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1. Introduction

The branch of logic known as model theory has flourished for the last fifty years.
Sprouting from several algebraic ideas, this subject uncovers abstract, universal
properties of theories which imply concrete properties about models of these theo-
ries. Examples of such concrete properties are the number of non-isomorphic models
of a given cardinality and the number of definable subsets of a model of the theory.
These properties correspond intuitively to the algebraic notions of isomorphism
and varieties, respectively. Many other fundamental concepts in model theory have
similar analogues in algebra, and it is from these analogues that the deeper ideas
and theorems in model theory have emerged. Thus it comes as a surprise that for
several decades, the only applications of model theory to algebra derived from con-
cepts based only on the original algebraic roots. The techniques involved in such
applications used notions such as the Compactness Theorem, model completeness,
and elimination of quantifiers, all of which are not far removed from ideas at the core
of mathematics. Admittedly, there had been numerous, significant contributions
to algebra due to these methods, but it seemed that the deeper developments of
model theory such as stability theory were not having repercussions on this branch
of applied model theory. To many, the deep innovations of model theory seemed to
have diverged from their algebraic roots.

Though such thought had become prevalent, several model theorists persisted
in investigating the applications of deep ideas in model theory to algebra. Their
work paid off in 1996 when Ehud Hrushovski tied many burgeoning ideas into a
coherent proof of the Mordell-Lang conjecture of algebraic geometry. Many skeptics
dismissed Hrushovski’s proof as generalized algebraic techniques masked behind
model theoretic terminology. They felt that the use of deeper results of model theory
could be bypassed and that they were not essential to the proof. Based on precedent,
these allegations were not unjustified . Adding to the skepticism of the model-
theoretic nature of the proof was the fact that Faltings [8] had exhibited an algebraic
proof of the characteristic zero case just a few years prior. This leap forward had
many mathematicians anticipating that an algebraic proof of the positive case was
forthcoming. In their eyes, Hrushovski’s unified proof for all characteristics fulfilled
the prophecy, albeit being mislabelled as a model-theoretic proof. However, after
numerous unsuccessful attempts at reducing the argument to algebraic techniques,
the overall consensus became that Hrushovski’s proof intrinsically displayed a deep
application of model theory. His proof of the Mordell-Lang conjecture demonstrated
that over the years the ties between algebra and model theory had not faded,
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but strengthened. Hrushovski’s result has precipitated the discovery of numerous
theorems. A blossoming of applications has stemmed from Hrushovski’s work as
model theorists begin using the wealth of knowledge that had remained untapped
for applications of model theory. The ensuing results from Hrushovski, Ziegler,
Pillay and others further underlined the inherent connections between algebra and
model theory.

In this dissertation, we present a portion of a proof of the Mordell-Lang conjec-
ture for characteristic zero. A good part of this proof is one put forth by Anand
Pillay and Martin Ziegler [24] which utilizes the idea of differential jet spaces. The
proof modifies the original proof of Hrushovski by developing an alternate frame-
work in which to obtain a key result for the theorem. We will present a complete,
detailed exposition of topics in model theory and algebraic geometry needed to
understand both the statement of the theorem and its proof. The next section
provides the reader with a general history for the development of the Mordell-Lang
conjecture and an intuition for its utility and significance. After this prelusive
chapter, we devote the rest of the dissertation to the proof of the Mordell-Lang
conjecture. We partition this part of the exposition into five components: founda-
tional algebraic geometry; foundational model theory; model theory of algebraically
closed fields; model theory of differentially closed fields; and proof for characteristic
zero. Our exposition will usually take an algebro-geometric perspective, in that we
will usually provide intuition using algebraic ideas.

After the subsequent motivational chapter the exposition will be broken up as
follows. The third chapter will provide an overview of several ideas from algebraic
geometry. These ideas will vary from the most fundamental, such as the concept
of varieties, to very specialized, such as the concept of an algebraic jet space (the
precursor to Pillay and Ziegler’s differential jet spaces). The fourth section presents
the necessary background in model theory. Again, the exposition will vary from the
basic idea of types to the specialized ideas of local modularity and one-basedness.
When they exist, any parallels to ideas from the algebraic geometry chapter will be
noted in order to underline the close ties between model theory and algebra. After
these ties have been highlighted, the fifth chapter will translate many of the ideas
from the third chapter into a model theoretic framework. This chapter serves as
the core of the dissertation, as many of the ideas put forth will be built upon in
chapters six and seven. Moreover, this chapter accustoms the reader to placing a
model-theoretic interpretation of algebraic ideas. This method will be key when we
translate the algebraic statement of the Mordell-Lang conjecture of chapter two into
one that is more tractable from model-theoretic standpoint. Chapter six describes
the framework of differentially closed fields and lays the final groundwork for the
proof of the characteristic zero case. In this section, the concept of differential jet
spaces will be developed with great care. These jet spaces will be the final tool
needed for the presentation of the proof for characteristic zero in chapter seven. In
that final section, our focus will be the presentation of Pillay and Ziegler’s proof
[24]. During this section we will also be explaining many components of the original
Hrushovski proof.

2. From Diophantus to Mordell-Lang

Though the wording of the Mordell-Lang conjecture lies in the realm of abstract
concepts such as abelian varieties and algebraic groups, the historical motivation
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draws from the concrete idea of diophantine problems. Since the times of Diophan-
tus of Alexandria (and probably earlier), mathematicians have been interested in
the solutions to equations. The simplest such equations involve polynomials over a
given field, such as the field of rationals Q. In the attempt to find solutions to such
polynomial equations, mathematicians developed the field of complex numbers C,
as well as the general theory of algebraically closed fields, where every nonconstant
polynomial equation has a solution.

These developments have been promising in that they show that every poly-
nomial equation over Q has a solution in C, however it is not immediately clear
how one determines whether an equation has solutions in Q and if so how one can
determine the set of solutions. This question of decidability lay so centrally to the
development of number theory that David Hilbert selected it as the tenth problem
of his famous 23 problems. Since then, Matiyasevich [20] proved that it is impos-
sible to obtain a general algorithm for determining all the integer solutions to a
polynomial over Q. It remains unsolved whether one can obtain such an algorithm
for the rational solutions, but it seems that it may be just as difficult. Thus, in order
to have any success, we are forced to specialize to particular kinds of polynomial
equations.

By the Fundamental Theorem of Algebra, we know that any polynomial equation
in only one variable has only finitely many complex (and thus finitely many rational)
solutions. Hence, we proceed to the next level of difficulty: a polynomial equation
P (x, y) in two variables. To ease our task, we will also loosen our demands; rather
than require a description of all rational solutions of P (x, y), we will only concern
ourselves with whether there are an infinite number of rational solutions.

As we will see in the next section, the polynomial P (x, y) defines the algebro-
geometric structure of a variety V (we sometimes will write V (C)). This variety can
be decomposed uniquely into a finite union of irreducible varieties, which over the
complex numbers correspond to affine algebraic curves C1(C), . . . , Cn(C). Rational
solutions of P correspond to Ci(Q), the rational points on the curves. Thus P
has infinitely many rational solutions if and only if Ci(Q) is infinite for some 1 ≤
i ≤ n. In this manner we have transferred our original problem to the problem of
determining whether an affine algebraic curve C has infinitely many rational points.

At this point, the curve C may not have many useful properties, but there are
many powerful theorems in algebraic geometry that state that a curve is bira-
tionally isomorphic to another curve with additional structure. Thus, we would be
significantly empowered if our problem transferred through under birational iso-
morphisms. Precisely, we wish to have the following: If C and C ′ are algebraic
curves defined over Q which are birationally isomorphic (with the isomorphism de-
fined over Q as well), then C(Q) is infinite if and only if C ′(Q) is infinite. But since
algebraic curves are connected and of dimension one, rational functions are defined
on all but finitely many points of the curve. Thus, the infinitude of the rational
points of either curve cannot be missed by a birational isomorphism.

Now we are free to replace the curve C by more tractable curves which are bira-
tionally isomorphic to C. It is well-known that any algebraic curve C is birationally
isomorphic to a smooth projective curve C ′, where C ′ and the birational isomor-
phism are defined over the same field as C. Our motivation for transferring the
problem to projective space can be seen through the following example. Let n > 2
be given and consider the Pythagorean equation X2+Y 2 = Z2 and Fermat equation
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Xn + Y n = Zn. Since any rational solution to either equation can be rearranged
into an integral solution, we shall only concern ourselves with integral solutions.
The first equation has been known since Pythagoras to have infinitely many integer
solutions. The second equation also has infinitely many integer solutions (simply
take X = 0 and Y = Z, for instance). Thus, in this affine setting the equations
seem to be on par. However, when we transfer to the projective setting the distinc-
tion becomes clear. Every integer multiple of the points (0,1,1) and (1,0,1) (and
also (1,-1,0) when n is odd) is a solution in affine space to the Fermat equation.
Thus, the points (0,1,1), (1,0,1), and (depending on the parity of n) (1,-1,0) are
solutions of the Fermat equation in projective space. However, as was proven by
A. Wiles ([32] and [33], these are the only integral projective points which are a
solution to the Fermat equation. Thus, in projective space, the Fermat equation
has only finitely many rational solutions. On the contrary, the Pythagorean equa-
tion maintains an infinite number of rational solutions even in projective space,
since there are an infinite number of solutions (x, y, z) none of which is a scalar
multiple of another. Thus, in the realm of projective space, the distinction between
the number of rational solutions to the Fermat and Pythagorean equations can be
realized.

At this point, we are considering a smooth projective curve C defined over Q.
Such a curve is known to be a one-dimensional, connected, compact, complex man-
ifold, and therefore a Riemann surface. As a result, the curve has a defined genus,
g, which topologically represents the number of holes in the curve.

In the case when C has genus 0, either C(Q) = ∅ or all but finitely many
rational solutions are parametrized by rational functions. That is, there are rational
functions x(t), y(t) such that all but a finite number of rational solutions have the
form (x(t), y(t)). For example, if we consider the equation X2 + Y 2 = 1, our curve
C in affine space is a circle. A rational parametrization for this curve is

(x(t), y(t)) = (
2t

t2 + 1
,
t2 − 1
t2 + 1

)

and the only omitted rational solution is (0, 1). Thus, we need only inspect this
rational parametrization to determine the set of rational solutions.

In the case where C has genus greater than 0, we are once again able to transfer
the problem into a richer setting. This time, the richer setting will be that of an
abelian variety (essentially a variety with the additional structure of an abelian
group). Any curve C of genus g ≥ 1 can be embedded into a torus J , called the
Jacobian of C. It is a well-known theorem of Riemann that the Jacobian is always
an abelian variety. Furthermore, the Jacobian and the embedding are both defined
over the same field as C (in this case Q), so the image C ′ of C will have infinitely
many rational points precisely if C has infinitely many rational points. Thus, we
have translated the problem to a curve of genus g ≥ 1 embedded in its Jacobian.
This has given us the additional structure of an ambient abelian variety, and so we
are able to use the Mordell-Weil theorem, which states:

Theorem 2.1 (Mordell-Weil). If K is a finitely-generated field and A is an abelian
variety over K, then A(K) is a finitely generated abelian group.

Thus, taking K = Q and A to be the Jacobian of C, we conclude that J(Q)
is finitely-generated (this is the Mordell part of the theorem). Though C(Q) will
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be a subgroup of J(Q), it will only be guaranteed to be the whole group when C
has genus 1 (this is because C is isomorphic to J for genus 1). In this case, C(Q)
is infinite precisely if C(Q) is nonempty and the Jacobian has a point of infinite
order. This is due to the fact that C would be a translate of an elliptic curve with
one of its rational points as its origin. In the remaining case of when g ≥ 2, C(Q)
is in general a proper subgroup of J(Q). Moreover, because of considerations of
whether C can carry an algebraic group structure, one is led to surmise that C(Q)
is finite when g ≥ 2 (this last assertion is known as the Mordell conjecture, and was
proven by Faltings [6]). Thus when g ≥ 1, we have the following setup: an abelian
variety J , a curve C inside J , and a finitely-generated group J(Q). Our goal is to
conclude that under these conditions C(Q) = C(C) ∩ J(Q) is finite, except when
C is a translate of an elliptic curve. Abstracting slightly from this setup, we yield
the following conjecture:

Conjecture 2.2 (Lang’s conjecture for curves). Let X be a complex curve of genus
g ≥ 1 lying inside a complex abelian variety A. Let Γ be a finitely-generated sub-
group of A. Then X(C) ∩ Γ is finite unless X is a translate of an elliptic curve.

This conjecture generalized the Mordell conjecture, however, Lang observed that
even this conjecture could be generalized further to arbitrary abelian varieties A
and subvarieties X defined over an algebraically closed field K. He realized that
although one is not likely to have X(K) ∩ Γ to be finite, it nonetheless possesses a
finiteness structure. Specifically, his conjecture was:

Conjecture 2.3 (Mordell-Lang conjecture). Let K be an algebraically closed field
and let A be an abelian variety defined over K. Let X be a subvariety of A and
let Γ be a finitely-generated subgroup of A. Then there are γ1, . . . , γm ∈ Γ, abelian
subvarieties Bi, . . . , Bn of A such that γi + Bi ⊆ X for each 1 ≤ i ≤ m and

X(K) ∩ Γ =
m⋃

i=1

γi + (Bi(K) ∩ Γ).

This conjecture subsumes Lang’s conjecture for curves, for if a complex curve X
is a translate of an elliptic curve, then since an elliptic curve is an abelian variety
the conclusion of the Mordell-Lang conjecture holds. Otherwise, Lang’s conjecture
says that X(C) ∩ Γ is finite, say {γ1, . . . , γm}. But then since {0} is an abelian
variety, we have that X(C) ∩ Γ = ∪m

i=1γi + ({0} ∩ Γ), and so the conclusion of
Mordell-Lang holds in this case as well.

In this manner, we have come from the concrete problem of determining ratio-
nal solutions to a polynomial in two variables to the abstract formulation of the
Mordell-Lang conjecture. Thus, a proof of the Mordell-Lang conjecture not only
has repercussions for the theory of abelian varieties, but also at a very basic level
it affects the theory of diophantine problems.

This history of the Mordell-Lang conjecture combines the expositions of Thomas
Scanlon [27] and Marc Hindry [10]. I would like to also take this opportunity to
thank the first author for clarifying some points of the proof of the Mordell-Lang
conjecture during my visit to Berkeley in the Spring of 2003.
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3. Foundational Algebraic Geometry

In this section, we will work through the basic ideas from algebraic geometry
which will be needed for the proof. These ideas will also be the source for examples
and intuitive explanations. For the entirety of this exposition, all our fields will
have characteristic zero, though we remark that many results hold for fields of any
characteristic. For this section, the field K will furthermore be algebraically closed.

The most fundamental concept to algebraic geometry is the notion of a vari-
ety. There are two fundamental kinds of varieties, affine and projective; the idea
of an abstract variety provides a unification of these similar concepts under one
encompassing notion. In order to avoid too much deviation, we will not provide a
lengthy discussion of projective varieties and projective space, but rather concen-
trate on affine varieties for the main source of intuition. An affine variety represents
the set of simultaneous solutions to a system of polynomial equations over affine
space (analagously, a projective variety will be the set of simultaneous solutions to
a system of polynomial equations over projective space, but more on this later).
Precisely, we have the following definition of an affine variety.

Definition 3.1. Given a set I of polynomials in K[x1, . . . , xn], we denote by V (I)
the subset of Kn each of whose points is a simultaneous zero for all the polynomials
in I. Explicitly, V (I) = {a ∈ Kn |P (a) = 0 ∀P ∈ I}. An affine variety is a set
V ⊆ Kn which is V (I) for some I ⊆ K[x1, . . . , xn]. Given an affine variety V ⊆ Kn,
we define I(V ) = {P ∈ K[x1, . . . , xn] |P (a) = 0 ∀a ∈ V }.

There are several immediate consequences of the definition that are worthy of
enumeration:

(1) I(V ) is an ideal,
(2) V (I(V )) = V ,
(3) I(V (I)) ⊇ I,
(4) I1 ⊆ I2 ⇒ V (I1) ⊇ V (I2),
(5) V1 ⊆ V2 ⇒ I(V1) ⊇ I(V2).

The first two consequences indicate that we need only consider subsets I ⊆
K[x1, . . . , xn] which are ideals in order to define varieties. The second and third
consequences further illustrate that the functions V and I are nearly inverse to each
other. The following celebrated theorem of Hilbert gives a precise characterization
of the case when V and I are inverse.

Theorem 3.2 (Hilbert’s Nullstellensatz). For any ideal I of K[x1, . . . , xn],

I(V (I)) =
√

I

where
√

I = {P ∈ K[x1, . . . , xn] | ∃n Pn ∈ I} denotes the radical of I.

Proof. see any standard commutative algebra text, such as page 412 of [12]. ¤

Thus, the Nullstellensatz indicates that V and I are order-reversing bijections
between the set of affine varieties of Kn and the set of radical ideals in K[x1, . . . , xn].

The intersection of any family (Vj |j ∈ J) of affine varieties is also an affine variety
given by

⋂
j∈J Vj = V (

⋃
j∈J I(Vj)). The union of any two affine varieties V1 and

V2 is itself an affine variety: namely V1 ∪ V2 = V ({P1P2 |P1 ∈ I(V1), P2 ∈ I(V2)}).
Since the empty set and the whole space are affine varieties (∅ = V (K[x1, . . . , xn])
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and Kn = V (∅)), we have just shown that the affine varieties on Kn are the closed
sets of a topology called the Zariski topology.

The Zariski topology has some unusual topological properties. Any two open
sets have a nonempty intersection; thus the Zariski topology is not Hausdorff. In
fact every open set is dense. Though the Zariski topology possesses these properties
which seem to indicate that it is not “well-behaved”, the following proposition shows
that the topology exhibits a powerful property.

Proposition 3.3. The Zariski topology on Kn is Noetherian (every intersection
of closed sets is equal to a finite subintersection).

Proof. Let V = ∩β<αVβ be given and without loss of generality, assume the Vβ

form a decreasing chain. Then (I(Vβ) |β < α) forms an increasing chain of ideals in
K[x1, . . . , xn]. Since K[x1, . . . , xn] is a Noetherian ring, there is an n < ω such that
I(Vβ) = I(Vn) for all n ≤ β < α. But V = V (

⋃
β<α I(Vβ)) = V (I(Vn)) = Vn. ¤

The “finiteness” afforded by the Noetherian nature of the Zariski topology will
be of vital importance for definability considerations in section 5.

A natural topological question to ask at this point (whose answer will be of
importance to us when we define completeness) is whether the Zariski topology
on a product is equal to the product of the Zariski topologies. The answer is no,
however we have the following relationship:

Proposition 3.4. The Zariski topology on K2n is strictly finer than the product of
the Zariski topologies on Kn.

Proof. Affine varieties in K2n are defined by ideals of polynomials P (x̄, ȳ), where
x̄ and ȳ each denote n free variables. If V and W are varieties in Kn, then V ×W
is a variety in K2n with I(V × W ) = (I(V )x̄, I(W )ȳ). Here I(V )x̄ denotes that
the polynomials in I(V ) are written in terms of the free variables x̄ and I(W )ȳ

are the polynomials of I(W ) written using the free variables ȳ. Then I(V ×W ) is
the ideal in K[x̄, ȳ] generated by the two ideals I(V )x̄ and I(W )ȳ. Thus, we have
shown that every product of varieties is a variety, and since varieties are closed
under finite unions and arbitrary intersections, we have that the Zariski topology
on K2n is finer than the product topology.

To show that it is strictly finer, consider the diagonal ∆ = {(ā, b̄) ∈ K2n | a = b}.
The diagonal is clearly a variety since it is defined by ideal of the polynomial
x̄ − ȳ = 0. However the diagonal is never in the product topology. Since any two
open sets U and U ′ in Kn have a nonempty intersection, there is an ā ∈ Kn such
that (ā, ā) ∈ U × U ′. Since every open set in the product topology must contain
U × U ′ for some open sets U,U ′ in Kn, we conclude that every open set in the
product topology must intersect ∆. Thus ∆ cannot be closed. ¤

Thus, the Zariski topology on the product V × W of two varieties V and W
is finer than the product topology on V × W (simply find an n such that both
V and W are embeddable into Kn; the Zariski topology on V ×W is a subspace
topology for the Zariski topology on K2n).

In addition to yielding a topology, affine varieties also possess a well-behaved fac-
torization theory. That is, there is a subclass of varieties which can be considered
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“irreducible” such that there is a unique (modulo some considerations) decompo-
sition of any affine variety into irreducible varieties. The exact nature of these
notions is elucidated through the next series of definitions and theorems.

Definition 3.5. An affine variety V is irreducible if whenever V1 and V2 are affine
varieties such that V1 ∪ V2 = V then V1 = V or V2 = V .

Proposition 3.6. An affine variety V is irreducible if and only if I(V ) is prime.

Proof. Suppose I(V ) is prime, and V = V1 ∪V2 for some varieties V1 and V2. Then
I(V ) ⊇ {P1P2 |P1 ∈ I(V1), P2 ∈ I(V2)}. Either I(V ) ⊇ I(V1), or else we may
choose P ∈ I(V1)\I(V ). Since PP ′ ∈ I(V ) for every P ′ ∈ I(V2), by primality of
I(V ) we have that I(V2) ⊆ I(V ). Thus V ⊆ V1 or V ⊆ V2 and so V is irreducible.

Conversely, if I(V ) is not prime, then we may choose P1, P2 /∈ I(V ) such that
P1P2 ∈ I(V ). Set V1 = V (I(V )∪{P1}) and V2 = V (I(V )∪{P2}). Then V1, V2 ⊂ V ,
but

V1 ∪ V2 = V ({P1P2} ∪ {P1P |P ∈ I(V )} ∪ {P2P |P ∈ I(V )} ∪ I(V ))
= V (I(V ))
= V

so V is not irreducible. ¤

Since K[x1, . . . , xn] is a Noetherian ring, ideals are finitely-generated, and more-
over prime ideals are finitely-generated by irreducible polynomials. Thus even
though our definition of irreducibility was purely topological (it was simply a state-
ment about closed sets), it precisely links the algebraic notion of irreducibility to the
topology. Since K[x1, . . . , xn] is a Unique Factorization Domain, every polynomial
can be factored into a product of irreducible polynomials. Translating this state-
ment to a topological analogue, we would ideally desire every variety to be equal
to a “product” of irreducible varieties. As the next important theorem shows, the
analogue transfers to the topological context when we consider “product” to mean
union.

Theorem 3.7. [Decomposition Theorem] Every affine variety V is equal to a finite
union of irreducible varieties Wi, 1 ≤ i ≤ n. This decomposition is unique if we do
not consider decompositions where Wi ⊆

⋃
j 6=i Wj for some 1 ≤ i ≤ n.

Proof. Since we are dealing with a Noetherian topology, the collection of all subva-
rieties of a given variety V (ordered by inclusion) is a well-founded partially ordered
set. Consequently we may prove this theorem by induction on V : if V is reducible,
then V = V1 ∪ V2 for some proper subvarieties V1 and V2. By induction V1 and
V2 have unique decompositions into irreducible subvarieties. These two decompo-
sitions combine to give a decomposition of V (we must be a little careful in which
varieties to omit in order to satisfy the condition that no variety is contained in the
union of the rest, but this is not difficult). Suppose now that V has decompositions
W1, . . . , Wn and W ′

1, . . . ,W
′
m, where n ≤ m. Then

W1 = V ∩W1 =
m⋃

j=1

(W ′
j ∩W1).

As each W ′
j ∩W1 is closed and W1 is irreducible, it must be that W1 = W ′

j ∩W1

for some 1 ≤ j ≤ m, say j = 1. Using the same argument with W ′
1 in place of W1,
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we are forced to conclude by irreducibility that W ′
1 = W ′

1 ∩ W1, whence we have
W1 = W ′

1. Repeat this process to show that (after rearranging) Wi = W ′
i for all

1 ≤ i ≤ n. Because our decompositions do not allow for proper subvarieties, we
finally conclude that n = m. ¤

We will now quickly remark on projective space and projective varieties. Given
affine n + 1 space An+1 = Kn+1 we will define the projective space Pn to be the
set of all equivalence classes [ā]∼, where ā ∼ b̄ ⇔ ∃α ∈ K ā = αb̄. Thus, the equiva-
lence class of ā is the line in Kn+1 through ā and the origin. One easily checks that
one can define field operations on Pn by [ā]+[b̄] = [ ¯a + b] and [ā][b̄] = [āb]. This will
yield that the additive identity is [0̄] and the multiplicative identity is [1̄]. One can
further transfer over affine polynomials so that they are interpretable in projective
space via a process called homogenization. A polynomial is called homogeneous if
every term has the same degree (sum of the exponents of all the variables). For
instance X1X

3
2 + X4

3 is homogeneous, whereas X1X
3
2 + X3

2 is not. Given a polyno-
mial equation P (X1, . . . , Xn) = 0, we obtain a homogeneous polynomial equation
Q(X1, . . . , Xn, Z) = 0 by multiplying terms of P by powers of Z. For instance, the
homogenization of X1X

3
2 +X3

2 +a = 0 is X1X
3
2 +X3

2Z +aZ4 = 0. Homogenization
is also invertible by substituting Z = 1; this is called dehomogenization. If P (X̄)
is a homogeneous polynomial, then P (ā) = 0 if and only if P (αā) = 0 for every
α ∈ K. Hence, we may say that [ā] is a solution of P when P (ā) = 0. With
this notational groundwork, we now may analagously define projective varieties
as sets of solutions to homogeneous polynomials in projective space. All our re-
sults for affine varieties, including having a Noetherian Zariski topology and the
Decomposition theorem transfer to the projective setting.

We would now like to define the concept of an abstract variety, which subsumes
the concepts of affine and projective varieties. We would also like to define this
notion so that we may enjoy a Noetherian Zariski topology on abstract varieties,
and also possess a decomposition theorem. But in order to provide such a notion,
we must first consider morphisms between varieties.

Definition 3.8. A morphism from an affine variety V ⊆ Kn to an affine variety
W ⊆ Km is a map f = (f1, . . . , fm) : V → W where each fi ∈ K[x1, . . . , xn] is a
polynomial map. An isomorphism is a bijective morphism whose inverse is also a
morphism. A function f from V to K is said to be regular at a ∈ V if there is a
Zariski open neighborhood U of a and there are polynomials P, Q ∈ K[x1, . . . , xn]
such that Q is everywhere nonzero on U and f = P/Q on U . A function f from a
Zariski open set U to K is regular if it is regular at each of its points.

Remark 3.9. The correct definition of morphism requires that each fi ∈ K[V ] =
K[x1, . . . , xn]/I(V ), however, we can content ourselves in only considering repre-
sentatives of these equivalence classes to be our functions. A concise explanation
of the validity of this consideration follows Definition 3.15.

Definition 3.10. A quasi-affine variety is a Zariski open set U possessing the
induced subspace topology.

With this set of definitions in hand, we are now able to define an abstract variety
and also morphisms between abstract varieties.
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Definition 3.11. An (abstract) variety is a set V equipped with a finite open
covering by subsets V1, . . . , Vn and with maps fi : Vi → Ui, such that for each
1 ≤ i, j ≤ m

(1) fi is a bijection and Ui is an affine variety.
(2) Uij = fi(Vi ∩ Vj) is an open subset of Ui.
(3) fj ◦ f−1

i is an isomorphism between the quasi-affine varieties Uij and Uji.

We say that (V, Vi, fi) is defined over a field k if all the Ui and the maps fj ◦ f−1
i

are all defined over k.

One obtains a Zariski topology on V by defining U ⊆ V to be open precisely if
fi(U∩Vi) is open in Ui for each i. It is clear that this topology is Noetherian as well
since the topologies on the Ui are all Noetherian. One can now define topological
concepts such as irreducibility and the like in a similar manner to before. One
can quickly verify that both affine varieties and projective varieties are abstract
varieties.

Definition 3.12. Let (V, Vi, fi) be an irreducible variety. A rational function
f : V → K is a regular function from some open subset U of V to K. A function
f : V → W is a birational isomorphism if it is an isomorphism between open
subsets of V and W . In this case, we say V and W are birationally isomorphic.

Remark 3.13. One can use morphisms to perform a so-called change of coordi-
nates, that is, given a point x of Kn we can find an isomorphism of Kn with itself
that maps x to 0.

The general definition of an algebraic variety can be interpreted as follows: at
any point, there is a neighborhood around that point which is isomorphic to an
affine variety. That is, the algebraic variety resembles an affine variety locally at
every point. This definition resembles the definition for a differential manifold,
namely that at any point of the manifold, there is a neighborhood around that
point resembling a Euclidean subspace. Due to this similarity in structure, one
is encouraged to try to transfer some basic notions from differential geometry to
algebraic geometry. The simplest of these is the tangent space at a point, which is
usually constructed by considering a neighborhood which is locally Euclidean and
taking a tangent space to this Euclidean subspace. Thus, our definition will also
be based on the local behavior, i.e. we only need to construct the tangent space
at a point of an affine variety. Intuitively, if a line in the plane intersects a convex
(or concave) piece of a one-dimensional smooth curve it will do so in two points,
unless it is tangent to the curve. In this case, the line intersects the piece in only
one point, but we may say intuitively that this intersection has “multiplicity” two.
We will now formalize this idea of intersection multiplicity in order to aid in the
construction of a tangent space.

Let a point x of an affine variety X ⊆ Kn be given, and perform a change of
coordinates such that x is the origin 0 = (0, 0, . . . , 0). Then given any other point
a ∈ Kn, the unique line connecting a and x is given by La = {ta | t ∈ K}. If
I(X) = {F1, . . . , Fr}, then the line La intersects X for all values of t ∈ K such
that F1(ta) = F2(ta) = . . . = Fr(ta) = 0. Thus, our points of intersection are
completely determined by the functions F1(ta), . . . , Fr(ta) of the single variable t.
Namely, if f(t) is the greatest common divisor of F1(ta), . . . , Fr(ta), then each zero
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of f is a value of t for which ta is an intersection point. Furthermore, f precisely
defines our notion of multiplicity of the intersection. The number of times t appears
as a root of f is defined to be the multiplicity of the intersection of the line La

with the variety X at the point ta. Since La and X by construction intersect at
x, this intersection has multiplicity at least one. We define the tangent space
Tx(X) of X at x to be the union of all lines La whose intersection with X at x has
multiplicity greater than 1. In other words, if mx(a) denotes the multiplicity of the
intersection of La and X at x, then

Tx(X) =
⋃
{La | a ∈ Kn, a 6= x, mx(a) > 1}.

Proposition 3.14. Tx(X) is a K-linear subspace of kn.

Proof. Since x = 0 is a root of each Fi, we have that the constant terms of all
the Fi are zero. Thus, each can be broken up as Fi = Gi + Hi, where Gi is the
linear part of Fi and Hi is the remaining part. The intersection at x of the line
La has multiplicity greater than 1 if and only if t2 divides f(t), which occurs pre-
cisely when t2 divides each Fi(ta). Since t2 already divides Hi(ta), we have that
t2 divides Fi(ta) if and only if Gi(a) = 0. Thus, a 6= x is in Tx(X) precisely when
G1(a) = . . . = Gr(a) = 0. Since these constraints are K-linear, the resulting space
Tx(X) is also clearly K-linear. ¤

In particular, we have that Tx(X) is finite-dimensional. Furthermore, this dimen-
sion is independent of the choice of the representative Fi and is invariant (preserved
under isomorphisms of X). For further information on tangent spaces, as well as a
proof of the invariance of the tangent space, the reader is advised to consult [28].

We will now proceed with the construction of algebraic jet spaces. This construc-
tion will be mimicked to a significant extent in chapter five, where we construct
differential jet spaces. We will also show that algebraic jet spaces are a general-
ization of tangent spaces, or more precisely, characterizations of weaker notions of
tangent spaces.

Definition 3.15. Let X ⊆ Kn be an irreducible affine variety. The coordinate
ring K[X] of X over K is defined to be K[X] = K[x1, . . . , xn]/I(X). The func-
tion field K(X) of X over K is the field of fractions of the coordinate ring K[X].

We will write elements of K[X] as [f ]X , where f ∈ K[x1, . . . , xn], and just
simply f when X = Kn. Given any point a ∈ X, we define a ring

Ma(X) = {[f ]X ∈ K[X] | f(a) = 0}.
Since f(a) = 0 for each f ∈ I[X], we conclude that for any f, g ∈ K[x1, . . . , xn], if
f − g ∈ I[X] then f(a) = g(a). Thus, Ma(X) is indeed well-defined. Furthermore,
we have that Ma(X) is a Noetherian ring, being a subring of the Noetherian ring
K[X]. We also may view Ma(X) as a (proper) ideal of K[X], and consequently use
Corollary 10.18 of [1] to conclude

⋂
nMa(X)n = (0). Since Ma(X) is Noetherian,

we have the stronger conclusion that Ma(X)n = (0) for some n, however we will
not need this fact.

For each m ≥ 2, we may consider the k-vector space Ma(X)/Ma(X)m. This
vector space is finite dimensional since Ma(X) is a finitely-generated ideal.
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Definition 3.16. The dual space of Ma(X)/Ma(X)m is called the (m− 1)st jet
space of X at a. We denote the (m− 1)st jet space of X at a by Jm−1

a (X).

Another common name for Jm
a (X) is the m-jet of X at a. When X = Kn

we shall simply write Jm
a and Ma. The jet space for X = Kn acts as a universal

jet space in the sense of the following proposition.

Proposition 3.17. Let an irreducible affine variety X ⊆ Kn be given. There is a
canonical linear embedding from Jm

a (X) into Jm
a .

Proof. Ma maps naturally (via the quotient map) onto Ma(X) and so there are
also natural mappings of Ma/Mm

a onto Ma(X)/Ma(X)m. By duality, we get an
embedding in the reverse direction, namely from Jm+1

a (X) into Jm+1
a . ¤

From this point on, we shall identify Jm
a (X) with its image in Jm

a .
According to Corollary 1 of Chapter II, Section 1.3 of [28], the first jet space

J1
a(X) is isomorphic to the tangent space Ta(X) of X at a.
Now that we have a picture of jet spaces, we may consider how jet spaces over

different affine varieties interact. Namely, we will prove the following fundamental
result:

Proposition 3.18. Let X,Y be irreducible subvarieties of kn and a ∈ X ∩ Y be
given. Then Jm

a (X) = Jm
a (Y ) for all m ≥ 1 iff X = Y .

Proof. Let f ∈ IX be given and fix m ≥ 2. Then f/Mm
a is mapped to [f ]X/Mm

a (X)
under the canonical linear embedding. But since f ∈ IX , [f ]X = [0]X and so
[f ]X ∈ Ma(X)m is mapped to 0 by Jm−1

a (X). Transferring the statement back to
Jm−1

a via the canonical embedding, we see that Jm−1
a (X) (now considered as a sub-

space of Jm−1
a ) maps f/Mm

a to 0. But as subspaces of Jm−1
a , Jm−1

a (X) = Jm−1
a (Y ),

so Jm−1
a (Y ) maps f/Mm

a to 0. Consequently, transferring again under the canon-
ical embedding, Jm−1

a (Y ) maps [f ]Y /Mm
a (Y ) to 0, and so [f ]Y ∈ Mm

a (Y ). Since
m ≥ 2 was arbitrary, we have [f ]Y ∈ ⋂

m<ω Mm
a (Y ) = {[0]Y }. Thus f must be in

IY . Reversing roles of X and Y in the proof yields that IX = IY and so X = Y . ¤

Since every affine variety has a unique decomposition into irreducible compo-
nents, we may extend the notion of jet space to arbitrary affine varieties by defining
the jet space at each point to be the jet space at that point for the corresponding
irreducible component. Jet spaces can also be defined for K-rational points a of
arbitrary varieties X. Around each point a ∈ X(K), there is a minimal affine neigh-
borhood Ya. Indeed we need only take Ya to be the intersection of all neighborhoods
of a which are affine; this is equal to a finite intersection of such neighborhoods by
the Noetherianness of the Zariski topology. Consequently Ya is itself an affine neigh-
borhood of a. Now we define the jet space at a for X to simply be the jet space at
a for the affine variety Ya. The above theorem holds for arbitrary varieties as well.

If f is a morphism over K from the variety X to the variety Y and a ∈ X(K),
then f induces a canonical linear map Ja(f) : Jm

a (X) → Jm
f(a)(Y ). In fact, J is a

functor.
These facts about algebraic jet spaces will be utilized again when we deal with

differential jet spaces, but for now we set aside our consideration of algebraic jet
spaces.
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For the remainder of this section we will develop the theory of varieties that also
have additional algebraic structure, such as that of a group.

Definition 3.19. An algebraic group is a variety V together with morphisms
µ : V × V → V and ι : V → V such that µ gives a group operation on V , and ι is
the map x 7→ x−1. We say that the algebraic group (V, µ, ι) is defined over the field
k if V, µ, ι are all defined over k. In general, we will just write V when referring to
an algebraic group.

There are a few standard examples of algebraic groups. Of course, the addi-
tive group structure of Kn defines an algebraic group.

A second example is the group SLn(K) considered as a subset of Kn2
. It is

a variety since it is defined by the polynomial equation det(M) = 1, and matrix
multiplication gives it a group structure such that the group operations are mor-
phisms. One also has that GLn(K) is an algebraic group, though with a slightly
more complicated construction of the underlying variety. We cannot use the method
we employed for SLn(K) since we would have that GLn(K) is defined by the equa-
tion det(M) 6= 0. This defines a Zariski open set, rather than a Zariski closed set.
Indeed, this is the case when we consider GLn(K) as a subset of Kn2

. Instead we
shall consider the set

{(M, γ) ∈ GLn(K)×K | γdet(M)− 1 = 0},
which is clearly a variety in Kn2+1. The group operation is easily defined in terms
of matrix multiplication, which yields that this set is isomorphic as a group to
GLn(K). Consequently we may consider GLn(K) as an algebraic group.

Remark 3.20. In this last example we began with the group GLn(K) and found
an isomorphic group which was an algebraic group. This is an occurrence of a
more general phenomenon predicted by a result known as Weil’s Theorem (Theo-
rem 7.10). We will speak more on this theorem later in our discussion, but suffice
it to say that we were able to find such an isomorphic group because GLn(K) was
a “definable” group.

Another example of an algebraic group is that of an elliptic curve. An elliptic
curve is a projective curve given by the homogenization of a polynomial of the
form

Y 2 = X3 + aX + b,

where a, b ∈ K. For example, the projective curve given by ZY 2 = X3 + a2XZ2

is an elliptic curve, where a ∈ K. A powerful result of algebraic geometry is that
every elliptic curve has an associated group structure (see section 1.7 of [13] or
section 1.4 of [29] for the construction). Thus, every elliptic curve is an algebraic
group (in fact it is even an abelian variety).

Definition 3.21. A variety V is complete if for any variety Y the projection
π : V × Y → Y is a closed map, where both spaces are in the respective Zariski
topologies. As a reminder, a closed map by definition maps closed sets to closed
sets.

Proposition 3.22. A closed subset W of a complete variety V is complete.
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Proof. Let Y be a variety and consider the Zariski topology on V ×Y . Proposition
3.4 indicates that this Zariski topology is finer than the product topology. Therefore
W ×Y is closed in the Zariski topology since W is closed and so W ×Y is closed in
the product topology. Consequently, any closed subset of W × Y is a closed subset
of V × Y and hence is mapped to a closed subset of Y under projection by the
completeness of V . So W is complete. ¤

Definition 3.23. An algebraic group is connected if it contains no proper alge-
braic subgroup of finite index.

Proposition 3.24. Every algebraic group G has a subgroup G′ of finite index which
is connected.

Proof. Take the intersection G′ of all algebraic subgroups of G which have finite
index. Since every algebraic subgroup of G is a variety, G′ is an intersection of
varieties. Since the Zariski topology is Noetherian, it must be that G′ is equal to a
finite intersection of algebraic subgroups of G with finite index. Thus G′ itself must
be an algebraic subgroup of G with finite index; in fact it is the algebraic subgroup
of G with greatest finite index. ¤

Definition 3.25. An abelian variety is a complete connected algebraic group.

Remark 3.26. When we use the phrase “B is an abelian subvariety of A” we will
always mean that B is an abelian variety which is a subvariety of A and B’s group
structure is a subgroup of A. That is, we wish that the abelian variety B be both a
subgroup and a subvariety.

As one might expect from the name, an abelian variety is guaranteed to be
an abelian group. Though the proof is short and sweet, we shall omit it and in-
stead refer the reader to Example 4.6 in [23] for a proof.

Proposition 3.22 indicates that any connected algebraic group in an abelian
variety must be an abelian variety as well.

We conclude this section with a statement on quotients of abelian varieties:

Proposition 3.27. Let B ⊆ A be abelian varieties such that B is an abelian
subvariety of A. Then the quotient group A′ = A/B is an abelian variety and the
canonical projection π : A → A′ is a morphism.

Proof. Left to the reader.

The results regarding tangent spaces followed the exposition in [28]. The de-
velopment of algebraic jet spaces mimicked that in [24].

4. Foundational Model Theory

Since the proof of the Mordell-Lang conjecture we wish to present involves heavy
model-theoretic machinery, we must prepare the reader with his arsenal. These
tools from model theory will be employed heavily in the subsequent chapters. In the
next chapter, we will interpret ideas in algebraic geometry from a model theoretic
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standpoint, while in later chapters we will introduce new ideas with model-theoretic
considerations frequently interspersed.

Define types, stationary types, saturated models, monster model, Morley rank,
ℵ0-stability,

Theorem 4.1. In ℵ0-stable theory types are definable.

Proof. see any standard introductory text on model theory, such as [9] or [19].

strongly minimal sets, canonical basis, local modularity, one-basedness, generic-
ity, orthogonality.

Definition 4.2. Given sets A and B and a tuple c, we say that tp(c/A) is internal
to B if there is a d independent from c over A and there is a tuple b ∈ B such that
c is definable over A, d, b.

Let us develop an intuitive grasp of the concept of internality. Assume c is
definable over A, d, b, and consider p = tp(c/A). The set A is already necessary
to the definition of p. Internality states that the only additional “information” we
need is d and some tuple b ∈ B. But since c and d are independent over A, d does
not really add much information about the type p. Consequently, the core of the
“extra” information needed to define p comes from b, i.e. from parameters inside
B.

5. Model Theory of Algebraically Closed Fields

Since algebraically closed fields form the underlying framework of the proof, this
section will present a general model theoretic view of several facts from the theory
of algebraically closed fields. The developments in this section will also prime the
reader before he encounters the specialization in the more complicated setting of
differentially closed fields.

Interpret ideas from section 3 from a model-theoretic point of view. Show how
closed sets in the Zariski topology are definable and how a definable map on a set
S can be definably extended to a definable map on the closure of S (uses finiteness
of the closure). Definability of varieties in field-theoretic sense and model-theoretic
sense and how they agree (Page 68, Corollary 2.7 of Pillay in Bous). Show that
being an abelian variety is a first order property and that the group operation on
an abelian variety is definable.

The theory of algebraically closed fields of characteristic zero, ACF0, is given
by the following set of axioms in the language of fields:

(1) The field axioms,
(2) For each 0 < n < ω, an axiom which states that

1 + . . . + 1︸ ︷︷ ︸
n times

6= 0,

(3) For each 0 < n < ω an axiom of the form

∀c0∀c1 . . . ∀cn∃a
n∑

i=0

xia
i = 0.

Theorem 5.1. The theory ACF0 is ℵ0-stable.
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Proof. This result is well known both to model theorists, and to algebraists (Steinitz’s
theorem). ¤
Theorem 5.2. Algebraically closed fields are strongly minimal.

Proof. .

Page 70 of Bous, remark 3.1 links Morley rank of irreducible varieties to al-
gebraic notion (via genericity).

One of the more important facts about jet spaces is the following:

Proposition 5.3. If X is an affine subvariety of Kn definable over a field k ≤ K
then Jm

a (X) is definable over k for every m and every a.

Proof. Fix m ≥ 1. Let D be the set of differential operators of the form
∂s

∂xs1
i1

∂xs2
i2
· · · ∂xsr

ir

where 0 < s ≤ m, 1 ≤ i1 < i2 < . . . < ir ≤ n, 0 < si and
∑r

i=1 si = s. Let d = |D|.
Then Jm

a (X) is isomorphic to the following subspace of Kd:

{(uD)D∈D | ∀P ∈ IX ∩ k[x1, . . . , xn]
∑

D∈D
DP (a)uD = 0}.

The isomorphism for m = 1 is constructed on page 59 of [17], and the generalization
to arbitrary m ≥ 1 is left to the reader. It is clear that the above space is definable
since IX ∩k[x1, . . . , xn] is finitely generated, D is finite and the polynomial DP can
be easily defined from P for each D ∈ D. ¤
Theorem 5.4. Let G be an algebraic group.

(1) If H is a subgroup of G then the Zariski closure of H in G is also a subgroup
of G.

(2) If H is a definable subgroup of G then H is closed in G (and thus an
algebraic subgroup).

Proof. Lemma 4.3 in Pillay’s section (page 75).

Definition 5.5. A group is connected if it contains no proper definable subgroup
of finite index.

Reexamining Definition 3.23 in light the second part of Theorem 5.4, we see
that the two definitions of “connected” coincide for algebraic groups. Thus, there
is no confusion about which definition we mean. In general, we will use the above
definition since it is more tractable from a model-theoretic perspective and it is not
limited to only algebraic groups.

Using some of the theory of ω-stable groups, one is able to characterize the
connected component of an algebraic group G, as predicted by Proposition 3.24.
Namely, we have the following:

Proposition 5.6. Let G be an algebraic group. If we decompose the variety G
into irreducible components (as in Theorem 3.7), then the component containing
the identity is an algebraic group. Furthermore, it is connected and has finite index
in G, thus it is the connected component of G predicted by Proposition 3.24.

Proof. see [23] for a proof.
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6. Model Theory of Differentially Closed Fields

Here we will develop ideas central to the characteristic zero proof of the Mordell-
Lang conjecture. The topic which will garner the most focus in this section is the
notion of the jet space at a point of a differentially closed field. This idea generalizes
the better-known concepts of a tangent space to a differential curve or manifold and
of a jet space for an algebraically closed field. Our presentation will, in part, follow
that in [24]. The fundamentals of differential fields which we present here can be
found in a number of sources, such as [17] and [35].

First, we will construct the basic setting for the theory of differentially closed
fields. For this, we define some basic notions for differential algebra.

Definition 6.1. A derivation on a ring R is an additive function ∂ : R → R
satisfying the equation ∂(fg) = ∂(f)g + f∂(g) for all f, g ∈ R.

A differential ring (R, +, ·, ∂, 0, 1) is a commutative ring with identity equipped
with a derivation map. A differential ideal of a differential ring is an ideal I of the
ring closed under the derivation map, that is ∂(f) ∈ I for all f ∈ I. A differential
field (U , +, ·, ∂, 0, 1) is a field equipped with a derivation.

For our purposes, all our fields will have characteristic zero, though it is worth-
while to note that the theory of differential fields of positive characteristic has also
been developed (see [34]). Unfortunately, in the positive characteristic case, the
theory of differential fields of does not behave nearly as well. Fundamentally, this
is due to the fact that the theory of differentially closed fields of characteristic p is
only stable, and not ℵ0-stable like in characteristic zero (we talk more about the
stability of differentially closed fields of characteristic zero later in this section).

Remark 6.2. Since we will frequently be switching back and forth between model-
theoretic notions interpreted over fields and interpreted over differential fields, we
must have a convention for distinguishing between the two. Whenever we speak of
a notion in terms of differential fields, we will precede the term with “∂-”. We shall
leave the unaltered terms to denote the field theoretic interpretation of the notion.
For example, “∂-definable” will signify that an object is definable in the language of
differential fields, whereas “definable” will denote that an object is definable in the
language of fields. The difference is noteworthy since in the case of differential fields
we have additional the unary function ∂ at our disposal for the definitions of objects.

For each differential ring, we have a distinguished subring called the ring of
constants CU . Precisely, CU = {c ∈ U | ∂(c) = 0}. When the ring U is understood,
we shall omit the subscript. It is easy to verify that if U is a field, then the ring
of constants is also a field which furthermore contains the prime field, Q. It is also
clear from the definition that the ring(field) of constants is definable. Furthermore,
in the context of fields, we have the following relationship between constancy and
algebraicity:

Proposition 6.3. If T ⊇ U are differential fields and a ∈ T is algebraic over CU ,
then a ∈ CT .

Proof. Let f =
∑n

i=0 cix
i be the minimal polynomial of a over CU . Then

0 = ∂(f(a)) =
n∑

i=1

ici∂(a)ai−1 = ∂(a)g(a),
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where g(x) =
∑n−1

i=0 (i+1)ci+1x
i. Since g is a polynomial over CU of order less than

f , we have that g(a) 6= 0 and so ∂(a) = 0. ¤

A natural question to ask at this point is if any field can be the field of con-
stants for some differential field. As the next lemma and theorem show, the answer
for algebraically closed fields is yes. But first we need to define two key technical
concepts.

Definition 6.4. Let U be a differential ring and let U [x] be the ring of polynomials
over U in one variable (in the field-theoretic sense). Then, given P ∈ U [x], with
P =

∑n
i=0 cix

i, we define P ∂ to be the polynomial
∑n

i=0 ∂(ci)xi and we define P ′

to be the polynomial
∑n

i=1 icix
i−1.

For a polynomial Q ∈ U [x1, . . . , xn], we define ∂Q/∂xi to be Q′, when Q′ is con-
sidered as a polynomial of the one variable xi, i.e. Q is considered as a polynomial
in U [x1, . . . , xi−1, xi+1, . . . , xn][xi].

Lemma 6.5. Let (K, +, ·, ∂, 0, 1) be a differential field with an algebraically closed
constant field k. If a is algebraic over K, then there is a derivation D on K(a)
extending ∂ such that k is the field of constants of (K(a),+, ·, D, 0, 1).

Proof. Let K, k, a, ∂ as above be given and assume that a /∈ K. Choose the minimal
polynomial P of a over K. We define the derivative of a to be

D(a) = −P ∂(a)
P ′(a)

.

Since P ′ has positive degree less than P , we know that P ′(a) 6= 0, so D(a) is defined.
Furthermore, since a is not algebraic over k, P ∂ 6= 0. Combine this with the fact
that P ∂ has degree less than P (because the term of highest order is annihilated),
and we see that P ∂(a) 6= 0 and so D(a) 6= 0 and a is not a constant in K(a).

Since {1, a, . . . , an−1} forms a basis for K(a) as a vector space over K, the
following definition of D is well-defined on all of K(a): for all d0, . . . , dn−1 ∈ K,

D

(
n−1∑

i=0

dia
i

)
=

n−1∑

i=0

(∂(di)ai + idia
i−1D(a))

That D is a derivation follows directly from this definition. Furthermore, for each
c ∈ K, D(c) = ∂(c). Since a is not a constant, no element of K(a)\K can be
constant either. For if b ∈ K(a)\K were constant, then k(b) would be contained
in the field of constants of K(a). Since a is algebraic over k(b), Proposition 6.3
(with T = U = K(a)) shows that a is in the field of constants of K(a). But this
contradicts that a is not constant in K(a). Thus k remains the field of constants
in K(a). ¤

We will denote the field (K(a), +, ·, D, 0, 1) by K < a >; it is the differen-
tial field generated by a over K.

Theorem 6.6. Let k ≤ K be fields of characteristic zero with k algebraically closed.
There is a derivation ∂ on K such that k is the field of constants.

Proof. Let G ⊂ K be a transcendence basis for K over k. By Corollary VI.1.6 of
[12], K is algebraic over k(G), the field of fractions for the ring of polynomials of
k over G. Thus, if we are given a derivation ∂ on k(G) which has k as the field of
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constants, we may extend it to a desired derivation on K by repeated use of the
previous lemma. Explicitly, set k(G) = F0 and ∂ = ∂0. We will define differential
fields (Fα,+, ·, ∂α, 0, 1) recursively such that k(G) ≤ Fα ≤ K, ∂α extends ∂, and k
is the field of constants of ∂α. If Fα 6= K, choose a ∈ K\Fα, take Fα+1 = Fα < a >
and set ∂α+1 to be the derivation on Fα+1. When β is a limit ordinal, define Fβ =⋃

α<β Fα and ∂β =
⋃

α<β ∂α. The recursion will terminate in at most |k(G)| · ℵ0

steps since this is the maximum number of algebraic elements over k(G). At the
end of the recursion we will have the desired derivation on K.

Thus we are reduced to the task of obtaining a derivation on k(G) such that k
is the field of constants. Enumerate G as {gβ |β < α} and label Gβ = {gγ | γ < β}.
We recursively construct a chain of derivations ∂β such that

(1) ∂β is a derivation on k(Gβ) with k as the constant field,
(2) ∂β ⊂ ∂β+1,
(3) for β limit, ∂β =

⋃
γ<β ∂γ .

For β = 0, ∂β is simply the zero map on k. For β limit, simply take the union of
the derivations ∂γ for γ < β. Finally, if β = γ + 1 then k(Gβ) ∼= k(Gγ)(gβ), so we
can obtain a derivation ∂β by simply modifying the standard derivative on F (x), the
field of rational functions over a field F . Namely, if we are given c0, . . . , cm ∈ k(Gγ)
and a polynomial f =

∑m
i=0 cig

i
β , define

∂β(f) =
m∑

i=0

∂γ(ci)gi
β +

m∑

i=0

icig
i−1
β .

Due to the unique representation of polynomials, this equation defines a derivation
∂β on the ring k(Gγ)[gβ ]. Moreover, it is clear by the linear independence of the
gi

β in k(Gγ)[gβ ] that ∂(f) = 0 if and only if f ∈ k. Consequently k is the ring of
constants of this derivation.

We may further extend ∂β to the field k(Gγ)(gβ) by defining

∂β

(
f

h

)
=

h∂β(f)− f∂β(h)
h2

whenever f and h are coprime. It is easy to check that this is a well-defined deriva-
tion that extends the original derivation on k(Gγ)[gβ ]. To see that k is still the
field of constants, consider f 6= 0 and h 6= 0 coprime such that ∂β(f/h) = 0.
Without loss of generality, we may assume f is monic. Since ∂(f/h) = 0, we have
h∂(f) = f∂(h) and therefore, since f and h are coprime, we find that f |∂(f). But
since f is monic, ∂(f) has degree less than f , thus ∂(f) = 0 and so f ∈ k. But
∂(f) = 0 also implies that ∂(h) = 0 and consequently h ∈ k as well. So f/h ∈ k
and k is the field of constants of the derivation ∂β on k(Gβ). ¤

It is worthwhile to note that the derivation depended on the choice of G, as
well as the elements of K chosen for the application of the lemma and the order
in which these elements were chosen. These considerations indicate that there are
potentially many derivations on K which have k as the field of constants. However,
extensions of derivations are not quite so arbitrary. To help convince the reader of
this fact, we sketch a proof of a simple proposition that presents an explicit expres-
sion for the derivation of an element in terms of polynomials. As a straightforward
corollary, we conclude that there is a unique way to extend a derivation on a field
to an algebraic extension of the field.
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Proposition 6.7. Let K be a differential field and let a ∈ K be given. If P is a
polynomial over K such that P (a) = 0, then

∂(a) = −P ∂(a)
P ′(a)

.

Proof. If P = xn +
∑n−1

i=0 cix
i, then 0 = P (a) = ∂(P (a)). Rearranging the terms

of this last equation yields the desired expression. ¤

Corollary 6.8. Let K be differential field and let a be algebraic over K. Then
there is a unique way to extend the derivation on K to a derivation on K(a).

Proof. Let ∂ be extended to K(a) and let b ∈ K(a) be given. If P is the minimal
polynomial of b over K, then by the previous proposition

∂(b) = −P ∂(b)
P ′(b)

.

Since the term on the right is fixed regardless of how we extend ∂, it must be that
there is only one way to extend ∂ to K(a). ¤

Remark 6.9. The above proposition can be generalized to a ∈ Kn and polynomials
P ∈ K[x1, . . . , xn] such that P (a) = 0. In this case, we obtain that

P δ(a) = −
n∑

i=1

∂P

∂xi
(a)∂(ai).

In the case of fields, we have the powerful notion of being algebraically closed,
and we shall have the analogous notion of differentially closed in the case of dif-
ferential fields. First we construct the ring U{x} = U [x, ∂x, ∂2x, . . .] of differential
polynomials over U and endow it with a natural derivation extending the one on U .
We define ord(f), the order of f , to be the greatest n ≥ 0 for which ∂nx appears
in f with a nonzero coefficient.

Definition 6.10. A differentially closed field is a differential field U such that
given f, g ∈ U{x} with ord(f) > ord(g), there is an a ∈ U with f(a) = 0 and
g(a) 6= 0.

We first note that the notion of being differentially closed is expressible in the
language of differentially closed fields (via an infinite family of sentences). Further-
more, U{x} is automatically algebraically closed. Indeed, given f(x) ∈ U [x], we
may consider the polynomial f(∂(x)) ∈ U . Since f(∂(x)) has order 1, by differential
closedness there is an a ∈ U such that f(∂(a)) = 0, and thus ∂(a) is a root for our
original polynomial f ∈ U [x]. An easy consequence of the algebraic closedness of
U and Proposition 6.3 is that the field of constants of a differentially closed field is
also algebraically closed.

The richness of differentially closed fields ranks on par with that of algebraically
closed fields. There is a Basis Theorem (though not as general as Hilbert’s Basis
Theorem) and a Nullstellensatz. Additionally, for every differential field there is a
least differentially closed field containing it, called the differential closure. Lastly,
we mention that the theory of differentially closed fields (DCF) is ω-stable. With
these results in hand, we have the groundwork for developing a differential algebraic
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geometry. Indeed, many useful ideas from algebraic geometry and commutative
algebra transfer without much difficulty to the differential setting. As Pillay and
Ziegler [24] observed, even the concept of jet space possessed a useful analogue
in the differential setting, with the construction mimicking the one in the case of
algebraically closed fields.

Theorem 6.11. Every differential field U has an extension T which is differentially
closed.

Proof. see Lemma 2.2 of [17].

With this theorem in hand, we would like to define the differential closure of
a field U to be the least differentially closed field containing U . However, we cannot
at this point be certain that there is precisely one minimal differentially closed field
containing U . That result will follow from model theoretic considerations once we
have the following theorem:

Theorem 6.12. DCF is ℵ0-stable.

Proof. See Lemma 2.8 of [17].

Corollary 6.13. For every differential field U , there is least differentially closed
field T containing U . We call T the differential closure of U .

Proof. Due to the previous theorem and a standard result of Morley on ℵ0-stable
theories, there is an atomic prime model T of DCF over U . A prime model M over
A in a theory T is by definition a model M of T containing A as a substructure,
such that for any model N of T , if A ⊆ N then there is an elementary embedding
σ : M → N fixing A. Thus, T is differentially closed, being a model of DCF.
Furthermore, T is minimal among differentially closed fields containing A, and is
elementarily equivalent to every other minimal differentially closed field containing
A (such a field must be a prime model as well). By a standard result of Shelah on
ℵ0-stable theories, any two prime models over the same set are isomorphic. Thus
T is the sole minimal differentially closed field containing A (up to isomorphism).
Morley’s result also stated that T is atomic over U , that is every a ∈ T n realizes
an isolated ∂-type in ∂-Sn(U). For n = 1 this implies each a ∈ T must simultane-
ously satisfy all the polynomials in a differential ideal I of U{x} and a is the only
possible simultaneous solution for all the polynomials in I. As we shall see later,
this states that a is differentially algebraic over U . Thus, atomicity implies that
the differential closure T acts precisely as we would expect: it contains a nontrivial
root to every polynomial in U{x}. As we will see later, a concise way to state this
is T = ∂-acl(U). ¤

The next theorem is an important result from a model-theoretic perspective,
however we will omit the proof due to its technical nature. The interested reader
should consult Theorem 2.4 and Corollary 2.5 of [17].

Theorem 6.14. The theory DCF of differentially closed fields admits elimination
of quantifiers and is complete and model complete.

Elimination of quantifiers has significant repercussions on our model-theoretic
knowledge of the field of constants C. Namely, we have the following important
result:
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Theorem 6.15. Let U be a differentially closed field. Then the field of constants C
has no additional structure other than being an algebraically closed field. That is, a
subset of Cn is ∂-definable over U if and only if it is definable over C. Consequently,
C is strongly ∂-minimal.

Proof. We reproduce the proof of Corollary 1.10 of [35]. Let D ⊆ Cn be a ∂-
definable over U . Since DCF has quantifier elimination, it must be that D is defined
by a finite boolean combination of formulas fi = 0, where f ∈ U{x1, . . . , xn}. But
since D ⊆ Cn, fi(x1, . . . , xn, ∂x1, . . . , ∂xn, . . .) = fi(x1, . . . , xn, 0, . . . , 0, . . .) on D.
Taking f̄i = fi(x1, . . . , xn, 0, . . . , 0, . . .) we have that f̄i ∈ U [x1, . . . , xn]. Take D′

to be the definable subset of Un given by replacing the fi in the definition of D
with f̄i. Then D = D′ ∩ Cn. However, since U and C are models of the ℵ0-stable
theory ACF, we have that types are definable (Theorem 4.1). Therefore, since D′

is definable in K we must have D′ ∩ Cn = D definable in C.
This first part of the proof has shown that for the field of constants being strongly

∂-minimal is equivalent to being strongly minimal. But since C is algebraically
closed, by Theorem 5.2 we have that C is strongly minimal. ¤
Remark 6.16. This theorem will be of vital importance to us in the proof of the
Mordell-Lang conjecture. During the proof we will encounter algebraically closed
fields k < K. Since there are in general more ∂-definable sets than definable sets,
it will be advantageous for us to transfer the setting to differential fields by defining
an appropriate derivation ∂ on K. This way, interesting sets which previously may
not have been definable will turn out to be ∂-definable. However, to proceed with
this transformation, we must have some way to return to the setting of just alge-
braically closed fields and definability. Our tool for achieving this step will be the
above theorem: we will reveal that our “useful” sets are ∂-definable over the field of
constants, whereby they will be definable over the field of constants.

We now quickly mention the interpretations of some model-theoretic concepts
in the setting of differential fields. In algebraically closed fields we have that
MR(tp(a/K)) is the transcendence degree of K(a) over K. Similarly, it is easy
to deduce that the differential Morley rank ∂MR(∂-tp(a/U)) is the transcendence
degree of the field of fractions of U{a} over U . We always have MR(tp(a/U)) ≤
∂MR(tp(a/U)) because a set is definable only if it is ∂-definable.

For any subset A ⊆ U we define I∂(A) = {P ∈ U{x} |P (a, ∂a, ∂2a, . . .) = 0}.
We will always have that I∂(A) is a differential ideal. Given a subset S ⊆ K,
∂-acl(S) is the set of all elements of K which are differentially algebraic over (the
differential field generated by) S. Assume S is a differential subfield of K. Then
a is differentially algebraic over S if and only if I∂({a}) ∩ S{x} is nontrivial.
Elements a1, . . . , am ∈ K are differentially algebraically independent over
S if I∂({a1, . . . , an}) ∩ S{x1, . . . , xn} = {0}. Otherwise, they are differentially
algebraically dependent.

Just as in the case of algebraically closed fields, we have the concepts of a variety,
a “Zariski” topology, and a jet space. Furthermore, the derivation will allow us to
obtain an alternate formulation of tangent spaces (one would naturally expect that
tangency has a connection to the derivative). By modification of the concept of
a tangent space, we will obtain the fruitful concepts of a prolongation space and
differential jet space; the rest of the section will be devoted to developing these
concepts.
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Definition 6.17. An (affine) differential algebraic variety V ⊆ Un is the set
of simultaneous zeros for the differential polynomials in a subset I of U{x1, . . . , xn}.

Each such set I of differential polynomials has a corresponding affine differ-
ential algebraic variety V ∂(I) which contains all the simultaneous zeros. As with
algebraic varieties, we will have that I∂(V ) satisfies V = V ∂(I∂(V )) for every
differential algebraic variety V .

Remark 6.18. If V ⊆ Un is an affine algebraic variety, then we will continue to
use I(V ) to denote the appropriate ideal of U [x1, . . . , xn], and use I∂(V ) to denote
the differential ideal in U{x1, . . . , xn}. Note that generators for the algebraic ideal
I(V ) will generate the differential ideal I∂(V ).

As in the algebraic fields case, if we define differential algebraic varieties to
be basic closed sets we yield a topology on Un known as the ∂-topology or the
Kolchin topology. The Kolchin topology represents a Zariski-like topology on Un

and many of the properties of the Zariski topology transfer over. Most importantly
we have the two following facts:

Theorem 6.19 (Differential Basis Theorem). The Kolchin topology is Noetherian.
That is, there are no infinite descending chains of Kolchin closed sets in Kn.

Theorem 6.20 (Kolchin’s Irreducibility Theorem). If V ⊆ Un is an irreducible
affine algebraic variety then it is irreducible in the Kolchin topology.

Proofs of these theorems can be found in [14] and [17]. Since the Zariski ge-
ometry is coarser than the Kolchin topology, one would probably expect that some
Zariski irreducible sets are not Kolchin irreducible. However, the last theorem in-
dicates that the extra closed sets in the Kolchin topology are added in a way that
does not tamper with irreducibility considerations. This theorem evidences the
deeper interactions between Zariski and Kolchin topologies which will be of use to
us.

Before defining the concepts of differential tangent space and prolongation space,
we will need the following technical lemma, which will be central for our analysis
of the (∂-)definability of those spaces.

Lemma 6.21. Let V ⊆ Un be a differential variety and let I ′ ⊆ I(V ) generate the
ideal I(V ). Suppose F : U [x1, . . . , xn] → U [x1, . . . , xn] is an additive map which
also satisfies

F (QP )(a) = Q(a) · F (P )(a)

for all P ∈ I, Q ∈ U [x1, . . . , xn] and a ∈ V .
Then for each u ∈ Un, u satisfies

(6.1)
n∑

i=1

∂P

∂xi
(a)ui + F (P )(a) = 0.

for all P ∈ I(V ) and all a ∈ V if and only if u satisfies the above equation for all
P ∈ I ′ and all a ∈ V .
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Proof. Since F and ∂/∂xi for each i are additive maps, we are reduced to showing
that if u satisfies 6.1 for a polynomial P ∈ I(V ), then it will satisfy the correspond-
ing equation for QP for any Q ∈ U [x1, . . . , xn]. Once we have shown this, both
directions of the implication are proven since I ′ ⊆ I(V ) and I ′ generates I(V ). But
equation 6.1 for QP is proven easily via the following simplification: for each a ∈ V

n∑

i=1

∂(QP )
∂xi

(a)ui + F (QP )(a) =
n∑

i=1

(Q(a)
∂P

∂xi
(a)ui + P (a)

∂Q

∂xi
(a)ui) + F (QP )(a)

= Q(a)

(
n∑

i=1

∂P

∂xi
(a)ui

)
+ F (QP )(a)

= Q(a)

(
n∑

i=1

∂P

∂xi
(a)ui + F (P )(a)

)

¤

Let V be an irreducible affine algebraic variety and fix a ∈ V . We propose
the following alternate definition of Ta(V ), the tangent space of V at a:

Ta(V ) = {u ∈ Un |
n∑

i=1

∂P

∂xi
(a)ui = 0 ∀P ∈ I(V )}.

It is shown on page 59 of [17] that the space defined above is the tangent space
Ta(V ). This can be done by showing that the above definition is isomorphic to
the first jet space (exhibited in the proof of Proposition 5.3) which in turn is iso-
morphic to the tangent space (appeared in the Foundational Algebraic Geometry
section near the beginning of the discussion on jet spaces). Thus, we have this new
description of the tangent space to a variety using the language of differential fields.
Since I(V ) is finitely generated, we may use Lemma 6.21 (with F just being the
zero map) to conclude that Ta(V ) can be equivalently defined using just a finite
set of polynomials which generate I(V ). Clearly then, the tangent space Ta(V ) is a
∂-definable affine differential algebraic variety. Actually, one can bypass the usage
of the symbol ∂ and define the polynomials ∂P

∂xi
in terms of the polynomials P and

thus obtain that the tangent space is a definable affine algebraic variety. Further-
more, we now have a simple way to consider all the tangents spaces simultaneously
in the form of a tangent bundle.

Definition 6.22. Given an irreducible affine algebraic variety V we define the
tangent bundle to be:

T (V ) = {(a, u) ∈ U2n | a ∈ V,

n∑

i=1

∂P

∂xi
(a)ui = 0 ∀P ∈ I(V )}.

We can easily see that the tangent bundle also is a definable affine algebraic
variety. A slight variation on the definitions of tangent spaces yields the notion of
the valuable concept of a prolongation of a variety.
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Definition 6.23. The prolongation of a variety V is

τ(V ) = {(a, u) ∈ U2n | a ∈ V,

n∑

i=1

∂P

∂xi
(a)ui + P ∂(a) = 0 ∀P ∈ I(V )}.

The prolongation of a variety V at a point a ∈ V is the set:

τa(V ) = {u ∈ Un | (a, u) ∈ τ(V )}.

Since (QP )∂ = Q∂P + QP ∂ , we have that F : P → P ∂ meets the requirements
for Lemma 6.21. Thus, it is equivalent to define τ(V ) simply using polynomials
from a finite generating set for I(V ). As with T (V ), this has shown that τ(V ) is a
∂-definable differential variety. Again, we may formally define ∂P

∂xi
and P ∂ in terms

of P without the use of the symbol ∂ and thus see that τ(V ) is simply a definable
algebraic variety. Similarly, τa(V ) is a definable algebraic variety for every a ∈ V .
The prolongation and the tangent bundle are intimately related: if V is defined
over C then P δ = 0 for every P ∈ I(V ) and thus τ(V ) = T (V ). Even if V is not
definable over the field of constants, we still have a strong relationship between the
two spaces. Namely, the map (a, u) 7→ (a, u + ∂(a)) is a ∂-definable isomorphism
between T (V ) and τ(V ). The key step in proving that this map is an isomorphism
is given to us by Remark 6.9. When the map is restricted to those elements of
T (V ) whose first coordinate is a, we obtain a ∂-definable isomorphism between
Ta(V ) and τa(V ).

There are natural maps π : τ(V ) → V and t : T (V ) → V given by projection
onto the first n coordinates. These maps have natural sections ∇ : V → τ(V ) and
z : V → T (V ), respectively, so that π ◦ ∇ = idV = t ◦ z. The map ∇ is given by
∇(a) = (a, ∂(a)) (we have that ∇ maps into τ(V ) by another application of Remark
6.9). The zero map z(a) = (a, 0) gives a section for the tangent space projection.

We will not go into full detail here, but we can consider both T and τ as functors
from the category of irreducible affine varieties with morphisms to itself. For a more
detailed proof of this fact, consult [18]. We will just mention that if V ⊆ Un and
W ⊆ Um are affine varieties and φ = (φ1, . . . , φm) is a morphism from V to W ,
then we may define T (φ) : T (V ) → T (W ) and τ(φ) : τ(V ) → τ(W ) as follows:

T (φ)(a, u) = (φ(a), dφa(u))

τ(φ)(a, u) = (φ(a), dφa(u) + φ∂(a)),

where

dφa(u) =

(
n∑

i=1

∂φ1(a)
∂xi

ui, . . . ,

n∑

i=1

∂φm(a)
∂xi

ui

)

and φ∂(a) = (φ∂
1 (a), . . . , φ∂

m(a)).
We now will restrict our considerations of tangent spaces and prolongation spaces

to those of algebraic groups. If G is an algebraic group with morphisms m and ι
giving multiplication and inverse, respectively, then T (G) is an algebraic group
with multiplication given by T (m) and inversion given by T (ι). Similarly τ(G) is
an algebraic group with multiplication given by τ(m) and inversion given by τ(ι).
To see this, simply apply the functors T and τ to the appropriate commutative
diagrams.
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Consider the case when π has an additional ∂-definable section j; then it is
of interest to determine the set where j and ∇ agree. Define a homomorphism
φ : τ(X) → kerπ by φ(x) = x− j(π(x)), and define ψj : X → kerπ to be φ ◦ ∇. As
∇ is a section for π we see that ψj(x) = ∇(x)− j(x) and so ker ψj is precisely the
set of a ∈ X for which j(a) = ∇(a).

Lemma 6.24. Ker ψj is Zariski dense in X.

Proof. This proof requires alternate formulation of DCF provided by Pierce and
Pillay [21]. Namely, a field U is differentially closed if and only if for every algebraic
variety V defined over U and every ∂-definable W ⊆ τ(V ), if W projects generically
onto V then there is a ∈ V such that ∇(a) ∈ W .

Now we proceed with proving density. Let Y ⊆ X be Zariski open in X and
consider the ∂-definable set j(Y ) ⊆ τ(X). Then π projects j(Y ) generically onto
Y since j is a section of π. By the above characterization, there is an a ∈ Y such
that ∇(a) ∈ j(Y ). So ∇(a) = j(b) for some b ∈ Y . But since ∇ is also a section of
π, we see that a = b, and thus a ∈ kerψj . ¤

In general, we will not have an additional ∂-definable section j of π, however,
using abelian varieties, we will be able to determine a class of varieties for which
such sections must exist. Recall that if A is an abelian variety, then τ(A) is an
algebraic group. The section ∇ : τ(A) → A is definable if A is defined over C, the
field of constants. Otherwise, it is generally just ∂-definable. Our goal is to find an
extension A′ of A such that π : A′ → τ(A′) has a definable section j. We acquire
such a group extension A′ by considering objects known as vector group extensions.

Definition 6.25. A vector group is a group G which is the additive group of a
vector space. Given an algebraic group G, H is an extension of G by a vector
group if there is a surjective homomorphism p : H → G such that ker(p) is iso-
morphic to a vector group.

Examples of extensions of G by vector groups are T (G) with the homomorphism
t and τ(G) with the homomorphism π.

For our discussion, we will need the following result on vector group extensions
of abelian varieties due to Rosenlicht [26].

Theorem 6.26. There exists an extension Â of A by a vector group with surjective
homomorphism p : Â → A satisfying the following universal mapping property:
If q : B → A is an extension of A by a vector group, then there is a unique
homomorphism j : Â → B such that p = q ◦ j.

Definition 6.27. The algebraic group Â described in the previous theorem is
known as the universal extension of A by a vector group.

From the universal mapping property, it is clear that Â is unique up to iso-
morphism. Furthermore, it is proven in [26] that if A has dimension d then Â has
dimension 2d.

Consider the prolongation π̂ : τ(Â) → Â. We have a section for π̂, namely the
corresponding ∇̂ : Â → τ(Â), but as was mentioned earlier ∇̂ is ∂-definable. It
is not immediately obvious that π̂ has a definable section, however, the universal
mapping property of Â and p will yield our desired definable section j : Â → τ(Â).
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For any algebraic group G, it is clear that π : τ(G) → G and t : T (G) → G are
extensions of G by vector groups. Consequently p ◦ π̂ : τ(Â) → A is an extension
of A by a vector group. By the universal mapping property of Â, there is a unique
homomorphism j : Â → τ(Â) such that p = (p ◦ π̂) ◦ j. But since p◦ id= p as well,
we have that id = π̂ ◦ j by the universal mapping property of p. Thus j is a section
of π̂ and this construction has shown that j is definable.

These mappings and algebraic groups will be the basis of our construction of
the Manin Kernel in Step 3 of the proof of the Mordell-Lang conjecture. We now
switch directions to develop the theory of differential jet spaces.

Given an irreducible affine algebraic variety X in our differentially closed field
U we would like a concept of jet space which reflects the differential nature of
the field. We already constructed JM

a (X), the algebraic jet space of X at a point
a ∈ X, however this vector space is unsatisfactory since it lacks compatibility with
the derivation ∂. Instead, we will restrict ourselves to a Zariski dense subspace
which we will be able to describe after the next series of definitions.

Remark 6.28. To simplify the proofs of certain facts (and to utilize results from our
discussion on prolongation spaces), we will assume that X is an algebraic group,
however we note that the construction of differential jet spaces works for arbitrary
X.

Let s1, . . . , sn be polynomials in U [x] and let s = (s1, . . . , sn). We may consider
s as a mapping from X to Un and examine the set X]

s = {x ∈ X | s(x) = ∂(x)}.
Proposition 6.29. X]

s is an algebraic variety over U .

Proof. For each a ∈ X]
s, each m ≥ 2, and each 1 ≤ j ≤ n, ∂m(aj) = ∂m−1(sj(aj)).

This is the m− 1st derivation of a polynomial evaluated at aj ; consequently it is of
the form y +

∑r
i=1 cia

i−1
j ∂(aj) for some r ≥ 0 and y, ci ∈ U . Since ∂(aj) = sj(aj),

we have that ∂m(aj) is simply a polynomial in U [x] evaluated at aj . Thus, in
each coordinate, ∂m(a) is just an evaluation of a polynomial at a. Consequently,
given any differential polynomial P in U{x1, . . . , xn}, we are able to obtain a poly-
nomial P ] ∈ U [x1, . . . , xn] such that P ](a) = P (a) for all a ∈ X]

s. P ] is simply
constructed by resolving occurrences of ∂ with s in the manner described above.
As a result, we have a definite way for constructing P ] from P such that P 7→ P ]

defines a ring homomorphism from U{x1, . . . , xn} to U [x1, . . . , xn]. Consequently
I = {P ] | P ∈ I∂(X)} is an ideal in U [x1, . . . , xn] and X]

s = V (I). ¤

Proposition 6.30. If (a, s(a)) ∈ τ(X) for every a ∈ X, then X]
s is Zariski dense

in X.

Proof. The map j : X → τ(X) given by j(a) = (a, s(a)) is a section of π. Thus
kerψj is dense in X by Lemma 6.24, and it is clear that kerψj is simply X]

s. ¤

Remark 6.31. From this point forth, we will assume that s and X satisfy the hy-
pothesis of the previous proposition.
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In order to properly develop the concept of differential jet spaces, we need the
notion of a ∂-module, which can be thought of as a differential analogue to a vector
space.

Definition 6.32. A ∂-module over U is a finite-dimensional vector space V over
U equipped with an additive endomorphism DV such that for all c ∈ U and v ∈ V ,

DV (cv) = ∂(c)v + cDV (v).

Given two ∂-modules (V, DV ), (W,DW ) over U , a ∂-module homomorphism is
a linear transformation f : V → W such that f(DV (v)) = DW (f(v)) for every
v ∈ V . Together, these definitions yield the category U [∂] of ∂-modules over U .

A useful example of a ∂-module is illustrated in the next proposition.

Proposition 6.33. For any point a ∈ X and all m ≥ 1, Ma(X)/Mm+1
a (X) is a

∂-module.

Proof. We have a derivation D on U [x1, . . . , xn] given by:

Df =
n∑

i=1

∂f

∂xi
si + f∂ .

Since (a, s(a)) ∈ τ(X) for every a ∈ X, we have Df(a) = 0 for every f ∈ I(X) and
every a ∈ X, i.e. Df ∈ I(X). Thus D naturally becomes a derivation on U [X] =
U [x1, . . . , xn]/I(X). Indeed, if f − g ∈ I(X), then Df −Dg = D(f − g) ∈ I(X).
Under the derivation D, Mm

a (X) is a differential ideal of U [X] for every a ∈ X and
every m ≥ 1. Consequently, the derivation D can be extended to Ma(X)/Mm

a (X)
for every m ≥ 2 yielding a ∂-module structure on this finite-dimensional vector
space. ¤

A vector space over a field F is a module which respects the field structure
of F as the set of scalars. Analogously, a ∂-module over a differential field F is a
module which respects the differential field structure of F as the set of scalars. Re-
calling the construction of algebraic jet spaces over F , the mth jet space of X at the
point a was defined to be Hom(Ma(X)/Mm+1

a (X), F ) in the category of F -vector
spaces. Extrapolating to the differential case yields the following definition:

Definition 6.34. Given an irreducible differential variety X over the differential
field U and a point a ∈ X, we define the mth differential jet space of X at a to
be

HomU [∂](Ma(X)/Mm+1
a (X), U)

the set of all ∂-module homomorphisms from Ma(X)/Mm+1
a (X) to U .

From this definition we see that the mth differential jet space of X at a is the
set of all f ∈ Jm

a (X) which commute with the derivations, i.e. f(D(v)) = ∂(f(v))
for all v ∈ Ma(X)/Mm+1

a (X). What is not immediate is that the differential jet
space has a more explicit form. As we will show, the differential jet space is an
algebraic jet space; in particular,

Jm
a (X]

s) = HomU [∂](Ma(X)/Mm+1
a (X), U).

Prove Lemma 2.2 and indicate the consequences of this theorem for Jm
a (X]) and

Jm
a (X). Prove Lemma 2.4.
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Much of the discussion on the model theoretic properties of DCF derived from
the expositions in [17] and [35]. The discussion on tangent spaces and prolongations
is sampled from [18]. Lastly, the discussion on differential jet spaces comes from
[24].

7. Proof for Characteristic Zero

7.1. Overview. In this section, we pull together all the ideas from the previous
chapters to provide a proof of the Mordell-Lang Conjecture for function fields of
characteristic zero. The theorem we present will not be as general as the original
proof of Hrushovski–his result holds for all characteristics and for semi-abelian
varieties (as opposed to the abelian varieties in our proof). His proof also works
for groups Γ of finite rational rank (a group has finite rational rank if there is a
finitely-generated subgroup Γ0 of Γ such that for every nonzero γ ∈ Γ there is an
n such that nγ ∈ Γ0 and nγ 6= 0. This is not related to the Morley rank). We
shall content ourselves with Γ that are just finitely-generated. The jet-spaces proof
of Pillay and Ziegler also works in full generality (semi-abelian varieties and finite
rational rank groups) in characteristic zero, and for abelian varieties and finite
rational rank groups in positive characteristic. For a complete exposition on these
general proofs, the reader is advised to consult [11] for Hrushovski’s proof and [24]
for Pillay and Ziegler’s result.

We chose a restricted statement of the theorem so that the entire exposition
could be streamlined. We felt that the complications encountered when handling
semi-abelian varieties, finite rank groups, and a positive characteristic would break
the flow of the exposition. Thus, to convey the general techniques more clearly,
we elided the full generality. Our main theorem (which implies the Mordell-Lang
conjecture) is the following:

Theorem 7.1. Let k < K be algebraically closed fields of characteristic zero. Let
A be an abelian variety defined over K and let X be an irreducible subvariety of A
defined over K as well. Let Γ be a finitely-generated rank subgroup of A(K) and
suppose that X ∩ Γ is Zariski dense in X. THEN there is an γ ∈ Γ, an abelian
subvariety B of A containing γ+X, an abelian variety A′ defined over k, an subva-
riety X ′ of A′ defined over k, and a rational homomorphism f from B to A′ defined
over k such that γ + X = f−1(X ′).

This theorem is usually what is known as the “relative form of the Mordell-Lang
conjecture.” It is reduction result, in that it allows us to reduce the problem from
objects definable over K to objects defined over the subfield k. In particular then,
we are always able to reduce the problem to the least possible algebraically closed
subfield k, which will be a number field. Since Faltings [8] proved the Mordell-Lang
conjecture for number fields, the Mordell-Lang Conjecture is proven for all fields of
characteristic zero.

Beyond having the reduction, the above theorem allows us to prove the Mordell-
Lang conjecture in the special case when A has K/k image 0.

Definition 7.2. Given an abelian variety A defined over K, the K/k image of
A is an abelian variety A′ defined over k with the following universal mapping
property: there is a surjective homomorphism π : A → A′ and for any surjective
homomorphism π′ : A → B into an abelian variety B defined over k, there is a
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unique morphism f : A′ → B such that π′ = f ◦ π.

The K/k image always exists (see [15]), and from the universal mapping prop-
erty it is apparent that the K/k image of A is unique up to isomorphism. It can
be thought of as the largest quotient of A defined over k. With this definition in
hand, we may now proceed with the proof of the special case of the Mordell-Lang
Conjecture.

Corollary 7.3 (Mordell-Lang Conjecture). Let k < K be algebraically closed fields
of characteristic zero, A be an abelian variety defined over K with K/k image 0, X
a subvariety of A defined over K, and Γ a finitely-generated subgroup of A. Then
there are γ1, . . . , γm ∈ Γ, abelian subvarieties B1, . . . , Bn of A such that γi+Bi ⊆ X
for each 1 ≤ i ≤ m and

X(K) ∩ Γ =
m⋃

i=1

γi + (Bi(K) ∩ Γ).

Proof. Let W1, . . . , Wn be the unique decomposition of Z = X ∩ Γ into irreducible
varieties (per Theorem 3.7). As each Wi is irreducible, Wi ∩ Γ is dense in Wi.
Indeed, we have

Z = Z ∩ Γ =
n⋃

i=1

Wi ∩ Γ.

Thus for each i, we have Wi = Wi ∩ Γ ∪ (Wi ∩
⋃

j 6=i Wj ∩ Γ). By irreducibility of
Wi, either Wi = Wi∩

⋃
j 6=i Wj ∩ Γ or Wi = Wi ∩ Γ. The former cannot be the case,

since it implies Wi ⊆
⋃

j 6=i Wj which is a contradiction to the choice of the W ’s in
the decomposition. Therefore we have Wi = Wi ∩ Γ for every 1 ≤ i ≤ n.

Since Z is definable over K, each Wi is definable over K (this falls out from the
proof of Theorem 3.7). Thus, we may apply Theorem 7.1 for each Wi in the role
of X to choose γi ∈ Γ, varieties W ′

i defined over k, and rational homomorphisms fi

such that Wi = γi + f−1(W ′
i ). Label the variety f−1(W ′

i ) by Bi for each i. Thus,
Z = ∪n

i=1γi + Bi and so

X(K) ∩ Γ = Z(K) ∩ Γ =
n⋃

i=1

γi + (Bi(K) ∩ Γ).

¤

The proof of Theorem 7.1 will occur in 8 steps:
Step 1: Reduce to the case where X has finite stabilizer in A.
Step 2: Transfer the problem to the context of differentially closed fields by

replacing K with a differentially closed field L and replacing k with the field
of constants of L. Furthermore, we will require L to be an ℵ0-saturated
model of DCF.

Step 3: Enlarge Γ to a finite Morley ∂-rank algebraic subgroup H of A.
Step 4: Choose a generic element a ∈ X ∩H.
Step 5: Show that p = tp(a/K) is internal to k.
Step 6: Prove that the set of realizations of p generates a connected definable

subgroup H1 of H and call A1 the closure of H1. A1 is an abelian subvariety
of A.
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Step 7: Using internality, choose a commutative algebraic group A2 defined
over k and a ∂-definable isomorphism f : H2 → H1, where H2 = A2(k).

Step 8: Extend f to a rational homomorphism F : A2 → A1 and show that
F is in fact an isomorphism.

Of course, in steps 1, 2 and 3, we must show that a proof of the Mordell-Lang
conjecture in these stronger settings implies that Mordell-Lang conjecture holds in
the original, weaker setting.

I would like to thank Javier Moreno for providing me an initial version of the
above outline. During my early investigations into the proof, it was an invaluable
beacon, and I hope that it will serve to guide the reader equally well.

7.2. Step 1. Assume Theorem 7.1 holds when X has finite stabilizer. Let arbitrary
X, A and Γ be given per the hypotheses of Theorem 7.1. Let StabX = {a ∈
A | a + X = X}. StabX is a subgroup of A, furthermore it is definable in terms
of X and A, both of which are definable over K. Thus StabX is definable over
K, so by Theorem 5.4, StabX is an algebraic subgroup of A. By Proposition 3.24,
there is a connected algebraic subgroup S of StabX , which is also complete by
Proposition 3.22, and thus an abelian variety. Consequently we may consider the
quotient abelian variety A1 = A/S and the canonical projection π : A → A1. Call
the image of X under π, X1, and label the image of Γ by Γ1 . StabX1 is finite since
S had finite index and furthermore X1 ∩ Γ1 is dense in X1. Is X1 ∩ Γ1 dense in
X1? Consequently we may apply Theorem 7.1 to A1, X1 and Γ1 which yields an
abelian variety

7.3. Step 2. Let ∂ be a derivation on K such that k is the field of constants (such
a derivation exists by Theorem 6.6). Let L be the differential closure of K, which
is guaranteed to exist by Corollary 6.13. Since k is algebraically closed, k must be
the field of constants of L by Proposition 6.3. Consequently, k is definable in L.
Examining the statement of the Mordell-Lang conjecture, we see that A and X will
be defined over L, and that Γ will be a subgroup of A(L) = A(K). Furthermore,
there is no alteration to the conclusion of the conjecture. Thus, enlarging K to a
larger field such as L does not cause a loss in generality.

We would now like to further reduce the problem to the case where L is an ℵ0-
saturated model of DCF. Let L′ be an ℵ0-saturated model of DCF elementarily
extending L. Then L′ has a field of constants k′ and k′ ⊇ k. Assuming we have
proven the Mordell-Lang conjecture for L′, k′, A, X, Γ, we may choose a ∈ A; an
abelian subvariety B′ of A defined over L′ containing a + X, and an isomorphism
f ′ of B′ with an abelian variety A′ defined over k′ such that f ′(a + X) is defined
over k′. Thus, B′ is a definable subset of A; B′ and A′ are abelian varieties (a
first-order object in the language of ACF); f ′ and f ′(a + X) are definable over k′,
a definable subset of L′; and f ′ is an isomorphism (a first order property). Thus,
the statement of Mordell-Lang is a first order existential formula in the language of
DCF with the parameters A,X, and Γ. If Mordell-Lang is satisfied by the model
L′ of DCF then since L is an elementary submodel, we have that Mordell-Lang
holds for L, k, A,X, Γ.

Thus we have shown that without loss of generality, we may assume that K is
an ℵ0-saturated model of DCF with field of constants k.

7.4. Step 3. At this point, it would be ideal if Γ ⊆ A ⊆ Kn were a group of finite
Morley ∂-rank; unfortunately, it may be the case that Γ is not ∂-definable and hence
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has no Morley ∂-rank. However, this scenario is the only possibility for failure,
i.e. if Γ is ∂-definable then its Morley ∂-rank must be finite. Indeed, regardless
of the ∂-definability of Γ, we will always be able to find a ∂-definable group H
containing Γ which will have finite Morley ∂-rank. Thus, if Γ were ∂-definable,
then by monotonicity of the rank, Γ would also have finite ∂-rank. Consequently,
the case when Γ is not ∂-definable is the only time when we will actually need to
replace Γ with the larger group H. To find such ∂-definable group H containing Γ
we consider a structure known as the Manin kernel. In this construction, we will
work specifically with the abelian variety A and its subgroups, however many parts
of the construction work in greater generality. The interested reader is advised to
consult [18] for a detailed exposition of the Manin kernel.

Before developing the tools necessary to construct the Manin kernel, we quickly
remark that replacing Γ does not lead to any loss of generality. Indeed, let us
assume that Γ ≤ H ≤ A as groups and the Mordell-Lang conjecture holds for
K, k, X, A and H. If Γ ∩ X is dense in X then trivially H ∩ X is dense in X.
Thus, the hypothesis of Mordell-Lang for K, k, X,A and Γ implies the hypothesis
for K, k,X, A and H and thus also yields its conclusion.

Recall the setup constructed in the chapter on differentially closed fields. We
are given the abelian variety A (defined over K), the universal extension Â of A by
a vector group, as well as the surjective homomorphism p : Â → A. We are also
given a homomorphism π̂ from the prolongation τ(Â) of Â to Â. This map has a
definable section j : Â → τ(Â). We also have the ∂-definable section ∇̂ for π̂. Thus
we may consider ψ = ψj : Â → τ(Â) whose kernel is the points of Â on which j

and ∇̂ agree. Lemma 6.24 indicates that kerψ is dense in Â.
Consider the group G = kerπ̂/ψ(ker(p)). Since t(Â) is an extension of Â by a

vector group, we have that kerπ̂ is a vector space, specifically it will be a k-vector
space. Similarly, since Â is a vector group extension of A, we have that kerp is a
vector space, and thus ψ is also a vector space. Particularly, ψ(ker(p)) contains
the infinite set Z and thus by the strong minimality of the field of constants k (c.f.
Theorem 6.15), ψ(ker(p)) contains k is a k-vector space. Therefore, G is a quotient
of k-vector spaces and has the structure of a k-vector space as well.

We would now like to construct a ∂-definable homomorphism µ : A → G. We
already have the homomorphisms p : Â → A and ψ : Â → kerπ̂, and there is a
natural quotient homomorphism q : kerπ̂ → G = kerπ̂/ψ(kerp).

Definition 7.4. The homomorphism µ : A → G is defined for each a ∈ A by
µ(a) ∈ (q ◦ ψ)(p−1(a)).

We first remark that µ is well-defined, that is, for every a ∈ A, (q ◦ ψ)(p−1(a))
is a singleton. Indeed, if b, c ∈ Â and p(b) = p(c) then b − c ∈ kerp and so
ψ(b − c) ∈ ψ(kerp). But since ψ is a homomorphism, ψ(b − c) = ψ(b) − ψ(c) and
so q ◦ ψ(b) = q ◦ ψ(c), whence we have our desired result. We also can see that
µ is surjective. From this analysis we are able to conclude that G has the further
structure of an algebraic group due to the following theorem of Cassidy [5]:

Theorem 7.5. If A is an algebraic vector group and µ : A → G is a surjective
∂-definable group homomorphism, then G is ∂-definably isomorphic to an algebraic
vector group.
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An interesting and important question to ask is what the kernel of µ could
be. As we will see in the next theorem, the kernel has a very desirable form.

Theorem 7.6. Let Tor(A) denote the torsion points of the group structure on A.
Let A] be the Kolchin closure of Tor(A). Then if A has Morley rank d, A] has
Morley ∂-rank 2d. Furthermore, kerµ = A].

Proof. ¤

Now that we have the ∂-definable (over K) k-vector space G and ∂-definable
(over K) homomorphism µ, we are able to construct our finite Morley ∂-rank group
H containing Γ.

Theorem 7.7. Let Γ0 be a finitely generated subgroup of an abelian variety A. Then
there is a finite ∂-dimensional algebraic subgroup H containing Γ0. Furthermore,
H ⊇ {a ∈ A | ∃m ≥ 0 ma ∈ Γ0}.
Proof. Let γ1, . . . , γn generate Γ0. Let G0 ⊆ G be the vector space generated
by µ(γ1), . . . , µ(γn) and consider the ∂-definable algebraic group H = µ−1(G0).
Given an a ∈ A, if there is an m such that ma ∈ Γ0, then ma =

∑n
i=1 siγi for

some si ∈ Z. Thus, µ(a) = 1
m

∑n
i=1 siµ(γi) and µ(a) ∈ G0. Hence, H contains

{a ∈ A | ∃m ≥ 0 ma ∈ Γ0}.
H is finite ∂-dimensional since

∂MR(H) ≤ ∂MR(µ(H)) + ∂MR(ker(µ))

= ∂MR(G0) + ∂MR(A])
= n + 2d,

where the pertinent information on ker(µ) is provided in Theorem 7.6. ¤

Thus, if we take Γ0 to be a finitely-generated group witnessing Γ’s finite ra-
tional rank, by the last sentence of the previous theorem we have that H will also
contain Γ.

7.5. Step 4. Since H is an algebraic group and X is closed
Remark 1.54 (b) of Pillay lecture notes gives the existence of a unique ∂-generic

point, which will have maximal rank.

7.6. Step 5. For this section, let K ′ be a proper differential subfield of K.

Theorem 7.8. Suppose tp(a/K ′) has finite Morley ∂-rank. Let b be a tuple such
that tp(a/K ′b) is stationary. Let c = Cb(tp(a/K ′b)). Then tp(c/K ′a) is internal
to k, the field of constants.

Proof. Pillay Ziegler

Corollary 7.9. Let G be a connected finite-∂-dimensional K ′-definable differential
algebraic group. Let a ∈ G be given with p = tp(a/K ′) stationary. Let H < G be
the left-stabilizer of p. Then tp(Ha/K ′) is internal to k, the field of constants.

Proof. Pillay Ziegler

7.7. Step 6. Zilber’s Indecomposables Theorem (see Poizat’s Stable Groups book)
[25]
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7.8. Step 7. Since ∂-definable over k (the field of constants) is the same as definable
over k (by Theorem 6.15), we are allowed to use Weil’s theorem to construct our
connected algebraic group and homomorphism defined over k. (commutativity of
the group follows from the fact that its preimage in A must be commutative, being
a subgroup of the abelian group A). This is all Corollary 1.11 part 1) in Wood.

We now employ the following theorem of A. Weil [31]:

Theorem 7.10 (Weil). Let V be an irreducible variety defined over a field F . Let
f : V × V → V be a rational function defined over F which satisfies the following
two properties:

(1) For any x, y ∈ V generic and independent over F , F (x, y) = F (x, f(x, y)) =
F (y, f(x, y)).

(2) For any x, y, z ∈ V generic and independent over F , f(f(x, y), z) = f(x, f(y, z)).
Then there is a connected algebraic group H defined over F , and a birational iso-
morphism h from V to H defined over F , such that for all x, y ∈ V generic and
independent over F , h(f(x, y)) = h(x) · h(y).

So we obtain our connected commutative algebraic group defined over k, the
field of constants. Its preimage must also be a connected algebraic group, and thus
an abelian variety by Proposition 3.22.

7.9. Step 8. Extend naturally using Noetherianness of the Zariski topology.
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