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Abstract

The design of an activity recognition and monitoring sys-
tem based on the eWatch, multi-sensor platform worn on
different body positions, is presented in this paper. The sys-
tem identifies the user’s activity in realtime using multiple
sensors and records the classification results during a day.
We compare multiple time domain feature sets and sam-
pling rates, and analyze the tradeoff between recognition
accuracy and computational complexity. The classification
accuracy on different body positions used for wearing elec-
tronic devices was evaluated.

1. Introduction

The primary goal of this paper is to study the effective-
ness of activity classifiers in a multi-sensor system as we
vary the wearing positions of the sensors. The eWatch is
used as a multi sensor platform for wearable context-aware
computing. Previous feature extraction studies examining
accelerometer data have shown that it is a viable input for
detecting user states when it is worn on the wrist [1]. Moti-
vated by other possible sensor platform locations, especially
with mobile communication devices such as a cell phone or
PDA, we designed a study to investigate the dependency of
the eWatch classification accuracy on given different body
positions. We investigate wearing the eWatch in the follow-
ing locations: the belt, shirt pocket, trouser pocket, back-
pack, and necklace. The results of the study would help us
decide on the best position to place such a sensor platform,
and understand the nature of the trade-off between wearing
position and classification performance.

In [1], the authors used multiple accelerometers worn on
a person’s body to recognize their physical activity. Sensor
data from multiple body positions was combined for classi-
fying the activities.

In [2], a low power sensor hardware system is pre-
sented, including accelerometer, light sensor, microphone,
and wireless communication. Based on this hardware, a de-

Figure 1. eWatch sensing platform

sign method for a context recognition system is proposed.
It evaluates multiple feature sets and makes the tradeoff be-
tween power consumption and recognition accuracy. A sys-
tem that classifies household activities in realtime with a
focus on low power consumption is presented in [3].

In [5], a system using an armband based sensor array
and unsupervised machine learning algorithms was able to
determine a meaningful user context model.

In Section 2, we describe the sensor platform and Sec-
tion 3 explains the experimental design. Section 4 describes
the activity recognition method. Section 5 presents the re-
sults of the data analysis, and Section 6 addresses the per-
formance of our on-board activity classifier.

2. Sensing Platform
Our sensor platform, the eWatch (Figure 1), is based on

the Philips LPC2106 ARM7 TDMI microcontroller, with
128kB of internal flash memory and 64kB of RAM [6].
The LPC2106 is a 32bit processor running at up to 60Mhz.
eWatch contains four sensors: a dual axes accelerometer,
light, temperature sensor and microphone. Sensor data can
be stored in a 1MB external flash memory.

3. Experiment Design
In our study we focussed on six primary activities:sit-

ting, standing, walking, ascending stairs, descending stairs



and running. Body positions that are normally used for
wearing electronic devices, such as cell phones or PDAs,
were studied. We placed our sensor hardware on the
left wrist, belt, necklace, in the right trouser pocket, shirt
pocket, and bag. The subjects wore six eWatch devices lo-
cated at these body positions during the study. The devices
recorded sensor data from the accelerometer and light sen-
sor into their flash memory. The user was asked to perform
tasks that consist of the activities, such as working on the
computer or walking to another building. The lead experi-
menter annotated the current activity and instructed the sub-
jects on how to proceed. The annotations were done using
an application running on an extra eWatch worn by the lead
experimenter.

Six subjects participated in the study, each subject per-
formed the given tasks in 45 to 50 minutes. In total we
collected over 290 minutes of sensor data.

Sensor setup eWatch recorded both axes of the ac-
celerometer and the light sensor. All sensors values were
recorded with a frequency of 50Hz and with 8bit resolution.
The accelerometer was calibrated so that both axes operate
in a range of±2g. Evaluation of the recorded data was done
with Matlab and the WEKA software [7].

4. Activity recognition method
The sensor values recorded from the accelerometers and

the light sensor are split into short time windows. These
windows are then transformed into the feature space by cal-
culating several feature functions over the individual win-
dows.

Features Features from both accelerometer axes (X & Y),
the light sensor, and a combined value of both accelerom-
eter signals were calculated. To reduce the dependency on
the orientation, bothX andY values were combined calcu-
lating the squared length of the acceleration vector. The
classification accuracy with individual sensors as well as
with multiple sensor combined was investigated.

Only time domain features were considered to avoid the
costly computation that is required to transform the signal
into the frequency domain. Table 1 shows the list of fea-
tures that were considered. The functions to calculate these
features were implemented on the eWatch and the required
number of clock cycles per function was measured. Each
function was executed 2000 times with different recorded
sensor inputs, and then the average value was computed.
The execution time was calculated based on the measured
clock cycles and the CPU frequency at 59MHz. Table 1
shows the measured clock cycles and execution time using
a four second window sampled at 20Hz (80 samples).

Figure 2 depicts the feature space after a transformation
with Linear Discriminant Analysis (LDA). It shows that the
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Figure 2. Feature space after LDA transfor-
mation

standing, sittingandrunningactivities form seperate clus-
ters, whilewalking, ascendingand descending stairsare
closer together since these activities are very similar.

Feature Subsets To reduce the time and energy required
to calculate the feature vector, several subsets of the com-
plete feature space were evaluated. Some features are irrele-
vant or redundant and do not provide information to signifi-
cantly improve the classification accuracy. Therefore a sub-
set of the available features can be selected to decrease the
computation time without significantly decreasing recogni-
tion accuracy.

The Correlation based Feature Selection (CFS) method
from the WEKA toolkit was used to find feature sets con-

Features / Function Name Avg. CPU Avg. Time
Cycles in µs

Empirical Mean mean 854 14.5
Root Mean Square rms 1219 20.7
Standard Deviation std 1139 19.3
Variance var 1313 22.3
Mean Absolute Deviation mad 1089 18.5
Cumulative Histogram (256 bins) hist 5847 99.1
n’th Percentile(n = 5, 10, . . . , 95) prc 142 2.4
Interquartile Range iqr 289 4.9
Zero Crossing Rate zcr 993 16.8
Mean Crossing Rate mcr 996 16.9

Sq. Length of X,Y (x2 + y2) 1318 22.3
Decision Tree classifier (18 nodes) 138 2.3

Table 1. List of time domain features and the
average clock cycles and time to calculate
them on the eWatch running at 59MHz
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(a) Features from the accelerometer’s
X-axis

0 5 10 15 20 25 30
40

45

50

55

60

65

70

75

80

85

90

95

Sample frequency (Hz)
C

la
ss

ifi
ca

tio
n 

ac
cu

ra
cy

 (
%

)

wrist
pocket
bag
necklace
shirt
belt

(b) Features from the accelerome-
ter’s Y-Axis
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(c) Features from the light sensor
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(d) Features from thex2 + y2 value
of the accelerometers

Figure 3. Recognition accuracy with different feature sets

taining features that are highly correlated within the particu-
lar class but are uncorrelated with each other. Table 2 shows
the feature sets that were compared.

Classificaton method We evaluated and compared sev-
eral classification methods, namely Decision Trees (C4.5 al-
gorithm), k-Nearest Neighbor (k-NN), Naive-Bayes and the
Bayes Net classifier. Decision Trees and Naive-Bayes were
found to achieve high recognition accuracy with acceptable
computational complexity. Decision Trees were used for
activity classification in [1] and [2]. It was shown in [4] that
the discretized version of Naive-Bayes can outperform the
Decision Tree classifier for general classification problems.
Finally the Decision Tree classifier was chosen as it pro-
vides a good balance between accuracy and computational
complexity. For all further experiments this classifier with
a 5-fold cross validation was used.

Sampling frequency During the user study the sensors
were sampled with a frequency of 50Hz and later down-
sampled to lower frequencies. To maintain some of the high
frequency components information and to reduce the com-
putational complexity significantly, no low pass filter was
used for downsampling the data. Figure 3 shows the recog-
nition accuracy for different sample rates from 1 to 30Hz
for the different body positions. The recognition accuracy
was defined as the percentage of correctly classified feature
vectors averaged for all six activities. The recognition ac-
curacy increases with higher sampling rates, and with the
accelerometer features the accuracy then stabilizes between
15 to 20Hz, and is only improved marginally with higher
sampling rates. The accuracy with the light sensor only is
lower and it stabilizes beginning with 7Hz. In Figure 3(c)
the results from the belt and pocket position is not shown
because the light sensor did not provide any useful classifi-
cation information at these positions.
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Figure 4. Recognition accuracy for the activi-
ties at different body locations

5. Data Analysis - eWatch Classification Per-
formance for Various Wearing Positions

We calculated the classification accuracy for every ac-
tivity on each of the six different body positions. The data
from all subjects was combined to train a general classifier
that is not specific to a person.

Table 2 shows the feature sets and the classification re-
sults for the different body positions. The features are cal-
culated from a 20Hz signal.

Figure 4 shows the recognition accuracy for the individ-
ual activities at different body locations. For the classifica-
tion the reduced feature set F6 was used. The data indicate
that any of the six positions are good for detectingwalking,
standing, sittingand running. Ascendingand descending
the stairs is difficult to distinguish fromwalking in all posi-
tions, since the classifier was trained for multiple persons.
The wrist performs best because the feature set was opti-
mized for the wrist position.

6. Onboard Activity Classifier

Based on these results we implemented a decision tree
classifier that runs on the eWatch. The feature set F6 was
used to build the decision tree. The sensor sampling is
interrupt-based, and triggers the sampling of the sensors at



# Features CPU Cycles Time inµs Classification Accuracy for Body Position
wrist pocket bag necklace shirt belt

F1 All features, all sensors 56242 953.6 87.1% 85.2% 92.8% 86.8% 89.5% 87.0%
F2 All features from accelerometer X 14731 249.8 68.4% 78.6% 85.2% 74.3% 76.1% 72.6%
F3 All features from accelerometer Y 14731 249.8 83.2% 75.4% 86.4% 61.3% 70.1% 70.8%
F4 All features from light 14731 249.8 55.0% 16.7% 18.0% 61.7% 52.2% 48.8%
F5 All features from accelerometer XY (x2 + y2) 15049 255.2 76.6% 79.5% 87.2% 72.6% 78.0% 77.2%
F6 prcy(3), rmsxy, prcy(20), prcy(97), 12114 205.4 87.0% 80.1% 86.5% 78.6% 79.6% 84.2%

rmslight, madx, meany, prcy(10)

F8 prcy(3), iqry, prcy(10), prcy(97), madx 7651 129.7 82.0% 62.4% 68.9% 56.6% 69.8% 71.7%
F9 rmsxy, qrtx, rmsx, madxy, meanxy 10746 182.2 77.3% 78.2% 80.9% 72.3% 75.4% 76.5%

Table 2. Feature sub sets and classification accuracy for body positions
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Figure 5. Activity classification recorded over
100 minutes

20Hz. The sensor value is stored in a buffer with the size of
the sliding window. The activity is classified every 0.5 sec-
onds based on the sensor data from the 4 second buffer. The
classification results are stored into flash memory and are
downloaded to a computer later for further processing and
analysis. They can also be transferred in realtime over the
Bluetooth connection. In order to save energy, the system
remains idle between servicing interrupts.

A subject wore the eWatch with the built-in activity clas-
sifier on the wrist during the day. The system classified the
activity in realtime and recorded the classification results
to flash memory. Figure 5 shows 100 minutes of activity
classification, as the user walked to a restaurant, sat down,
ate lunch, went back to the office and sat down to con-
tinue working. The classification results match well with
the actual activities; eating lunch was partially interpreted
aswalkingor runningactivity due to arm movements.

7. Conclusions and Future Work

The activity recognition and monitoring system that can
identify and record the user’s activity in realtime using mul-
tiple sensors is presented. We compared multiple feature
sets and sampling rates to find an optimized classification
method, and showed how well they perform on different
body locations that are commonly used for wearing elec-

tronic devices.
We will extend our activity classifier to other activites

and investigate how the activity classification can support
the recognition of the user’s location.
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