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The Debye’S Potentials Utilization in the
Three-Dimensional Problems of the Radiation and
Propagation of the Elastic Waves
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Abstract Are studied internal and external tasks of radiation of a sound by the elastic bodies, exciting by the harmonic
point source, imitating turbulent pulsation of a flow ofa liquid. The angular characteristics of radiation of ahollow spheroidal
shell are calculated. The characteristic equations of the axial three-dimensional flexural waves in the hollow cylindrical shell
and cylindrical bar are received with the help of Debye’s potentials. The phase velocities of the various forms of these waves

for shells and for cylindrical bar are calculated.
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1. Introduction

At study of the three-dimensional characteristics of
radiation of a sound by the elastic shells and bars exciting by
the turbulent pulsation ofa flow ofa liquid and calculation of
the phase velocities of the axial flexural waves in such
bodies at such excitation it is necessary to use an artificial
way of division variable in Helmholtz vector equation for a

vector function 4 - to present her through Debye’s
potentials or “such as Debye’s” potentials.

2. The Radiation of a Sound by the
Cylindrical and Spheroidal Shells,
Exciting by the Turbulent Pulsation of
a Flow of a Liquid

Firstly we will consider a physical model of radiation of a
sound by a cylindrical pipe (an internal task) and spheroidal
shell (an external task), which is raised by turbulent
pulsations of a liquid flow.

In a monograph[l], devoted to the studying of the
hydrodynamic sources of a sound, it is noted that for the
range of problems regarding the radiations of a sound
effected by turbulent pulsations of a liquid flow, the
calculation, based on the concentrated force, caused by this
pulsation, gives rise to certain interest.. The similar physical
model is used in a present article. Such approach is based on
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the earlier obtained results in the course of authors’ research
of the three-dimensional problems of diffraction and
radiation of a sound by the elastic bodies of cylindrical and
spheroidal forms[2 - 5].

Let’s turn to an internal task for the consideration of: the

harmonic point source Q(b,@,,z,) of frequency o, that
imitate turbulent pulsation, is found on the interior of the
shell (r, =b), but the point of observation P with the

cylindrical coordinates 7, @,, z, is situated inside of a

liquid flow (7, <b) (figure 1):
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Figure 1. The isotropic cylindrical shell, exciting from within by a point
hamonic source

The external radius ofthe cylindrical pipe #, = a, on the

outside region to the shell (r2 = a) is the vacuum. In order

to except the presence of the source (a peculiarity) on the
boundary surface, we use a reciprocity theorem (6) and trade
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places asource Q and apoint of observation P. As aresult the
formulation of the task will be the following: we will search

potential @ (b,gol ,Z, ) in point Q of an internal border,
resulting ofthe dispersion by pipe of a sound fromdot source
with potential @, (ro,(oo ,Zy )placed in a point P, basing
on[5, 7]. The potential @, of the harmonic point source in a
point Q is defined by the series[8 - 10]:
; (b’¢1’21 ) =
+00

éicos(n@)wsn J. exp(i;/zl)~H,(ll)(kyb)~Jn (kyro)d;/, (1)
n=0

—0

b>r,
2\ ~
where: k, =(k? —=y?)2; k=w/c,; ¢, -is the sound

velocity; y and k}, - are the axial and radial components ofa

wave vector k correspondingly; ¢, =0, z, =0 (figure

1);
1, n=0
g, =
2, n=z0.

By analogy with @, in a point Q, a potential of the
diffused wave shell @, can be written as[7, 5, 11]:

D, (b,¢1,21)=

0 +00 ) (2)
> a,cos(ng,)- _[ A(y)exp(zyzl)J,Sl) (kyb)d)/ ,
n=0 —0
where @, and A(}/) - are unknown coefficients and

functions of y correspondingly and they are determined by
the boundary conditions.
The cylindrical components of a displacement vector

U(Ur,U(p,UZ) can be written by way of potential @ and

the cylindrical components of a function E(A,,A(p,Az)
[12-14]:
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The cylindrical components A4,,4,, A, of the function

A canbe described by way of Debye’s potentials U and V|5,
12 - 16]:

2 2
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where: k—the wave number of the lateral wave in the shell’s
material;

A vector function A is are described by Debye’s
potentials Uand V12 - 16]:

A=rot rot(RU)+ iK rot(ﬁ V), (7N

where: R -is a radius-vector of view point.

The efficiency of such representation becomes obvious if
we take into account, that the functions U and V submit to
the Helmholtz scalar equation, divided in circular cy lindrical
coordinates:

(A+x2)U=0 ®)
(A+x2)V =0 )
The other representations for a vector function A in the

Cartesian and cylindrical coordinate systems are given in[17
-19], but it is[5] in a spheroidal system.

The potentials @, U and V are also expanded in serieses by eigen-functions of the Helmholtz scalar equation[16, 5, 11]:

O(r,¢,z)= icos(n(,ii) b, '[ B(y)exp(iyz)J, (hyr)d7+b,; J B'(y)exp(iyz)N, (hyr)dy ;o (10)
n=0 ) —0

~+00
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+00

V(r,g,z)= icos(nqﬁ) d, J- D(y)exp(iyz)J, (Kyf”)djf+d,;TD'(}/)eXP(i7Z)Nn (’fy”)dy ,
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—00
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I
rie: hy = (kf —}/2)4; k, = a)/c] - is a longitudinal wave number; ¢, - is a longitudinal wave velocity in the shell’s

material; Nn(K‘},r) - Neiman’s cylindrical; :(Kz—

yY? i b, b, . d, d) w B(y), B(y).

C(}/), C'(}/),D(}/), D'(}/) - are unknown coefficients and functions correspondingly and they are determined by the

next boundary conditions at the external and internal surfaces of an elastic shell:
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1) a normal component of a displacement vector U/, is continuous at an internal shell’s boundary;

2) a sound pressure in a fluid is equal to the normal strain in a shell at an internal boundary;

3) a normal strain in a shell at an external boundary is equal to zero;

4) the tangent strains at the shell’s boundaries are equal to zero.

An analytic formo fthe enumerated boundary conditions are a following representation:
ov 104, 0y 2

o - L, +,)
o v ag ) 1
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A substitution of the series (1), (2), (10) - (12) in the boundary conditions (13) - (17) results in an infinite system of the
equations to define the unknown coefficients and functions a,A4(y);. b,B(y). b.B'(y). ¢,C(y). c.C'(y).

an(]/), d;D'(]/). As the trigonometrical functions cos(ng) and sin(ng) are opthogonal, an infinite system breaks out
into seven equation with fixed index n for finding the seven combinations of'the unknown coefficients and functions.

A product anA(]/) fora potentialofa diffused wave @, is calculated by the Cramer rule on a basis of a ratio o fthe who
determinants of the seven degree:

a,A(y)=A4'/4, (18)

where: 4 — is determinant of a system, but A’ -is minor;
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The rest of elements of the rows and columnes of a
determinants 4 u A" can be taken out[5]. Except for the
first column elements 4 and A’ - identical.

An influence of a turbulent pulsation at a prolate
spheroidal shell is considered as an external problem. At
figure 2 is show hollow spheroidal shell, by streamline flow
of a liquid. The points 4, B, C mark the possible positions of
a point source, imitating turbulent pulsation. With help[2 - 4],
can be calculated the angular characteristics of a radiation of
a spheroidal shell under an influence of a turbulent pulkation.
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Figure 2. The isotropic prolate spheroidal shell, exciting on the outside by
a point harmonic source

At figures 3 and 4 are shown the modulus of the angular
characteristics of a radiation |F1 (9;(0)| this shell by an
excitement in a point B (figure 3) and point 4 (figure 4).
c =kh, is a wave dimension of abody, /, -is a half of
an interfocus distance (figure 2). A figure 3 corresponds
C=8,1,but a figure 4— C=35,5.
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Figure 3.
|F1 (9,(0)| hollow spheroidal shell, exciting on the exciting on the

outside by a point harmonic source in a point B; C=8,/

A dipole character of a radiation of a turbulent pulsation[1]
can foresee an introduction of asecond source (with an other
sign), disposed at asmall froma first source, and to calculate
in a point of observation total pressure fromtwo sources. By
an use of a reciprocity theorema transference of a turbulent

pulsation Q together with a flow of a fluid along of an
internal surface of a shell (figure 1) is substituted for a
transference of a point of observation P parallel to a
boundary in a opposite direction.
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Figure 4. The modulus of an angular characteristic of a radiation

|F1 (6,¢)| of a steel of a steel hollow spheroidal shell, outside by a
point harmonic source in a point 4, C=5,5

3. The Phase Velocities of
Three-Dimensional Flexural Waves in
Cylindrical Shells and Bars

Further we shall proceed to consideration of phase
velocities of one of types of waves existing in cylindrical
shells and bars: axial three-dimensional flexural waves.
Wave of a similar type were in detail investigated in[5, 15,
20 - 28]. The characteristic equation for wave numbers of
three-dimensional flexural waves of form m in the isotropic

cylindrical shell it turns out by equating to zero of the
determinant Aof sixorder[5, 15, 23, 25, 27, 28]:
arpr a2 a3 a4 a5 aAge
a1 A2 A3 A4 A25 A6
a3p Azp 4a33 A34  4A35 A3e
A= az1 a4 a3 ay a5 a=0; (19)
as1 as2 As3 As4 As5  As6
a61 262 A63 dA64 Ae5  Ae6
where : a;; = - (A + 2p) Jo''(h'a) + k[a'zszm(hla) -

'l (h'a)+ I In(h'a));

ajp=-(A+2u) Ny '(h'a) + A2 m’Ny(h'a) - 2Ny, (h'a)+
K Ny(h'a)l;

a3 =L+ 20 -y’ Tu(x'a) - In' (' )] + iy Tt (') +
ik m(x'a) +a Ju' (' )1} + A ixa™ Ju(x' @) m* + k) - iya™
T ('2) (0 + K) - 2ix K Tulx'a) - iy T ' (x'2)}3

a14= (A4 20) {-ixm’[ Now(z'a) - Now' (' 2)] + i Niw' (') +
ik’ [Nuw(x'a) +a N (¢'a)]} + A{ ixa™ Ny(¢'a)( m’ + &%) -
ixa” Ny'(1'a) (m’ + &%) - - 2iy K Ny(z'a) - iy Now' ' (x'a)};

a5 = 200 + 2w( a”-Dikm J(¢'a); a 15 = 20 +
2u)( a”-1)ikm Ny 'a);

a1 =-(h+20) I (') + b m’Ty(h'b) - b T (b )+ K
Tu(h'b)];
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a=-(L+21) Ny (h'b) + A[bm’Ny(h'b) - b N/ (h'b)+
I Ny(h'b);

a23= (A +2p) {~igm’[ Ju(x'D) - T (¢ D] + iy, T (D) +
i [Tn('D) + b T B} + AL ixb? Ju('D)( m” + K) -
b T ('b) (m? + k%) - 2i K T ') - i I (' D)}

a4 = (h+ 2p) {-ixm’[ Nu('b) - Niw' (x'b)] + ix Niw' ' (x'b)
+igk [Ni(x'b) + b Ny (D)1} + A { igb™ Niw(x ' b)( m* +K%) -
b Niw'('b) (m® + k%) - 2y K Niy(x'b) - ix N ' (' b)};

a2 = 20 + 2p) b2-D)ikm Jn(x'b) a 26 = 2(A +
2u)( b-1)ikm Ny(x'b);

a3 = 2ma’1[Jml(hla) - a'lJm(hla)];a 3 = 2ma’1[Nm1(h1a) -
a'Ny(h'a)];

a3 = igm{ Jn(x'a) a” (2- ') - K] - I, (z'a) - @'
Tn' (x'a) 5

a3y = ixm{ Ny(z'a) a® (2- m’) - K] - Ny''(x'a) - a”!
N (x'a) };

ass =ik ' (1'a)ax’ s ase = ikNy' (x'a)ay’ ;

a4 =2mb"' [Jy' (h'b) - b T(h'b)]; a4 = 2mb™ [N, (h'D) -
b'Ny(h'b)];

a4z = igm{ In(x'D) b? 2- m’) - K] - I, '(x'b) - b
In' D) };

a4 = ixm{ Ny(x'b)[ b? 2- m’) - K]
Nim' (x'b) };

ags = ikl (' bYbY” 5 age = ikNy, (' b)by* ;

as, =-2ik J, (h'a); a5, =-2ik Np'(h'a);

as3=-ky[ Jn(¢'a)(m’ +a”'k) + 51, (x'a) +aly' (¢ a));

asy=-ky[ Ny(y'a)(m’ +a'k*)+ 5N, (x'a) +aNy' ' (¢ 2)];

ass=ymlaIn(x'a) - T ('2)];  ase=y mla'Nix'a) -
N (x'a)];

a1 =-2ik Jn (h'b); agr =-2ik Np'(h'b);

a63 = - ky[Im(x' D)’ + bk + 57, (¢'b) + I (' b)];

- N '(¢'b) - b

a o0 = - ky[ Ny@'b)m® + b'k) + 5 Nu'(x'b) +
bN,' ' (x'b)];

ags =1 m[b " In(x'b) - I (1'0)]; 266 = x’m[b ' N(x'b) -
N ('D)];

In the figures 5 and 6 the results of calculations of phase
velocities of three-dimensional flexural waves for steel and
aluminium shells are represented. The following
designations one can find : the curves 1, 2 corresponds m=1
(zero mode); the curves 3, 4- m = 2; the curves 5, 6 - m = 3;
the curves 7, 8- m = 4; The external radius of shells and was
accepted equal 1,0 m. C; —the velocity of longitudinal wave ;
Cr - the velocity of Relay‘s wave; A =(2nc; / ®); internal
radius b= 0,99 m corresponds to a thin shell, b = 0,8 m — thick
shell.

The characteristic equation for wave numbers x of
three-dimensional flexural waves in the isotropic cylindrical
bar of radius a =1,0, received with the help of Debye’s
potentials, looks like[22, 26]:

O+ 2) Iy () (b DT (0]
{ikm{[2-(m* + k) ik T’ (k)T (KD} x
UM (kD= T’ (kD] +{ 2kl (-0 (k) +
(" ' (kD) H ' (D] [iKK ' (K] x
[-2ikJ ' (0)]-{ kK[’ +k (kST (k) ' (D]
[ 2)d (ALK wh )T ()]} -
{6 mlJ (kT (kD13 {2m{J' (0)-T 0]}

{2ipk[(K- M) (k) (m + k) T () + T (kD] = 0. (20)

In the figure 7 the phase velocities of first three forms of
flexural waves in the steel cylindrical bar, received with the
help of “such as Debye’s” potentials, are represented.[19,
28].

The the phase velocities of axissymmetrical flexural
waves (longitudinal and torsional in bars, longitudinal,
torsional and flexural in shells) are submitted in[5, 24, 26,
27, 28]. As to anisotropic of shells and bars, the jobs are
devoted to phase velocities of elastic waves in them[ 18, 29,
30].

On known phase velocities the components ofa vector of
displacement of an elastic body in any point with the help of
results of job can be calculated[31].
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Figure 5. Thephase velocities ofthree-dimensional flexural waves in steel
cylindrical shells
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Figure 6. The phase velocities of three- dimensional flexural waves in
aluminium cylindrical shells
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Figure 7. The phase velocities of first three forms of flexural waves in
the steel cylindrical bar

4. Conclusions

The decision of a three-dimensional task of radiation ofa
sound by a cylindrical and spheroidal shells, which is raised
by turbulent pulsations of a liquid flow is received. The
characteristics of radiation by a spheroidal shell under action
of' such sources are calculated.

The characteristic equations for wave numbers of the
three-dimensional axial flexural waves, raised in an
cylindrical shell and bar are received. The dispersive curves
of phase velocities of the various forms of these waves for
steel and aluminium shells of various thickness and for steel
cylindrical bar are submitted.
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