
  

  

Abstract—This paper presents a novel structure learning 

algorithm for the creation of distributed Bayesian networks 

over static and mobile Vision Sensor Network (VSN) nodes. 

These compose an assistive, intelligent environment for activity 

recognition. We provide results demonstrating a higher level of 

accuracy in the recognition of fine motor tasks when the 

environment is augmented with a mobile robot and show the 

ability of our learning algorithm to reduce VSN communication 

compared to a naïve, greedy structure learning technique.  

I. INTRODUCTION 

UE to recent advances in medical care and the adoption 

of increasingly healthy lifestyles, we are witnessing a 

demographic shift towards an increasingly aged population 

[1]. Consequently, considerable interest has been directed 

toward research into supportive environments which enable 

the elderly and infirm to live in their own home for longer. 

Tentative research has focused on the determination of 

activities and behavior – since significant changes in either 

can indicate the onset of certain diseases such as Alzheimer’s 

or dementia. This could be through networks of privacy 

respectful ambient cameras [2, 3] or wearable sensors [4]. 

However, robot assisted environments are in a unique 

position to provide solutions for elder monitoring – since self 

navigating robots can provide high quality data on subject 

pose regardless of location within the environment. 

Furthermore, we may also see robots that provide a form of 

companionship and aid the elderly in achieving daily tasks 

[5].  

Where environments are to contain multiple ambient 

sensors, installation may be performed by a visiting carer or 

those living within the domicile. Consequently, it is 

unreasonable to expect these to be located at optimal 

locations for the determination of individual activities. 

Furthermore, since each dwelling is unique, their relative 

positioning can not be assumed prior to installation thus 

there is a strong requirement for such networks to be self 

configuring. To this end, we provide a structure learning 
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algorithm for Bayesian networks which is considerate of both 

inference and communication cost within ambient Vision 

Sensor Networks (VSNs). Using Pearl’s message 

propagation algorithm, activity inference can be 

implemented in a distributed manner over the VSNs, without 

the requirement for a centralized data repository. Where 

assistive robots are present, our algorithm can seamlessly 

incorporate such data to augment recognition accuracy. We 

demonstrate the efficacy of this algorithm in a home 

healthcare scenario for fine motor tasks occurring at several 

locations within the environment. 

II. RELATED RESEARCH 

For detecting Activities of Daily Living (ADLs), omni-

directional cameras [6] have previously been employed to 

capture behavioral patterns in a household environment. For 

example, a system operating at multiple resolutions has been 

defined, with a wide angle camera directing the pan, tilt and 

zoom of other cameras [7]. In previous work [3], we have 

discussed activity recognition within the home and provided 

results demonstrating how the fusion of ear worn and 

ambient sensors can increase the accuracy of activity 

recognition. With this approach, certain fine motor activities 

could not be readily distinguished, for example, reading and 

eating. Robot assisted intelligent spaces [8, 9] may provide a 

suitable solution, allowing detailed pose information to be 

garnered using mobile agents, regardless of subject position 

within the environment. The use of ambient sensors to plan 
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Fig. 1.  Camera configuration within the sensing environment. 

Areas denoted by (a), (b) and (c) are seated stations within the 

experiment, whilst VSN-9 through VSN-12 are fixed, wall-mounted 

nodes. VSN-4 is mounted on a mobile robotic platform. 
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robot trajectories around subject movement [10] and human 

following [8] have both been addressed in this context, 

amongst other navigation approaches [11]. Structure learning 

for robot localization is addressed in [12], however all 

features are locally obtained by the robot. Structure learning 

under constraints is not new [13] but to our knowledge, 

limited research has considered the physical location and 

utility of individual features to perform real time 

communication and inference in a robot assisted intelligent 

environment.  

III. INTELLIGENT ENVIRONMENT 

The intelligent environment proposed within this work 

consists of four VSN nodes mounted at each corner of our 

home health monitoring laboratory, Fig. 1. This laboratory 

has been designed to simulate a room within a typical home 

and includes a dining table (a), study area (b) and sofa (c). 

Cameras are arranged to provide coverage for particular 

areas with some overlap, however they are not optimal for all 

regions. For example, it can be seen that VSN-9 provides no 

coverage of the sofa at station (c). In addition, a VSN node is 

also mounted upon a mobile robot programmed to follow 

subjects within the environment.  

 

A. Video Sensor Nodes  

 

The VSN nodes comprise an Omnivision OV9655 1.3 

megapixel camera, a 500MHz Analog Devices Blackfin 

BF537 Processor, 256MB SDRAM, 32MB SPI Flash, and a 

Lantronix Matchport WLAN 802.11g/b Wi-Fi board for 

wireless communication. For each individual pixel captured 

by the device a statistical model is built and maintained to 

account for slow changes in light conditions as well as object 

displacement. For this purpose, a mixture model of three 

Gaussian distributions is employed, as suggested by Lee 

[14]. Once segmentation has been performed, further erosion 

and dilation filters are applied in order to remove inherent 

high-frequency noise, see Fig. 2. The center and axis-aligned 

bounding boxes (AABB) of the subject are then computed, 

followed by the Oriented Bounding Boxes (OBB), based 

upon Principal Component Analysis (PCA).  

In order to discount the mobile robot when generating 

features from the wall mounted VSN nodes, a luminous 

skirting was applied to the robot’s exterior, Fig. 3. The 

colour of this skirting is known in advance by the 

environmental sensors, allowing the robot to be discounted 

from the background model during both learning and testing 

phases. In order to obtain ground truth data, video is 

collected from all nodes before off-node processing is 

performed. On-node versions of our algorithms have been 

implemented [15] but are not used due to data segmentation 

practicalities. 

 

B. Mobile Robot  

 

The Peoplebot Robot [16], Fig. 3, is equipped with an 

autonomous navigation system using a time-of-flight camera 

[17]. The system locks onto the person by building a shape 

descriptor and tracks using an Interacting Multiple Model 

Filter (IMMF) [18]. The robot is programmed to keep the 

person centered in the time-of-flight range map and maintain 

a distance of 1.5m. Path-planning uses a kinematic dynamic 

window approach to build a safe and accurate path to the 

person. In order to ensure the quality of features obtained 

from the robot, background models are learnt only once the 

robot is static. In addition to the features generated by fixed 

VSN nodes, optical flow is also generated using the method 

proposed by Horn and Schunck [19]. 

IV. STRUCTURE LEARNING ALGORITHM 

We propose a greedy structure learning algorithm based 

upon the Bayesian Information Criterion (BIC) [20, 21, 22], 

which maximizes the information gain of a structure, whilst 

minimizing the communication required in obtaining remote 

features. During learning, the algorithm first performs a 

preprocessing step, before structure learning. During the 

final phase, the accuracy of inference is evaluated, which can 

be used to determine the processor responsible for 

maintenance of activity recognition at a particular station.  

 

A. Preprocessing 

 

For each data set and for each class, the set of cameras and 

associated feature sets are identified through analysis of 

person presence within the field of vision. Processing units 

within these cameras then become candidates for the 

management of these activities – known as the candidate set, 

and the union of their associated features is the maximal 

feature set that can be used to infer activities at this location. 

 

B. Structure Learning 

 

An individual VSN node can build a Bayesian network 

which is used to infer the activities for which it is a 

candidate. In order to reduce the size of conditional 

probability tables that are stored, the number of causal 

ancestors for a given node is initially limited to 2 and these 

must be obtained locally. At each iteration of the algorithm 

the BIC gain, Equation 2, is evaluated at each potential 

 

 
 

Fig. 2.  Camera View from VSN-12 before (a) and after (b) 

background segmentation. 
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branch point and with each unused feature. The structure 

which exhibits the greatest gain is then chosen. 
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Equation 1 [20, 21, 22] presents the BIC score. D denotes 

the set of data points and N the magnitude of this set. G 

denotes the graph structure under investigation whilst, 
ML

G
Θ denotes the maximum likelihood parameters for graph 

G with data D.  To maximize this equation, G must model D 

without over-fitting. This is achieved through the second 

term penalty factor, which rewards low complexity structures 

through the dimensionality function dim. Equation 2 

illustrates the information gain achieved when feature f is 

included within network G, although the structure of the 

composed graph is not presented. 

 

Where max( )BIC∆  drops below a fraction, α , of the gain 

achieved during the first iteration, there is a high probability 

that additional local features will not contribute to the 

accuracy of the classifier regardless of their location in G. 

Consequently, during the next iteration, all features from the 

entire candidate set (which includes the remaining local 

features) are considered and may join at any branch within 

the network.  Constraints are then reintroduced, such that 

causal links may only be formed between local features and 

the maximum branching factor of nodes is returned to 2. This 

process iterates until either a maximum number of features 

within the graph is reached or features are exhausted. The 

purpose of this algorithm is to localize computation and 

minimize communication requirements between sensor 

nodes. This is achieved by forcing individual cameras to 

provide sub-decisions in the inference process. We note the 

efficacy of this approach to home networks where 

communication may be transient. Should communication be 

lost, the probability of remote data items can be marginalized 

out, effectively removing the requirement for 

communication. This algorithm is summarized in Figure 4. 

 

C. Robot Feature Fusion 

 

In addition to the wall mounted VSN nodes, the robot 

illustrated in Fig. 3 is free to roam within the environment. 

For the purpose of this experiment we assume that the robot 

never loses visual contact with the subject under 

surveillance. Consequently, the correlation of data between 

mobile and static VSN nodes is not a concern. If the 

experimental environment was not constrained to a single 

subject, sensor correlation techniques such as those 

discussed in [2] could be utilized.  

 In order to account for the difference in relative position 

between robot and subject, several position invariant features 

have been used. Furthermore, the robot navigation scheme 

discussed in Section III-B ensures that the robot always stops 

at a given distance from the target. Where the robot is 

present at a given station, the VSN node mounted on the 

robot (VSN-4) is treated in the same manner as static, wall 

mounted nodes, aside from the additional generation of 

optical flow features. 

V. EXPERIMENT DESIGN 

Our experiment was carried out using 3 subjects within a 

simulated home environment consisting of 4 static and 1 

 
 

Fig. 3. The Peoplebot Robot. Note the luminous skirting for 

background segmentation as well as the time of flight 

camera, used for navigation, mounted at the top of the robot. 

 

TABLE I 

COMMUNICATION CHARACTERISTICS OF STRUCTURES LEARNT 

Method 
Average Number 

of Links 

Average Transmission 

Size (Relative) 

SL (NR) 0.89 12.78 

U-SL (NR) 0.89 22.22 

SL (R) 0.78 8.15 

U-SL (R) 0.56 7.78 

 

Average number of communication links to remote sensors with 

the relative average transmission sizes. Note that the 

transmission size will vary dependent upon the instantiation 

status of the sending variable. SL denotes the structure learning 

algorithm introduced within this paper, whilst U-SL denotes 

unrestricted structure learning – where remote and local features 

are considered equally. NR illustrates that the robot is not 

present and R, that the robot is present. 

. 

 

4646



  

mobile VSN node, as per Fig. 1. Each user entered the room 

via the door in the bottom right hand corner and proceeded 

to perform a series of 5 activities at each of the 3 different 

locations; sitting still, eating, writing, reading newspaper 

and reading book. The robot tracked and followed each 

subject – and each subject waited for the robot to maneuver 

into place before beginning their activities.   

VI. RESULTS 

After preprocessing for subject movement it was found that 

VSN-9 and VSN-12 provided data on station (a), VSN-11 

and VSN-12 on station (b) and VSN-11 and VSN-10 on 

station (c), as per Fig. 1. Where the robot was present, each 

candidate set was augmented by the robot mounted camera, 

VSN-4. 

In order validate our approach we provide results from 

several experiments. In all cases, training of the resulting 

networks is performed using Expectance Maximization (EM) 

and inference using message passing where all observable 

features have been instantiated [23]. Training and testing is 

done on a per subject basis using sub-sampled data with a  

2:1 training to test ratio.  Firstly, we show activity 

recognition results using our structure learning scheme with 

individual VSN nodes only – thus no external 

communication can be performed as the candidate feature set 

is restricted to local features. Secondly, we compare our 

structure learning algorithm at each location using static 

VSN node candidate sets, against a completely unrestricted 

scheme – where at each iteration, any feature can be selected 

provided the generating VSN node is static.  Finally, we 

repeat this experiment with the environment augmented by a 

mobile robot. In each of these experiments 0.8α= . In order 

to obtain representative results for each station, each 

algorithm is applied and results averaged over all VSN nodes 

within the candidate set, before being further averaged over 

all subjects.  

 

A. Activity Recognition using Local Features 

 

In Fig. 5 the average accuracy of activity recognition using 

local features only at individual VSN nodes is presented. We 

see a high variance in accuracy, ranging from approximately 

62% at VSN-11, location (c) to approximately 86% using 

only the robot’s VSN node at location (b). Clearly, the use of 

a mobile camera for home monitoring is advantageous as, 

within this experiment, the highest accuracy recognition at 

each location is seen using the robot alone (VSN-4). 

 

B. Structure Learning Validation without Robot 

 

Fig. 6 presents the average percentage accuracy at each of 

the 3 locations, averaged over 3 subjects, 5 activities and all 

VSN nodes in the location candidate set, which does not 

include the robot. The introduced technique provides a level 

of overall accuracy that is within 2.5 percentage points of 

unrestricted learning whilst reducing average communication 

requirement by 42%, See Table I and Fig. 6.  

 

 

C. Structure Learning Validation with Robot 

 

Finally, we demonstrate the application of our algorithm 

when the robot is present within the environment. Using our 

structure learning algorithm the communication requirement 

between sensors has dropped by 63% of that required by the 

unrestricted learning algorithm without the robot, and by 

36% compared to the experiment using our algorithm 

without the robot present, Table I. This can be partly 

explained by the efficacy of the robot in performing activity 

recognition – since often only a single data summary is 

needed from the robot in order to increase overall accuracy 

of inference at a given camera location. Consequently, we 

note a negligible difference in communication requirements 

comparing the proposed structure learning against 

unrestricted learning when the robot is used. Fig. 7 illustrates 

the average accuracy in these two cases. Because of the 

robot’s ability to generate discriminatory features for fine 

motor tasks, unrestricted learning favors the robot for most 

branch selections, minimizing communications by default. 

Overall, using our algorithm with the robot yields a slight 

increase in accuracy (2.5 percentage points) and detailed 

analysis shows a reassignment of class accuracy, for 

example, where VSN-10 is responsible for sitting still at 

location (c), the structure produced by our algorithm 

performs better by 20 percentage points. Nevertheless, where 

our algorithm is used with mobile VSNs it will always learn 

structures faster due to a reduction in branch possibilities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.  Structure learning algorithm employed. Note that once a 

feature has been selected for inclusion in the structure, it cannot be 

used again. For details regarding branching constraints, refer to 

Section IV-B. 

 

Parameters 

 

Alpha; Activities; Branching_constraints; 

Graph_size_limit 

 

Pseudocode 

 

if(first iteration) 

Prev_BIC = select local feature returning  

 maximal BIC when direct causal ancestor of  

 Activities 

Curr_BIC = choose further local ancestor to  

maximise BIC of graph subject to  

Branching_constraints 

  Init_Delta_BIC = Curr_BIC – Prev_BIC 

endif 

 

 

while(features AND size(graph)<Graph_size_limit) 

  Prev_BIC = Curr_BIC 

  Curr_BIC = Choose causal ancestor subject to 

Branching_constraints 

  Delta_BIC = Curr_BIC – Prev_BIC 

if(Delta_BIC < Alpha*Init_Delta_BIC) 

relax Branching_constraints for 1 

iteration of while loop 

endif 

endwhile 
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D. Class Accuracy 

 

In order to demonstrate the utility of this system for activity 

recognition, we provide the average class accuracy obtained 

during several of the aforementioned experiments, Table II. 

Firstly, SL Robot Only (RO) presents class specific results 

when only features from the robot were used. Secondly, with 

only wall mounted VSN nodes used, results were as found 

under SL No Robot (NR). Finally, when our algorithm was 

used to learn structures over both fixed and mobile VSN 

nodes, we provide the results as SL Robot (R). All results are 

averaged over all subjects and, where applicable, all VSN 

nodes within the associated candidate set. We see that, for 

sitting, book reading and newspaper reading, the robot alone 

and the fixed camera system are roughly comparable, 

however the robot outperforms the fixed system during 

writing and eating. This could be due to the use of optical 

flow from the robot mounted VSN node – which is ideally 

placed to pick up fine motor motion, such as that of the 

hands. We note that through fusion of fixed and mobile 

cameras, the system performs better in every activity than if 

fixed cameras were used alone, with an average increase of 

approximately 10 percentage points per activity. 

 

VII. DISCUSSION 

In previous sections we have shown the utility of our 

algorithm to reduce the communication required within 

VSNs during inference in a home healthcare environment, 

whilst maintaining activity recognition accuracy – 

specifically when the robot it not present (Table I, Figure 6). 

We have also seen that intelligent environments can benefit 

from the use of mobile autonomous agents with regard to 

activity recognition, although respectable accuracy can be 

achieved through fixed devices alone (Table II). This leads 

us to believe that a hybrid system, comprised of multiple 

Bayesian Networks that are dependent upon robot location 

and availability, may be the most suitable solution for in-

home activity monitoring.  

Unfortunately, due to the intensive nature of the structure 

learning algorithm it would not be possible to determine and 

compare structures rooted at different VSN nodes in real 

time – this would need to occur offline and during an initial 

training phase. We also note that, due to the nature of our 

algorithm in restricting causal ancestors and since all feature 

values were instantiated in our experiments, many features 

within the structure would have remained unconsidered 

during inference. Interestingly, due to the power of message 

propagation to operate with incomplete data this raises two 

further research issues. Firstly, it is possible to effectively 

reduce the computational requirements on a given node by 

producing only subsets of the aforementioned features during 

each clock cycle. Secondly, sub-trees rooted at remote VSN 

nodes could self-test the quality of their features though 

partial instantiation of local features, observing the 

probability of those not instantiated and comparing against 

locally sensed values. 

VIII. CONCLUSION 

In this paper we present a VSN based system which achieves 

high accuracy activity recognition through the inclusion of a 

mobile agent. We also demonstrate a structure learning 

algorithm that minimizes communication during distributed 

inference when that agent is not present. Such an approach is 

vital to maximize the battery life of ubiquitous vision sensors 

for home health monitoring. In the future, we intend to 

extend this framework to support wearable sensor data – 

providing additional discriminatory power to robot assisted 

intelligent environments. 
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Fig. 5.  Percentage accuracy over all 3 subjects and 5 

activities using local features at individual VSNs. 

Location (a) is given in yellow (bottom), Location (b) in 

burgundy (middle) while location (c) is in blue (top). 
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Fig. 7.  Average percentage accuracy at each of the 3 

locations, averaged over 3 subjects, 5 activities and all 

VSNs in the locations candidate set – which now 

includes the robot. Blue shows the average activity 

recognition where our structure learning algorithm is 

employed (left), burgundy shows the results using the 

unrestricted algorithm (right). Overall there is a 9.9 

percentage point increase in accuracy when compared to 

a system where the robot is not used (either with or 

without the introduced structure learning algorithm). 

Furthermore, do to the efficacy of the robot in activity 

recognition; the overall requirement for communication 

between sensor nodes has dropped by 63% of that 

required by unrestricted learning without the robot.  
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Fig. 6.  Average percentage accuracy at each of the 3 

locations, averaged over 3 subjects, 5 activities and all 

VSNs in the locations candidate set. The robot was not 

used. Blue shows the average activity recognition 

accuracy where the structure learning algorithm of 

Figure 4 is used (left). In burgundy, cameras adopted the 

unrestricted learning method, where features may be 

selected regardless of location (right). The introduced 

technique provides a level of overall accuracy which is 

comparable (within 2.5 percentage points) to 

unrestricted learning whilst reducing average 

communication requirement by 42%. 
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