1], t1 = A[i][j+1];
float t2 = (A[i][j] + t1) +

(A[i+1][j] + A[i-1][j]);
float t3 = 0.04f * t2 + 0.2f *

((t1 + A[i][j+2]) +
(A[i+1][j+1] + A[i-1][j+1]));

A[i][j] = 0.2f * (t0 + t2);
A[i][j+1] = 0.04f * t0 + t3;

}

Further increasing the optimization effort, which enables the
loop to be further unrolled, leads to a program that is 7× as
fast as the original, but uses 2.8× as many LUTs. To sum-
marize, in Table 1, we compare VHLS with EB, against one
of the many implementations that we have explored using
SOAP3 with the increased optimization effort. For each im-
plementation, the round-off errors are computed using static
analysis, a part of our optimization procedure. Our tool es-
timates latency in clock cycles and the total counts of LUTs
and DSP elements, but we performed place-and-route man-
ually for exact statistics.

VHLS VHLS VHLS
with SOAP3 with EB

Clock Period (ns) 2.60 2.66 2.65
Latency (cycles) 961 k 135 k 585 k

Program Run Time (ms) 2.50 0.358 1.56
LUTs / DSP Elements 620/5 1778/8 623/5

Round-off Error 10.68 μ 4.31 μ unknown

Table 1: Comparison between the fastest implementations.
The three columns respectively shows the original program
with loop pipelining enabled, what VHLS can achieve alone,
and the capability of SOAP3. It is important to note that
the round-off error is unknown for VHLS with EB, because
it cannot predict the impact of its unsafe optimizations on
accuracy.

3. HIGH-LEVEL OVERVIEW
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Figure 2: An overview of our automatic program optimiza-
tion process. The shaded region shows our internal tool flow.

We start by introducing a high-level overview of our pro-
gram optimization process (Figure 2). Our automatic opti-
mization process starts by taking as an input, the original
numerical program written in C, and translates it into a MIR
(metasemantic intermediate representation graph). A MIR
is a directed acyclic graph (DAG), and it serves as an ab-
stract representation of the original program. It discards in-
formation about how a program is executed, which is depen-
dent on how the program is structured in C, but retains the
effect of program execution, keeping only the structure that
leads to the final result. This procedure, explained in detail
in Sec. 4, greatly reduces the number of program transfor-
mations we need to explore. We then discover equivalent
MIRs using our efficient optimization procedure discussed
in detail in Sec. 5. The optimized C programs can then
be generated from the MIRs, using the SOAP2 framework’s



code generation routines, to be synthesized in Vivado HLS
to obtain RTL implementations.

Our optimization flow can be applied to nested for loops
with constant loop bounds and step counts. It can be rela-
tively easily extended to lift this restriction with polyhedral
methods [12].

As we apply transformation rules to discover equivalent
MIRs, we estimate latency, resource usage and analyze round-
off errors for each MIR we have discovered. Non-Pareto-
optimal MIRs—the ones with all three performance metrics
(latency, resource usage and accuracy) worse than another
MIR—are pruned immediately to keep the size of total MIRs
discovered tractable. Sec. 6 explains in depth how we ana-
lyze latency, resource usage and accuracy.

4. INTERMEDIATE REPRESENTATION
There are infinitely many ways to rewrite numerical C pro-

grams, and many of these rewrites produce programs that
have the same resource usage, accuracy and latency char-
acteristics. For instance, the following two programs are
equivalent, but syntactically different, as they carry out the
same computations.

P1 : x = x+1; y = 2*x; x = 3+x;

P2 : y = x+1; x = y; y = y*2; x = x+3;
(1)

In practice, it is desirable to eliminate as much as possi-
ble the need for these syntactic rewrites that do not affect
our performance metrics. Following Gao et al., we there-
fore perform transformations not on the program text di-
rectly, but on a DAG representation of the program called a
MIR [8]. It expresses how each program variable is updated,
but abstracts away the order in which the updates occur,
and ignores any temporary variables that are not marked as
program outputs. As an example, P1 and P2 can be auto-
matically translated into an identical MIR:

x +

3 +

y ×
2

x 1

(2)

This representation is useful to us, because a single MIR is
able to capture a class of syntactically-distinct programs, all
of which have the same resource usage, accuracy, and latency
characteristics. By searching for transformations on MIRs,
we drastically reduce the size of our search space. Note that
expressions in the MIR can share common structures; this is
useful for modeling the sharing of common subexpressions
and makes the search for optimizations much more efficient.

MIRs also abstract the control structure of a program,
preserving only the computations that lead to the outputs.
For instance, by using the ternary conditional operator “?”
from C, programs with conditionals such as:

x = x + 1; if (b) x = 2 * x;

can be represented in MIR form as follows:

x ?

b
×

2
+

x 1

(3)

MIRs are also capable of representing loops [8], but we
do not exploit that in this paper, despite the centrality of
loops to our work. When we optimize loop nests, we are

specifically applying transformations to the kernels of the
flattened loop nests. Therefore, we find that when analyzing
the latency and resource usage of a loop, we need only have
the body of the loop as a MIR.

4.1 Representing arrays
Gao et al. [8] did not include support for arrays in their

original description of the MIR format. However, the ex-
amples that motivate our work all include arrays, so in this
paper, we extend MIRs to be able to represent programs
that use single- or multi-dimensional arrays.

In many imperative languages such as C, arrays are state-
ful objects, i.e. they are used to store information, and
changes to them are reflected to concurrent parts of the pro-
gram that may be oblivious to the changes. This character-
istic is known as the lack of referential transparency. Such
behavior is not present in arithmetic expressions, many func-
tional programming languages, SSA, as well as MIRs. This
proves to be a challenge to us, because our efficient program
optimization relies on recursively dividing the program into
smaller subprograms that can be optimized independently,
without affecting other subprograms.

To remedy this, we treat arrays as immutable. We use
a function update(A, x̄, e) to return a new array that is the
same as A but with (multi-dimensional) index x̄ now con-
taining e. Similarly, the function access (A, x̄) returns the
element of A at index x̄. As a simple example, a loop body:

A[i + 1] = 2 * A[i];

can be translated into the following MIR:

A update

A +

i 1

×
2

access

A i

(4)

The consequences of making arrays immutable are two-
fold. Firstly, we disallow pointer aliasing to keep the trans-
lation simple, i.e. “float *b = a;” is not allowed in the C
code. However this is not a problem for us because the pro-
grams that can benefit from our optimizations usually do not
manipulate pointers. This issue can also be addressed in the
future by performing pointer analysis. Secondly, diverged
paths in array updates could occur if we näıvely optimize
MIRs. For instance, if A is an input array, consider the two
expressions in a MIR, update (A, x̄, e) and update (A, x̄, e′),
where e, e′ are equivalent. They respectively update the x-th
element of the same immutable A with e and e′ and return
different arrays. A C program cannot be generated from
this MIR without duplicating A. We solve this problem by
partitioning the MIR at “update” nodes using the method
described in Sec. 5.

5. STRUCTURAL OPTIMIZATION
From a numerical program, we can generate a MIR using

the translation in Sec. 4. The next step is to transform the
MIR, and discover MIRs that are equivalent to the original
MIR in real arithmetic, but may execute differently in finite-
precision arithmetic because of round-off errors.

5.1 Algorithm
As discussed in Sec. 1, even a small expression could have a

huge number of equivalent ones. Exhaustively discovering all
equivalent MIRs would result in combinatorial explosion of



function Optimize(op(e1, e2))
s1 ← Optimize(e1), s2 ← Optimize(e2)
s′ ← ∅, s← {op(e′1, e

′
2) | e′1 ∈ s1 ∧ e′2 ∈ s2}

while s 6= s′ do
s′ ← s, s′′ ← ∅
for r ∈ transformation rules, e ∈ s do

for e′ where e
r
 e′ do

s′′ ← s′′ ∪ {e′}
end for

end for
s← Prune(s′′)

end while
return s

end function

Figure 3: The algorithm we used for the efficient discovery
of equivalent structures in MIRs.

the number of equivalent MIRs in the search space. For this
reason, we base ourselves on an algorithm from SOAP2 that
searches efficiently, by discovering equivalences in a bottom-
up hierarchy. In this section we discuss the improvements
we have made to the algorithm which further increases the
performance of this algorithm.

Our first contribution is that instead of optimizing the
MIR immediately, we start by partitioning the MIR into
multiple smaller sub-MIRs. In turn, each is optimized sepa-
rately and generate a set of equivalent sub-MIRs. We then
select combinations from these sub-MIRs to be merged. This
generates a set of MIRs that are equivalent to the original.
Finally, we preserve those MIRs merged on the Pareto fron-
tier.

Figure 3 shows the pseudocode of the optimization algo-
rithm. It takes as an input a MIR graph, and produces a set
of equivalent graphs that are estimated to be Pareto-optimal
when converted into C programs and synthesized into cir-
cuits. Although this algorithm deals with a special case,
i.e. a root node op with two child subtrees e1, e2, it can eas-
ily be generalized to an arbitrary number of child subtrees.

Here, e
r
 e′ means e′ can be obtained by transforming part

of the graph e in accordance with the transformation rule r.
The next section discusses the transformation rules we used.

The algorithm starts by discovering equivalences in the
leaves of a MIR, and progresses upwards for equivalent struc-
tures of the individual components that make up the graph,
until the roots of the graph, where we have a set of MIRs
equivalent to the original MIR. As it traverses through the
MIR, the algorithm calculates the performance metrics at
each node, using the analyses presented in the next section.
Transformations that are not Pareto-optimal are immedi-
ately pruned from the search space, thus reducing the aver-
age complexity of the algorithm.

Our second contribution is the Prune function. We rely
on this function to efficiently steer the direction of our Pareto
frontier as we discover new candidates. It takes as an input
the set of equivalent MIRs that we have discovered, and
prunes MIRs in this set to reduce its size, keeping the num-
ber of MIRs discovered tractable. The SOAP2 framework
prunes the MIRs that are Pareto-suboptimal, leaving only
those that are on the Pareto frontier. However, because our
Pareto frontier is 4D, there is a large increase in the num-
ber of Pareto-optimal MIRs. This Pareto pruning approach
is no longer feasible for our benchmark examples. To tackle

Arithmetic Rules
Associativity (a + b) + c  a + (b + c)
Commutativity a + b  b + a
Distributivity (a + b) * c  a*c + b*c
Negation a - b  a + (-b)
Subtraction (a + b) - (a + b)  0
Const. prop. (a * b + c / d) * 0  0
Division a / (5 / b)  a * b * 0.2

Control Flow Restructuring Rules
Partial loop
unrolling

for(i=0;i<1000;i++){Ci;}  
for(i=0;i<1000;i+=2){Ci; Ci+1;}

Access Reduction Rules
Multiple reads x=A[i--]; y=A[i+1];  

x=A[i--]; y=x;
Multiple writes A[i++]=x; A[i-1]=y;  

A[i++]=y;
Read after write A[i++]=x; y=A[i-1];  

A[i++]=x; y=x;
Indep. accesses
(where i 6≡ j)

A[i]=x; y=A[j];  
y=A[j]; A[i]=x;

Table 2: Before-and-after examples to demonstrate the
transformation rules we used. The arithmetic and control
flow rules are inherited from Gao et al. [8]; the access reduc-
tion rules are introduced in this work.

this, we introduce another step in Prune to further decrease
the number of MIRs in the set by sampling. We developed a
new sampling algorithm, inspired by Poisson-disk sampling
algorithm [13], which samples the Pareto frontier by first
randomly selecting one point, then iteratively growing the
set of points by adding the neighbours from the point that
are separated by at least a certain distance. We search by
bisection for the distance that keeps 20% of all points in the
Pareto frontier. This method is superior to random sam-
pling, because random sampling often samples points that
are close together, which usually are very similar implemen-
tations.

We found that with our improvements, the algorithm is
significantly faster than the original optimization algorithm
in SOAP2, with a 5-fold increase in speed, at a cost of fewer
points on the Pareto frontier.

5.2 Transformation Rules
This section details the transformation rules used in our

structural optimization algorithm in Figure 3. Each trans-
formation rule on its own is not revolutionary, but for the
first time, we bring them together to show a much better
automatic structural optimization on the latency, resource
usage and accuracy of numerical programs, than is possible
using only a subset of them.

SOAP2 provides a range of equivalence rules that are
used in the optimization, such as associativity, distributiv-
ity, commutativity, constant propagation, and partial loop
unrolling. In Table 2, we list those rules that proved effec-
tive when minimizing loop latencies. Although these rules
are used to transform MIRs, we present before-and-after ex-
amples written in C to allow the effect of each rule to be
readily understood.

Our new rules, the access reduction rules, with formal
definitions below and examples in Table 2, remove extra-
neous data dependences that arise after partial unrolling.



These rules, along with partial loop unrolling, mostly do
not impact latency, because they are well studied in poly-
hedral loop dependence analysis, and tools such as LegUp
can make use of them automatically. However, they give the
necessary freedom to arithmetic rules to affect latency. The
rules are as follows, where A is an array, ī, j̄ are subscripts,
and e, e′ are expressions:
• Multiple reads, eliminates the second of two reads of

the same location. This arises naturally from the MIR,
as common subexpressions are shared.

• Multiple writes, eliminates a write that is overwritten:
update (update (A, ī, e), ī, e′) update (A, ī, e′).

• Read after write, eliminates a read from a location that
has just been written: access (update (A, ī, e), ī) e.

• Independent accesses, allows two array operations to
be reordered if it can be proved that they never ac-
cess the same location: access (update (A, ī, e), j̄)  
access (A, j̄) , if ī 6≡ j̄. We visualize this rule also in
the following sample MIR transformation:

y access

jupdateA

A i x

 

y access

jupdateA

A i x

(5)

These access reduction rules may not seem powerful on
their own, but when combined with other structural rules,
they enable SOAP3 to detect dependences that can be re-
moved in the MIR. This in turn allows more opportunities
for the rules to further reduce loop latency. Conversely, it
is not possible to relax scheduling constraints due to inter-
iteration dependences without arithmetic equivalence rules,
as these reduction rules are there to assist transformation
rules that could really make a difference in latency. There-
fore all the rules in Table 2 are essential to the optimization
of latency in numerical programs.

6. PERFORMANCE ANALYSIS
This section explains how we analyze MIRs for our three

performance metrics: latency, resource usage, and accuracy.

6.1 Latency Analysis
We measure the latency of a numerical program by esti-

mating the total number of cycles required to execute it to
completion. The most accurate estimate can be calculated
with a complete scheduling of a numerical program. How-
ever, this would be computationally expensive, and would
need to be repeated for tens of thousands of equivalent pro-
grams. Instead, our latency analysis computes the minimum
initiation interval (II min) that must not be violated by any
scheduling algorithm. (Recall from Sec. 1 that the initiation
interval is the number of clock cycles that must elapse be-
tween the starts of two consecutive loop iterations, and is
determined by data dependences and resource constraints.)
We then compute the overall latency of the loop, and sub-
sequently, the total latency of the program.

Following LegUp [14], we compute II min values using iter-
ative modulo scheduling [9]. For our work, we have adapted
this analysis to apply directly to MIRs. The structure of
MIRs already captures intra-iteration data dependences; to
this, we add extra latency information as attributes on the
edges of MIRs, plus new edges to form cycles that capture
inter-iteration data dependences. The analysis is carried out
in three stages.

The analysis starts with the MIR of the loop under anal-
ysis. Each edge in the MIR, say s → t, represents a data
dependence: the operation at node s must be evaluated fully
before the operation at t can begin. The first step is to add
a pair 〈l, d〉 for each edge of the MIR. Here, l is the latency
of the edge (the number of clock cycles that must elapse
between the start of s and the start of t) and d is the de-
pendence distance (the number of loop iterations that must
elapse between the start of s and the start of t). Because all
operations in the MIR are performed in a single iteration,
all edges have d = 0. The value of l is given by the latency of
the operation at node s; if s corresponds to an input variable
or a numerical constant, then l = 0.

The second stage is to add edges to form a cyclic depen-
dence graph that captures read after write (RAW) depen-
dences across loop iterations. This step involves checking
whether each pair of “access” and “update” nodes has a de-
pendence, and if so, adding a new edge between them with
latency and dependence distance attributes. As an exam-
ple, consider the MIR in (4) and assume each iteration in-
crements i by 1. Because in the original program, A[i]
and A[i+1] are respectively reading from and writing to
the same array A, we need to check if these accesses could
touch the same memory location in different iterations. For
this, our analysis formulates an integer linear programming
problem for the dependence distance, and solves it using the
Integer Set Library [12]. In this example, the dependence
distance is 1 because the value written to A[i+1] in the
current iteration i is immediately used in the next iteration
i+1. Similarly, we also add new edges for reads and writes
to the same variable, which can be treated as a special ar-
ray with only one element. Our analysis yields the following
graph, and we call it a MIR with dependences (MIRdep):

A update

A
+

i 1

×

2 access

A i

0, 0 10, 0
7, 0

0, 0 0, 0

0, 0 2, 0

0, 0 0, 0

−2, 1

(6)

Note the new dashed edge from the update node to the
access node, which is labeled 〈−2, 1〉. The first value, −2,
signifies that the latency of the edge between × and access,
which is 2 cycles, is canceled out because the multiplier can
reuse its output from the previous iteration as the input for
the current iteration. The second value, 1, indicates that
there is a data flow dependence from iteration i to iteration
i + 1.

We assume no limit on the number of operators we can
allocate, so operators do not constraint II . However, in
Vivado HLS, each array is usually translated into a dual-port
RAM, which allows only two accesses per clock cycle [5], and
thus constrains II min. For instance, for a loop to perform
3 accesses to a single array in each iteration, II must be
greater than 1. This lower bound on II is known as resource-
based minimum initiation interval, II res

min [9]. It is defined as
maxAdnA/rAe, where A ranges over all arrays in the loop
body, nA is the number of accesses to the array A, and rA is
the maximum number of accesses allowed per cycle, which
is 2 in our case.

The final step is to calculate an integer II rec
min which is de-

fined as maxcdl(c)/d(c)e, where c ranges over all cycles in
the MIRdep graph, and we use l(c) and d(c) to respectively
denote the sums of all latencies and dependence distances



of the edges in the path c. This value is known as the
recurrence-based minimum initiation interval [9]. Because
a typical MIR with array accesses could have a very large
number of cycles, we efficiently search for an II min using a
modified Floyd–Warshall algorithm [9]. Finally, we estimate
the total latency Lest, an approximation of the actual L, of
the loop with:

Lest = (N − 1)II min + D, where II min = max (II rec
min, II res

min)

where, recalling from Sec. 1, N is the maximum trip count,
i.e. the loop’s total number of iterations, and D is the loop’s
depth, i.e. the total number of cycles per iteration.

Because we optimize programs in a bottom-up hierarchy,
as described in Sec. 5, when an expression in a loop is opti-
mized, its latency is estimated by scheduling its operations
by using an As-Late-As-Possible (ALAP) [15] scheduling al-
gorithm, where each operation is scheduled to the latest op-
portunity, while respecting the order of data dependences.
Because the expression is eventually used in a loop, and the
II of the loop is critical to how fast the loop can execute,
it is necessary to start optimizing for II as soon as possible.
Therefore, in our latency analysis of a MIR that is a frag-
ment of a loop, our algorithm automatically shortens any
paths between any pair of dependent accesses in the MIR,
as we use the latency analysis as a component to manoeuvre
our optimization on the Pareto frontier. Moreover, we place
greater weights on dependent accesses with smaller depen-
dence distances, because these impact the resulting loop II
more than larger distances. We use the following formula as
the analyzed latency value to guide the optimization for II
for subexpressions in a loop, where Deps is a set of paths
in the MIR, where each path is a sub-path of a cycle in the
loop’s MIRdep:

Lest = max
p∈Deps

l(p)

d(p)
(7)

6.2 Resource Utilization Analysis
The hardware resource usage analysis of Gao et al. [8]

captures the sharing of common subexpressions, but can-
not analyze resource binding, which allows common oper-
ations to be shared across clock cycles. For instance, in
the floating-point expression a + (b + c), the two additions
can be computed using one addition operator only. In this
paper, we develop a new resource usage analysis that fully
understands how resources are shared in an FPGA imple-
mentation of numerical programs.

We rely on the foundation of SOAP2, which counts the
number n⊗ of each type of operation ⊗, while maximally
sharing common subexpressions. In a pipelined loop, we
compute a lower bound a⊗ on the number of instances of ⊗
that must be allocated, using the equation a⊗ = dn⊗/II mine.
For instance, if we know that a pipelined loop has II min = 3,
and each iteration uses 6 multiplications, then we can com-
pute that we need to synthesize at least 2 multipliers. Inte-
ger operators are typically not shared [16], so the number of
operations is the number of allocated instances.

For straight-line code, non-pipelined loops, and consecu-
tive loops, we use a simple ALAP scheduling [15] to estimate
resource utilization.

Finally, we accumulate the number of LUTs and DSP el-
ements for all allocated operators, which is the estimated
resource utilization for the full program.

6.3 Accuracy Analysis
We build on the accuracy analysis of Gao et al. [8], which

analyzes an upper bound of the absolute difference between
the actual output of a numerical program and the expected
output as if it is executed in real arithmetic. Because our
benchmark suite consists of programs with large arrays, we
further extend their work to support arrays, and keep the
analysis efficient by treating an entire array as a pair of a
floating-point interval and an interval of accumulated round-
off errors. These intervals accumulate all values that are
assigned to the array, and never shrink the range bounded
by these intervals when we assign new values to an array
location. Additionally, because most of the loops in our
benchmark programs consist of nested loops and have large
iterations, we modified the analysis routine in SOAP2 to an-
alyze only a small fraction of loop execution, and use our de-
pendence analysis to detect whether errors are accumulated
across iterations, in order to extrapolate the total round-off
errors from the results.

7. TOOL USAGE
SOAP3 is a source-to-source optimizer that specifically

targets numerical program statements written in a subset of
standard C99. It introduces the “#pragma soap begin”
and “#pragma soap end” directives to delimit the code
fragment to be optimized. We can also use “#pragma soap
in” and “#pragma soap out” to provide input ranges and
to declare output variables, respectively. SOAP3 supports
arithmetic and Boolean expressions, assignment statements,
if statements, while loops and for loops. The numerical
data types we allow are int and float, as well as single-
and multi-dimensional array types.

Figure 4 shows an example usage of SOAP3 in a C pro-
gram. Note that it specifies the input values are respectively
a two-dimensional array A, where its elements are single-
precision floating point values between 0 and 1, and an in-
teger T equal to 20. It also indicates the only output that
we care about from this code is the resultant A.

#define N 1024
#pragma soap begin
#pragma soap in \

float A[N][N] = [0, 1], int T = 20
#pragma soap out A
for (int t = 0; t < T; t++)

for (int i = 1; i < N-1; i++)
for (int j = 1; j < N-1; j++)

A[i][j] = 0.2 * (A[i-1][j] +
A[i][j-1] + A[i][j] +
A[i][j+1] + A[i+1][j]);

#pragma soap end

Figure 4: An example C program that can be optimized
with SOAP3.

Our tool is an open-source command-line utility, which
only requires the user to provide a program written in C
extended with the above #pragma statements. The Pareto
optimal programs are all automatically generated by our
tool, each is accompanied with our estimations of its latency
and resource usage, and an analyzed bound on round-off
errors. These programs can then be given to Vivado HLS to
be synthesized into circuits.



Name DSPs LUTs Error Clock Latency
ratio ratio (ns) (cycles) (s) ratio

sum
2 303

0.257
914 μ

7.93
2.54 41.0 k 104 μ

12.8
4 1181 1.15 μ 2.54 3.21 k 8.17 μ

dotprod
5 411

0.231
926 μ

7.29
2.54 41.0 k 104 μ

12.4
10 1781 127 μ 2.62 3.23 k 8.44 μ

tridiag
5 470

0.288
63.1 μ

1.06
2.54 17.8M 45.3m

3.41
8 1631 59.4 μ 2.69 4.93M 13.3m

2mm
5 781

0.385
209

3.40
2.79 20.4G 57.0

7.46
8 2029 61.4 2.92 2.62G 7.64

3mm
5 760

0.207
114

6.76
2.55 32.3G 82.3

9.13
10 3677 16.9 2.82 3.19G 9.01

atax
5 627

0.507
353m

1.54
2.60 176M 457m

5.42
5 1237 230m 2.61 32.4M 84.3m

bicg
5 427

0.304
887 μ

6.72
2.54 160M 407m

8.98
5 1406 132 μ 2.78 16.3M 45.3m

gemm
5 524

0.234
1.99

2.97
2.54 10.8G 27.4

9.13
10 2240 0.67 2.69 1.12G 3.00

seidel
5 620

0.349
10.7 μ

2.46
2.60 960M 2.50

7.16
8 1778 4.31 μ 2.66 131M 0.349

gemver
5 809

0.382
7.28M

4.46
2.87 23.1M 66.2m 3.15

5 2120 1.63M 2.77 7.60M 2.10m (8.29)

mvt
5 701

0.251
91.0 μ

3.32
2.56 23.1M 59.1m 7.49

10 2793 27.4 μ 2.80 2.82M 7.89m (9.30)

syr2k
5 709

0.259
250 μ

4.07
2.89 14.0G 40.3 6.95

10 2740 61.4 μ 2.71 2.14G 5.80 (7.62)

Geomean 0.289 3.69
7.19

(8.01)

Table 3: Comparisons of the original (non-shaded rows) and
the optimized program with lowest latency (shaded rows),
for each benchmark. Values in parentheses are obtained af-
ter slightly tweaking our experimental set-up; see Sec. 8.3.
We performed place-and-route for exact statistics.

8. EVALUATION

8.1 Method
We have evaluated SOAP3 on a suite of benchmark exam-

ples which consists of several applications that have recur-
ring inter-iteration dependences:

• A simple loop, sum, that sums all elements in an array;

• Two kernels from Livermore Loops [10]: dotprod,
which calculates the dot product of two vectors, and
tridiag, which solves a tridiagonal system of linear
equations; and

• Nine kernels from PolyBench [11], which calculate ma-
trix/vector transpositions, additions and multiplica-
tions (2mm, 3mm, atax, gemm, gemver, mvt), the bi-
conjugate gradient stabilized method (bicg), the Sei-
del stencil computation (seidel), and symmetric rank-
2k operations (syr2k).

All elements of input arrays and matrices are set to be
single-precision floating-point values between 0 and 1. We
optimized all of these benchmark examples using SOAP3,
specifically targeting the Xilinx Virtex7 device running at
333 MHz, for the three objectives of accuracy, resource uti-
lization and latency simultaneously. We then used Vivado
HLS 2015.2 [5] to synthesize the resulting optimized pro-
grams into RTL implementations for exact latency informa-
tion, and performed place-and-route using Vivado Design
Suite 2015.2 [17], to obtain exact resource utilization statis-
tics. Our tool produces a 4D Pareto frontier for each pro-
gram; to better present our results, in the following section
we only consider three dimensions, namely, accuracy, latency
and LUTs.
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Figure 5: Comparisons of our estimated resource and latency
statistics against Vivado HLS.

8.2 Results
Table 3 compares, for each benchmark in our evaluation

set, the performance metrics of the original program against
those of the program with the smallest latency discovered by
SOAP3. We synthesized each program to a circuit to obtain
exact statistics, which are shown in Table 3.

Figure 5a compares our estimated LUT counts (vertical
axis) against the exact LUT counts (horizontal axis) ob-
tained by synthesizing RTL implementations of each pro-
gram in Table 3. Although our estimates deviate from the
exact values, because we compute lower bounds on resource
utilizations, and finite state machines synthesized and ad-
dress calculation are not taken into account, our estimate
can still accurately predict the general trend—a linear re-
gression of all scatter points finds R2 = 0.9344.

Figure 5b compares our estimated latency (vertical axis)
against the actual latency values (horizontal axis). The solid
line represents the linear regression of data points that we
have gathered in Table 3. This line is a tight fit with our
data, with R2 = 0.9959, which indicates that our latency
estimation can accurately predict the exact latency of syn-
thesized implementations.

Returning to our motivating example from Sec. 2, Figure 6
demonstrates the range of optimized programs discovered
by SOAP3 when applied to the Seidel stencil loop kernel.
All optimized programs are discovered in 876 seconds with
SOAP3. In the figure, ×-points indicate the original pro-
gram. By using only the rules of real arithmetic, our tool
finds a more efficient program that can improve run time
by 2.5×, as shown by the -points. However, by enabling
partial loop unrolling and our dependence elimination rules,
the performance is further improved, resulting in a 6.7× re-
duction of total run time. Furthermore, we have found that
numerical accuracy can often be optimized at the same time
as we optimize the initiation intervals of loops. Because by
partially unrolling loops, the sizes of the expressions in loop
grow, which provides SOAP3 a greater freedom in terms of
discovering more accurate expressions. In this example, the
most efficient program is also the most accurate one: it min-
imizes round-off errors by approximately 2.5×. It is worth
noting that our tool can detect that as it explores deep lev-
els of partial loop unrolling, we start to see a diminishing
return in performance as it hits a bottleneck in memory
bandwidth. This is due to the fact that Vivado HLS syn-
thesizes dual port RAMs for arrays, and in one clock cycle
we can only read from the memory allocating array twice.
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Figure 6: Pareto-optimal variants of the Seidel stencil program from Figure 1. Each graph shows a 2D projection of the
Pareto frontier. In each graph, the original program is marked ×, and the lowest-latency variant obtained by arithmetic
transformations alone is marked .

Our optimization flow discovers this bottleneck and stops
exploring further loop unrolling.

Similar graphs for the other benchmarks can be viewed
online,2 each showing three projections from different axes
of the Pareto frontier. Our web page can be used to interac-
tively explore the positions of each data point on the three
projections simultaneously, and view the corresponding gen-
erated C programs.

8.3 Discussion
As demonstrated by Figure 5b, SOAP3 generally produces

accurate latency estimates. However, we have discovered a
few notable discrepancies. For instance, gemver, mvt and
syr2k all have significant differences between our estimated
latency and the actual latency from synthesized RTL imple-
mentations. An inspection of these programs reveals that
they all share a common programming idiom:

for (int i=0; i<N; i++)
for (int j=0; j<N; j++)
x[i] += ...;

We found that Vivado HLS occasionally fails to find the
optimal schedule, predicted by SOAP3, that could pipeline
this loop as tightly as possible. We fix this problem by
rewriting the above code into:

for (int i=0; i<N; i++) {
float sum = x[i];
for (int j=0; j<N; j++)
sum += ...;

x[i] = sum;
}

This enables Vivado HLS to generate a hardware implemen-
tation with the expected II . The ratios in parentheses in
Table 3 reflect the speedup by performing this simple fix.

9. RELATED WORK
Our work conducts program transformations on the MIR

intermediate representation of Gao et al. [8]. Alternative
program representations include static and dynamic single

2https://admk.github.io/soap/plot.html

assignment forms (SSA, DSA) [18, 19], and control and
data flow graphs (CDFG) [20]. These representations are
less suitable for our work because they are all statement-
based and do not identify as many equivalent programs as
MIRs do. Dependence graphs [9], on the other hand, are de-
signed for the purpose of capturing data flow dependences
in scheduling techniques, but they generally do not preserve
enough information for us to reconstruct a program from
the graph itself.

Several HLS tools exploit dependence graph restructuring
to improve loop parallelism, which allows for a smaller ini-
tiation interval, and in turn faster programs. Tree height
reduction [21] aims to balance an arithmetic expression tree
using associativity and distributivity. Xilinx’s Vivado HLS
has a similar feature called expression balancing [5]. Neither
of these methods produce optimal loop pipelining, as they do
not examine the implications of loop-carried dependences.
Canis et al. [3] propose a similar approach called recurrence
minimization. They specifically tackle loop pipelining by
incrementally restructuring dependence graphs to minimize
longest paths of recurrences. Their method is subsequently
incorporated in LegUp [14], an open-source academic HLS
tool. However, both LegUp and Vivado HLS only apply
associativity in their restructuring.

Most importantly, none of the above mentioned techniques
and tools aim to minimize, or even analyze, the impact of
their transformations on resource usage and accuracy. In
many numerically sensitive programs, small round-off er-
rors would result in catastrophic inaccurate results. There-
fore, HLS tools generally disable this feature by default for
floating-point computations. For this reason, we have de-
veloped SOAP3 to optimize not only program latencies, but
also resource usage and accuracy.

Several authors have considered program transformations
that improve accuracy or resource usage. Damouche et al. [22]
and Panchekha et al. [23] propose methods for optimizing
numerical accuracy in software using equivalences from real
arithmetic, but they consider individual expressions only,
and have no control structure manipulation, such as optimiz-
ing across basic blocks or partial loop unrolling. Hosangadi
et al. [24] minimize resource usage by employing symbolic
algebra to reduce the number of operations, and Peyman-



doust et al. [25] factorize polynomials using Gröbner bases;
both only deal with polynomial arithmetic expressions. The
SOAP2 tool of Gao et al. [8] simultaneously optimizes nu-
merical programs for resource usage and accuracy, but is
unable to analyze latency.

10. CONCLUSION
Minimizing the latency of loops is a central task for HLS

tools that obtain FPGA implementations from numerical C
programs. Loop latency can often be reduced by perform-
ing simple rewrites to minimize inter-iteration data depen-
dences, but HLS tools cannot enable such rewrites by default
because they may impact the accuracy of floating-point com-
putations. This paper has presented the first tool that is
able to automatically rewrite a given program to optimize
latency, while controlling for accuracy and resource usage.
Our experimental results suggest that, in fact, latency and
accuracy are often not in conflict: that programs aggres-
sively optimized for latency can also have minimal round-off
errors, albeit with greater resource usage. We have demon-
strated that SOAP3 can optimize commonly used code frag-
ments from PolyBench [11] and Livermore Loops [10] to have
up to a 12× increase in performance, and up to 7× reduction
of round-off errors, at the cost of up to 4× more resource
utilization. Our tool is open-source and can be downloaded
here: https://github.com/admk/soap.

Currently, SOAP3 supports only single-precision floating-
point data types; we intend to extend this to multiple-precision
floating-point and fixed-point types, and explore the impact
on latency, resource utilization and numerical accuracy. This
could, for instance, allow us to automate the manual design
space exploration of matrix/vector multiplication architec-
tures in [26].
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