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ABSTRACT 
A departure from the traditional trajectory tracking control 

technique of a mobile robot is presented here in order to 
accommodate sudden changes in the reference trajectory. It is 
expected that in a dynamic, uncertain environment the robot 
may need to make sudden changes in its navigation strategy 
that may necessitate such an approach. In this work, a hybrid 
control framework is developed that first determines a suitable 
control strategy for a particular subtask and then implements it 
by means of choosing the specific controller. A supervisor is 
used to determine the suitable control strategy. The switching 
stability among a set of trajectory tracking controllers is 
analyzed. Extensive simulation results demonstrate the efficacy 
of the proposed control technique. 

 
1. INTRODUCTION 

The wide spread applications of mobile robots in recent 
years pose demanding requirements on the capabilities of the 
controller in terms of both speed and precision. It is expected 
that in an uncertain dynamic environment the mobile robot will 
be able to effect sudden changes in its navigation strategy in 
order to perform its task. Examples of such tasks include 
battlefield target tracking and surveillance, mine counter 
measure, planetary exploration, search and rescue and others 
where the robot may be expected to negotiate with sudden and 
abrupt changes in task requirements. 

These changes are likely to impact the performance of the 
robot controller. One continuous controller may not be suitable 
to address several needs that can arise in such environments. As 
a result, the overall control architecture can be designed to 
employ several controllers at different times based on the 
situation. Since hybrid controllers can achieve faster response 
//proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of
with less overshoot (e.g., to a step input command) [18], we 
cast the dexterous trajectory tracking problem within a hybrid 
control framework. 

In this work, we propose a hybrid control framework that 
first analyzes the specific requirement of the task at a given 
time and then tries to match the capabilities of a specific 
controller. It then chooses that particular controller from a set 
of controllers to perform that specific task component. Discrete 
events are used to indicate the need for the choice of a new 
controller. The supervisor continuously monitors the task 
performance and effects controller changes as and when 
necessary. 

The objective of this paper is to investigate a control 
strategy that requires sudden changes in the reference 
trajectory. Consider a robot that is following a target (e.g., an 
enemy). If the target makes sudden changes in its path while 
fleeing, the robot must also be capable of effecting those 
sudden changes in order to successfully pursue its target. We 
develop a framework that allows the robot to work under such a 
situation. We develop two trajectory tracking controllers and 
switch between them to track sharp trajectories. A supervisor 
that employs hybrid automata performs the switching. The 
stability of switching is proved by multiple Lyapunov function 
(MLF) analysis. Simulation results are presented to verify the 
proposed control technique. 

The paper is organized as follows. In Section 2, we briefly 
review recent work on the control of nonholonomic mobile 
robots. We present the control architecture and the stability 
analysis in Section 3. We present the results from detailed 
computer simulations that verify the proposed theoretical 
development in Section 4. Finally, Section 5 summarizes the 
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contributions of our present work and identifies future research 
directions. 

2. LITERATURE SURVEY 
There has been considerable research effort in the literature 

on the motion planning of a wheeled mobile robot (WMR) 
using kinematic models. Relatively less work can be found on 
the dynamic control of the mobile robot with nonholonomic 
constraints. However, dynamic control is important for many 
applications where speed, dexterity and performance are 
important. Here we mention only the most relevant work that is 
concerned with mobile robot control with dynamic model. 

In [7] a stable control algorithm capable of dealing with the 
three basic nonholonomic navigation problems is proposed and 
the complete dynamics of a mobile robot has been derived 
using backstepping. This feedback servo control scheme is 
valid as long as the velocity control inputs are smooth and 
bounded. 

Normally, perfect knowledge of mobile robot parameters is 
unattainable, so in the literature several adaptive control 
techniques have been developed. In [6], a design method of an 
adaptive tracking controller for a nonholonomic mobile robot 
with unknown parameters in its kinematic part is presented. 
The authors proved that an adaptive tracking controller for the 
dynamic model can be designed by using adaptive 
backstepping if an adaptive tracking controller for the 
kinematic model exists. In [11], Wilson et al. developed a 
robust adaptive control system for nonholonomic mobile 
robots. The algorithm is robust to unmodeled dynamics and 
external disturbances as long as the bound on the disturbance is 
known. 

In [12], Zhang et al. derived a simplified dynamic model 
that is adequate for control design and treat the remaining terms 
as model uncertainty. The uncertainty is analyzed and a robust 
control algorithm is designed. 

In [8], the authors proposed a sliding mode control law for 
solving trajectory tracking problems of nonholonomic mobile 
robots. The schemes for a mobile robot with two control inputs 
asymptotically stabilize to a desired trajectory consisting of 
three posture variables. A variable structure control law was 
proposed [9] with which mobile robots converge to reference 
trajectories with bounded errors of position and velocity. In 
[10] Aguilar et al. presented a path following controller that 
was robust with respect to localization errors. The controller 
guaranteed a global and exponential convergence of the 
distance and orientation errors with respect to the moving 
frame. 

An overview of recent developments in control of hybrid 
systems is described in [14]. The supervisory control of hybrid 
systems is introduced and discussed in [15]. 

Switched systems are simple models of (the continuous 
portion) hybrid systems. Since stability analysis is important for 
hybrid systems, much work has done in this field. A survey 
paper [4] presented the major results in the stability of finite-
dimensional hybrid systems and discussed the results of 
switched linear (stable or and unstable) system. In [16], Hou et 
al. established results for the asymptotic stability of switched 
systems. The recent developments in three basic problems 
regarding stability and design of switched systems are surveyed 
in [5]. In [13], authors provided a summary of recent 
developments in control of nonholonomic systems. 
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In [17], Lim et al. proposed the design of hybrid control 
systems for the motion control of wheeled mobile robot 
systems with nonholonomic constraints. The motion control 
tasks for desired-paths with edges and dynamic path following 
with various initial conditions are investigated as the 
applications by simulation studies. 

From the literature survey presented above, it is clear that 
relatively less work is conducted on the hybrid control of a 
mobile robot using a dynamic model that is subjected to 
nonholonomic constraints. In this work, we present a new 
hybrid control framework that first determines a suitable 
control strategy for a particular subtask and then implements it 
by means of choosing the specific controller that can improve 
the agility of WMR. 

3. MODELING AND CONTROLLER DESIGN 
We model a WMR as a continuous dynamic system in this 

work. It is controlled by a continuous feedback controller at any 
given time.  However the WMR is expected to be able to 
respond to discrete events that may arise because of   changes 
in the dynamic environment and/or task requirements. As a 
result, several continuous controllers may be employed to 
perform the whole task. This set of controllers will be 
accommodated by a supervisor. Thus the combined system 
consisting of the supervisor and the set of continuous feedback 
controllers will form a hybrid system. 

In what follows, we first describe the proposed hybrid 
control methodology and then explain each component in a 
detailed manner with reference to the control of a mobile robot. 

3.1. HYBRID CONTROL ARCHITECTURE  
A schematic diagram for the proposed control architecture 

is shown in Fig. 1. A set of controllers is stored as the possible 
candidates in a bank of controllers. A supervisor collects 
information of discrete events related to the task and activates 
one of the candidates as a response. The decision logic is 
realized in the form of a hybrid automaton, which makes 
decisions concerning the requirement of current mission and 
characteristics of the basic controllers. 

Mobile
Robot

position

u1

Supervisor

u2 u y

Controller 1

Controller 2

Controller n

M

Switching signal

nu

 
 

Fig. 1. Hybrid control architecture for a mobile robot 
 
Typically, a hybrid automaton H=(Q, X, f, Init, D, E, G, R), 

where [1]. 
Q:  finite set of discrete variables; 
X:  finite set of continuous variables; 

XQinit ×⊆  set of initial states; 
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D: Q → P(X)  a domain or variant set; 
QQE ×⊆   set of edges; 

G: E → P(X)  guard condition; 
R: )(XPXE →×  reset map. 
 

There are n controllers, Controller_1, Controller_2, …, 
Controller_n. The jump conditions are: Controller1_2, 
Controller2_1, …, Controller1_n, …, Controllern_1. They are 
used to decide which controller is to be adopted at any given 
time. The control strategy can be summarized in Fig. 2. 

 

 
Fig. 2. Hybrid automaton for switching logic 

Thus the hybrid automaton has n discrete modes: 
V={Controller_1, Controller_2, …, Controller_n}, continuous 
variable X, which is the state vector to be discussed in Sec. 2.2, 
and jump conditions Controller1_2, Controller2_1,  …, 
Controller1_n, …, Controllern_1. The continuous dynamics of 
each discrete mode is given by the vector fields defined by the 
n controllers. 

3.2. DYNAMIC MODEL OF THE WMR 
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 Fig. 3. Mobile robot geometry 

Consider a WMR with differentially driven wheels as 
shown in Fig. 3 (The front passive caster is omitted.) and the 
relevant parameters shown in Table 1. 

 
Table 1. Parameters of the WMR 

Po: 
the intersection of the axis of symmetry with the driving 
wheel axis 

Pc: the center of mass of the platform with coordinates (xc, 
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yc) 
x, y: the world coordinate system 

i, j: the local coordinate system fixed with the WMR with (0 
,0) at Po 

d: the distance between Po and Pc 

b: the distance between either driving wheel and the axis 
of symmetry 

r: radius of each driving wheel 
c: r/2b 

Mc: the mass of the WMR 

Jc: 
the rotation inertia of the WMR about a vertical axis 
through Pc 

mw: mass of each wheel 
Iw : inertia of each wheel 
φ : the heading angle of the platform 

lr θθ , : angular positions of the two driving wheels, 
respectively 

 
The kinematic constraints arise from the pure rolling and 

no-slip conditions. They can be represented in the following 
form: 

0)( =qqA &                    (1) 
where 
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and T
lrcc yxq ],,,[ θθ= , )( lrc θθφ −= . 

By employing Lagrangian method [2], we obtain the following 
dynamic equation for the WMR: 

τ=ΘΘ+Θ ),( &&& CM                            (2) 
where 

M∈ℜ 2×2 is the symmetric, positive definite inertia matrix, 
C ∈ℜ 2×1 is the centrifugal and Coriolis term. 
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τ  are the torques applied on two 

wheels. 
Now we derive the state space model that is employed in 
controller design. We do not use a tire model. Instead, we 
impose pure rolling and no-slip kinematic constraints. The 
friction effect is not considered when we design the controller 
for the WMR, but both Coulomb and viscous friction were later 
considered as disturbance in the simulations to make the 
simulations more realistic. 
Equation (1) includes two nonholonomic and one holonomic 
constraint. We can express 

Θ= && Sq              (3) 
where S is a matrix consisting of the null space basis vectors of 
A, 
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Let us define the state vector  
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From Eq. (2), Eq. (3) and Eq. (4), we can write the following 
state space equation of the WMR. 

τ







+







 Θ
=

GF
S

X
0&

&                  (5) 

where CMF 1−−=  and 1−= MG . 

3.3. FEEDBACK CONTROLLER DESIGN 
We design two trajectory tracking controllers that can 

improve the agility of the WMR by means of switching. Both 
controllers are designed using input-output linearization 
techniques. Although it has been proven that model (5) is not 
input-state linearizable, we can still perform input-output 
linearization [3]. First we design the nonlinear feedback 

)(1 FUG −= −τ                  (6) 
and apply Eq. (6) to Eq (5). We get  
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0
0
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where U is the new input vector and I is 2 by 2 identity matrix. 

Here we have used the fact that STE= 22×I  and E=



















10
01
00
00

. 

In what follows, we introduce two controllers that will be 
used for the demonstration of the proposed hybrid control. One 
of them controls the (xc, yc) trajectory. The other one controls 
the forward displacement η , and the orientation angle φ. 

4.0. CASE STUDY 
Controller 1: [ ]Tcc yxY =  
In this case, it commands the position (xc, yc) of motion, 

which can be used as the default controller to follow the desired 
trajectory. 

We can see that the output equation is a function of 
position state variable q only, that is, if 

[ ]TqhqhqhY )()()( 21==  

Differentiating Y and substituting Eq. (3) in Y& , we get 

Θ
∂
∂

= && S
q
hY  

Letting 
q
hJh ∂

∂
= , which is the Jacobin matrix of Y, we can 

obtain the decoupling matrix 
SJ h=Φ  

Differentiating Y& , and substituting Φ  in Y& , we get 
ΘΦ+ΘΦ= &&&&&&Y                             (7) 

Further using nonlinear feedback:  
)(1 ΘΦ−Φ= − &&υU                       (8) 

where T][ 21 υυυ =  is the reference input vector, we can get 
the input-output feedback control law. 
Now we derive the decoupling matrix of Controller 1 and name 
it as 1Φ : 
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c      (9) 

Substituting Eq. (8) and Eq. (9) into Eq. (7), we get the output 
equations: υ=Y&&  

Controller 2: TTyyY ][][ 21 φη==  
It commands the forward displacement ( η ) (in driving 

direction) and the direction of movement ( φ ), which can be 
used to adjust the direction when meeting with abrupt changes 
in the trajectory or non-smooth trajectory. 

Follow the same procedure as that of controller 1:      
Differentiating y1 twice, we obtain η&&&& =1y  

We notice )(
2

sincos lrcc
ryx θθφφη &&&&& +=+=  

Differentiating η& , we get )(
2 lr
r θθη &&&&&& +=  

Differentiating y2 twice, we get φ&&&& =2y  
We notice 

)( lrc θθφ −=                        (10) 

Differentiating φ  twice, we get )( lrc θθφ &&&&&& −= . 
The decoupling matrix can be derived in the same way: 















−
=Φ

cc

rr
222

                        (11) 

Thus the output equations are: υ=Y&&  

4.1. STABILITY ANALYSIS 
As discussed earlier, in many cases, to increase the agility 

and high-speed maneuverability requires switching among 
several controllers. In this work, we expect to switch between 
the above two controllers to track trajectories that pose 
discontinuous changes in the reference trajectories. However, 
such switching necessitates a stability analysis to ensure the 
safety and feasibility of such operations. 
Stability of internal dynamics 

In order to analyze the switching stability between 
controllers 1 and 2 of the WMR, we must guarantee that both 
the linearizable part and the internal dynamics are stable under 
switching. Because if the internal dynamics is not stable, the 
system will not be able to track the desired outputs even though 
the design of the feedback controller is correct. The above 
controller design only accounts for part of the closed-loop 
dynamics that are linearizable and controllable. However, the 
system under each controller has unobservable internal 
dynamics. The stability of the internal dynamics is critical for a 
feedback control to work properly. There are very few efforts 
found in the literature that studies the internal dynamics of a 
WMR. In [19], Yun et al. studied the internal stability of a two-
wheel differentially driven mobile robot. In our work, we use 
the similar model to their case. It was shown in their results, 
that for look-ahead control (which is Controller 1 in our case), 
driving forward is stable but driving backward is not. In our 
case, we are only interested in moving forward and as result, 
that stability analysis of [19] is directly applicable.  

Next, we need to analyze the stability of the internal 
dynamics of Controller 2. By following a similar procedure as 
in [19], we obtain the internal dynamics of Controller ),( φη : 
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T(x) is a diffeomorphism in the whole state space. 
Since our goal is trajectory tracking instead of state 

stabilization, we reformulate the dynamics in the error space of 
the state variables.  Denoting the error coordinates by  (see 
Kanayama et al., [20]), 
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where the current posture is Tyx ),,( φ , the reference posture is 
T

rrr yx ),,( φ and error posture of the above two is 
T

eee yx ),,( φ . 
we obtain the error dynamics: 
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where u and ur donates the actual forward velocity and the 
reference forward velocity, respectively. 
Since we control φ , so eventually 0→eφ  leading 1cos →eφ . 
In addition, u is controllable (the derivative of η ), which 
implies 0→− ruu  as ∞→t . Therefore, Eq. (12) can be 
simplified as following. 

















−

=








−
=








=

e

e

e

e

e

e

y
x

x
y

y
x

01
10

φ
φ

φ
ξ &

&

&

&

&&   (13) 

Clearly, the above oscillator equation is Lyapunov stable (i.e., 
the energy is bounded) but is not asymptotically stable, which 
has an equilibrium subspace characterized by 

}0|{ === ee yxE ξξ . 
Consider the following energy-like function. 

22

2
1

2
1)( ee yxV +=ξ  

In the neighborhood of ξE , V(ξ )=0 if ξξ E∈ , and V(ξ )>0 if 

ξξ E∉ . So V(ξ ) is positive definite with respect to ξE . The 
derivative of V(ξ ) with respect to the time is 

0)( =+=
∂
∂

= eeee yyxxVV &&&& ξ
ξ

ξ . 

Since, we know the internal dynamics is Lyapunov stable (i.e., 
stability in the BIBO sense), the design of Controller 2 is 
sufficient to achieve tracking objectives. 

It is well known that some switching sequences can lead to 
instability, even if both the individual subsystems are stable [4]. 
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Therefore, in order to achieve stability of the switched system, 
we need to restrict the class of admissible switching sequences. 
Stability analysis of switched system 

We will briefly review the MLF [4] analysis for its later 
use in the control of switched systems. Consider the following 
switched nonlinear system, with Niui ,,2,1,0 L=≡ , 

},,2,1{
)(

)()(

NIi
xhy

uxgxfx

ii

iii

L

&

=∈
=

+=
    (14) 

and suppose that we can find a family of Lyapunov functions 
{ iV : i∈ I} such that the value of iV  decreases monotonically on 
each interval when the ith subsystem is active, i.e., 

))(())(( 1 kiki txVtxV
kk

≤+  

for all Iik ∈ . Then system (14) is Lyapunov stable. 
For our specific problem, construction of above MLF can 

split into the following subtasks.  
1. Find candidate Lyapunov functions for each 

subsystem; and 
2. Construct the switching law to show the switched 

system is stable. 
 
The Lyapunov functions in step 1 can be chosen by 

iii VVV ~+= . 
where iV  is taken to be the one for each linearized subsystem, 

and iV~  is another Lyapunov function for internal dynamics. 
For linearized subsystems, Lyapunov functions ( iV ) can be 

obtained by solving corresponding Riccati equations. For 
internal dynamics, Lyapunov functions can be computed given 
the particular structure of the individual systems. 

In our case, ii
T
ii ePeV = . 

where iP is corresponding symmetric, positive definite matrix 
associated with each linearized subsystem and ie donates the 
error form of each linearized subsystem 
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The subscript r stands for the reference values of the particular 
variables. 

1
~V is taken from [19] as ))(cos(1 **

lrc θθ −⋅− . 

where [ ** , lr θθ ]T are the equilibrium points. 

Also, )(
2
1~ 22

2 ee yxV += . Although its time derivative is not 

negative (it is always zero), the general Lyapunov function can 
still be constructed by 222

~VVV += , such that its time 
derivative is negative for monitoring the evolution of (η ,φ ) 
system. 

To this end, we obtain two Lyapunov functions associated 
with two subsystems. Based on the above functions, we can 
show the switched system is stable by appropriate switching 
between them. 
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For our specific system, the parameters are shown in Table 
2. 

Table 2 System parameters 
Parameters Value 
d (cm) 1 
b (cm) 10 
r (cm) 3 
Mc (kg) 5 
Jc (kg-m2) 0.01 

 
In the hybrid automaton (Fig. 4), before switching to 

another system, the switching algorithm should satisfy that the 
end of Lyapunov function of the current active subsystem is not 
greater than the previous one of which the subsystem is active. 
This criterion is included in the jump condition.  

4.2. SIMULATION RESULTS 
 

 
Fig.4. Hybrid automaton for switching between two 

controllers 
 

We present simulation results of tracking control of the 
WMR that is subjected to discontinuous reference trajectories. 
The wheels are considered to be far lighter than the chassis, 
and, therefore, their masses and rotation inertias are ignored. 
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Fig. 5. Two reference trajectories shown in the Cartesian space. 

(a) sparsely discontinuous trajectory, and (b) densely 
discontinuous trajectory. 

 

A sharply changing trajectory (Fig. 5.) is chosen to 
demonstrate the efficacy of the proposed methodology. We 
want the WMR to track the position as accurately as possible 
without considerable sacrifice in speed. This trajectory can be 
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used as a benchmark trajectory for high-speed maneuverability 
and agility. The trajectories were generated by providing with 
reference velocities of 1 m/s in both x and y directions 
alternatively. 

When a discontinuous trajectory occurs (such as the 

heading angle of the robot rφ  varies sharply, then 
dt
dφ  

becomes a large quantity), the event is reported and if the end 
of Lyapunov function of current active subsystem is not greater 
than the previous one of which the subsystem is active, the 
jump condition described in section 3.1 is satisfied. The 
transition from controller 1 to controller 2 is triggered 
consequently. Controller 2 is then used for zero-radius turning 
(i.e., the forward reference velocity is zero). Once the 
orientation is adjusted to the desired one and the criterion for 
Lyapunov function is satisfied, another jump condition is met 
according to the corresponding event (i.e., the orientation angle 
is close enough to the desired one and Lyapunov function 
condition is satisfied). Then the converse transition happens 
from controller 2 to controller 1.  

The above scheme for dexterous trajectory tracking is 
called Scheme 1. In order to demonstrate its advantage over 
traditional trajectory tracking, we compare it with another 
schemes called Scheme 2. In Scheme 2, only Controller 1 is 
used for the whole trajectory tracking task.  

In the simulations, in order to avoid lateral slip during 
turning because of centrifugal force on the WMR we set a limit 
on the lateral acceleration, which was 3 m/s2. This value was 
obtained from the consideration of the lateral friction 
coefficient of tire materials. We have also set the limits on 
angular acceleration and linear velocity at 3 rad/s2 and 1 m/s, 
respectively. And these limits are there for both schemes for 
uniformity. 

 

  
a) 
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 b) 

Fig. 6. Controller performance in the Cartesian space for 
the first reference trajectory (Fig. 5(a)): 

a) the global view, b) the detailed view of the encircled 
point of a) 

Fig. 6 (a) depicts the results of trajectory following tasks in 
the Cartesian space as performed by both schemes for the 
reference trajectory shown in Fig. 5 (a). In order to understand 
how well each scheme performed at the sharp edges, we present 
a magnified view of the encircled area of Fig. 6 (a) in Fig. 6 (b). 
In Fig. 6 (b), for Scheme 1, switching occurs from Controller 1 
to Controller 2, and Controller 2 to Controller 1 at point A and 
B respectively. So before A, (x, y) controller is active; between 
A and B ( φη, ) controller is active and after B, (x, y) controller 
is active again etc. It is seen that the Scheme 1 has much less 
overshoot. In other words, the positional accuracy is 
significantly increased by employing a hybrid switching control 
methodology. This ability to follow a sharp trajectory with 
accuracy enables the robot with dexterous trajectory tracking 
capabilities. This effect is more pronounced when the trajectory 
has more sharp edges (Fig. 5 b)). In Fig.7 (a), we present one 
such simulation result where the WMR is expected to track a 
more densely discontinuous trajectory. In this case, the sharp 
changes occur every 3m in both x and y directions (as opposed 
to every 20m for the previous simulation). As a result, it is seen 
that the traditional controller (Scheme 2) performs much worse 
compared to the proposed hybrid controller, which is clear from 
the enlarged view in Fig. 7 (b).  

The time taken to complete the first reference trajectory for 
Schemes 1 and 2 are 163.2 sec and 160.6 sec, respectively. The 
time taken to complete the second reference trajectory for 
Schemes 1 and 2 are 27.2 sec and 24.6 sec, respectively. We 
define the average speed by using the desired distance from the 
starting point to the goal point divided by the actual time 
consumption. By this way, the average speed taken to complete 
the first reference trajectory for Schemes 1 and 2 are 0.980 m/s 
and 0.996 m/s, respectively. The average speed taken to 
complete the second reference trajectory for Schemes 1 and 2 
are 0.882 m/s and 0.976 m/s, respectively. It can be seen that 
our proposed hybrid controller does not sacrifice too much 
speed to significantly improve the positional tracking 
performance. 
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These simulations demonstrate that it is possible to track 
trajectories with abrupt changes by employing multiple 
controllers. The advantages are more pronounced when the 
agility requirement is high. The results confirm that our 
proposed control methodology enables the robot with a higher 
dexterity and agility as far as trajectory tracking capabilities are 
concerned. 

 
a) 

 
b) 

Fig.7. Controller performance in the Cartesian space for 
the second reference trajectory (Fig. 5(b)): a) the global 

view, b) the detailed view of the encircled point of a) 

 

 
Fig.8. Switching sequence of switched control for the second 

reference trajectory 

The switching sequence of switched control is shown in 
Fig.8. The supervisor controller selects the appropriate 
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Down
controller candidate to achieve tasks. The two different 
controllers are active alternately. 

5. CONCLUSIONS AND FUTURE WORK 
In this paper we present our work on a new hybrid control 

framework for a mobile robot performing a trajectory tracking 
task. We have developed a hierarchical framework that allows 
the continued operation of the mobile robot with performance 
guarantees in the presence of abrupt changes in the reference 
trajectory. We have also proved the stability of the internal 
dynamics of the WMR and proposed a switching sequence that 
guarantees stable operation. The high-precision 
maneuverability is increased noticeably, which is demonstrated 
by extensive computer simulations. The switching controller 
holds promise for mission accomplishment with increased 
agility and precision. There are a numbers of practical 
applications where such an agile controller can be useful for 
trajectory following that include battlefield target tracking and 
surveillance, mine counter measure, planetary exploration, 
search and rescue and others where the robot may be expected 
to negotiate with sudden and abrupt changes in task 
requirements. Even though we demonstrated our concepts using 
two controllers, the proposed framework is equally applicable 
to multiple controllers. We are currently developing an 
experimental test-bed to verify the proposed framework in 
actual experimentation.  
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