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Abstract  Are studied internal and external tasks of radiat ion of a sound by the elastic bodies, excit ing by the harmonic 
point source, imitating turbulent pulsation of a flow of a liquid. The angular characteristics of radiat ion of a hollow spheroidal 
shell are calcu lated. The characteristic equations of the axial three-d imensional flexural waves in the hollow cylindrical shell 
and cylindrical bar are received with the help of Debye’s potentials. The phase velocities of the various forms of these waves 
for shells and for cylindrical bar are calculated. 
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1. Introduction 
At study of the three-dimensional characteristics of 

radiation of a sound by the elastic shells and bars excit ing by 
the turbulent pulsation of a flow of a liquid and calculation of 
the phase velocities of the axial flexural waves  in such 
bodies at such excitation it is necessary to use an artificial 
way of division variable in Helmholtz vector equation for a 
vector function A



 - to present her through Debye’s 
potentials or “such as Debye’s” potentials. 

2. The Radiation of a Sound by the 
Cylindrical and Spheroidal Shells, 
Exciting by the Turbulent Pulsation of 
a Flow of a Liquid 

Firstly we will consider a physical model of rad iation of a 
sound by a cylindrical pipe (an internal task) and spheroidal 
shell (an external task), which is raised by turbulent 
pulsations of a liquid flow. 

In a monograph[1], devoted to the studying of the 
hydrodynamic sources of  a sound,  it is noted that for the 
range of problems regarding the radiations of a sound 
effected by turbulent pulsations of a liquid flow, the 
calculation, based on the concentrated force, caused by this 
pulsation, gives rise to certain interest.. The similar physical 
model is used in a present article. Such approach is based on  
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the earlier obtained results in the course of authors’ research 
of the three-dimensional problems of diffraction and 
radiation of a sound by the elastic bodies of cylindrical and 
spheroidal forms[2 - 5]. 

Let’s turn to an internal task for the consideration of: the 
harmonic point source ( )11 z,,bQ ϕ  of frequency ω, that 
imitate turbulent pulsation, is found on the interior of the 
shell ( )br1 = , but the point of observation Р with the 

cylindrical coordinates 0r , 0ϕ , 0z  is situated inside of a 

liquid flow ( )br0 <  (figure 1): 

 
Figure 1.  The isotropic cylindrical shell, exciting  from within by a point 
harmonic source 

The external radius of the cylindrical p ipe ar0 = , on the 

outside region to the shell ( )ar2 =  is the vacuum. In order 
to except the presence of the source (a peculiarity) on the 
boundary surface, we use a reciprocity theorem (6) and trade 
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places a source Q and a point of observation P. As a result the 
formulat ion of the task will be the fo llowing: we will search 
potential ( )11s z,,b ϕΦ in point Q of an internal border, 
resulting of the d ispersion by pipe of a sound from dot source 
with potential ( )000i z,,r ϕΦ placed in a point P, basing 

on[5, 7]. The potential iΦ  of the harmonic point source in a 
point Q is defined by the series[8 - 10]: 
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By analogy with iΦ  in a po int Q, a potential of the 

diffused wave shell sΦ  can be written as[7, 5, 11]: 
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where na and ( )γA  - are unknown coefficients and 
functions of  γ correspondingly and they are determined by 
the boundary conditions.  

The cylindrical components of a displacement vector 
( )zr U,U,UU ϕ



 can be written by way of potential Ф and 

the cylindrical components of a function ( )zr A,A,AA ϕ



[12-14]: 
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The cylindrical components zr A,A,A ϕ  of the function 

A


 can be described by way of Debye’s potentials U and V[5, 
12 - 16]: 
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where: κ–the wave number of the lateral wave in  the shell’s 
material; 

A vector function A


 is are described by Debye’s 
potentials U and V[12 - 16]: 

( ) ( ) ,VRrotiURrotrotA


κ+=      (7) 

where: R


 - is a radius-vector of view point. 
The efficiency of such representation becomes obvious if 

we take into account, that the functions U and V submit to 
the Helmholtz scalar equation, divided in circular cy lindrical 
coordinates: 

( ) 0U2 =+κ∆                 (8) 

( ) 0V2 =+κ∆               (9) 

The other representations for a vector function A


 in the 
Cartesian and cylindrical coordinate systems are given in[17 
- 19], but it is[5] in a spheroidal system.  

The potentials Φ, U and V are also expanded in serieses by eigen-functions of the Helmholtz scalar equation[16, 5, 11]: 
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где: ( ) 2
122

lkh γγ −= ; 1l ck ω=  - is a longitudinal wave number; 1c  - is a longitudinal wave velocity in the shell’s 

material; ( )rNn γκ  - Neiman’s cylindrical; ( ) 2
122 γκκ γ −= ; nn b,b ′ , nn c,c ′ , nn d,d ′  и ( ) ( )γγ B,B ′ ,

( ) ( )γγ C,C ′ , ( ) ( )γγ D,D ′  - are unknown coefficients and functions correspondingly and they are determined by the 
next boundary conditions at the external and internal surfaces of an elastic shell: 
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1) a normal component of a displacement vector rU  is continuous at an internal shell’s boundary;  
2) a  sound pressure in a fluid is equal to the normal strain in a shell at an internal boundary;  
3) a  normal strain in a shell at an external boundary is equal to zero;  
4) the tangent strains at the shell’s boundaries are equal to zero. 
An analytic form of the enumerated boundary conditions are a following representation: 
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A substitution of the series (1), (2), (10) - (12) in the boundary conditions (13) - (17) results in an infinite system of the 
equations to define the unknown coefficients and functions ( ) ;Aan γ , ( )γBbn , ( )γBbn ′′ , ( )γCcn , ( )γCcn ′′ , 

( )γDdn , ( )γDdn ′′ . As the trigonometrical functions cos(nφ) and sin(nφ) are opthogonal, an infinite system breaks out 
into seven equation with fixed index n for finding the seven combinations of the unknown coefficients and functions. 

A product ( )γAan  for a  potential of a  diffused wave sΦ  is calculated by the Cramer ru le on a basis of a ratio o f the who 
determinants of the seven degree: 

( ) ,Aan ∆∆γ ′=                                           (18) 
where: Δ – is determinant of a system, but ∆′  -is minor; 
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The rest of elements of the rows and columnes of a 
determinants Δ и ∆′  can be taken out[5]. Except fo r the 
first column elements Δ and ∆′  - identical. 

An influence of a turbulent pulsation at a pro late 
spheroidal shell is considered as an external problem. At 
figure 2 is show hollow spheroidal shell, by streamline flow 
of a liquid. The points А, В, С mark the possible positions of 
a point source, imitating turbulent pulsation. With help[2 - 4], 
can be calculated the angular characteristics of a radiat ion of 
a spheroidal shell under an influence of a turbulent pulsation.  

 
Figure 2.  The isotropic prolate spheroidal shell, exciting on the outside by 
a point harmonic source  

At figures 3 and 4 are shown the modulus of the angular 
characteristics of a radiat ion ( )ϕθ ;F1  this shell by an 
excitement in a point В (figure 3) and point А (figure 4). 

0khc =  is a  wave  dimension of a body, 0h  - is a  half of 
an interfocus distance (figure 2). A figure 3 corresponds 
С=8,1, but a figure 4 – С=5,5. 

 
Figure 3.  The modulus of an angular characteristic of a radiation 

( )ϕθ ;F1  hollow spheroidal shell, exciting on the exciting on the 
outside by a point harmonic source in a point В; С=8,1 

A dipole character of a radiation of a turbulent pulsation[1] 
can foresee an introduction of a second source (with an other 
sign), disposed at a small from a first source, and to calculate 
in a point of observation total pressure from two sources. By 
an use of a reciprocity theorem a transference of a turbulent 

pulsation Q together with a flow of a fluid along of an 
internal surface of a shell (figure 1) is substituted for a 
transference of a point of observation P parallel to a 
boundary in a opposite direction.  

 
Figure 4.  The modulus of an angular characteristic of a radiation 

( )ϕθ ;F1  of a steel   of a steel hollow spheroidal shell, outside by a 
point harmonic source in a point A; С=5,5 

3. The Phase Velocities of 
Three-Dimensional Flexural Waves in 
Cylindrical Shells and Bars 

Further we shall proceed to consideration of phase 
velocities of one of types of waves existing in cylindrical 
shells and bars: axial three-dimensional flexural waves. 
Wave of a similar type were in detail investigated in[5, 15, 
20 - 28]. The characteristic equation for wave numbers of 
three-dimensional flexural waves of form m in  the isotropic 
cylindrical  shell it turns out by equating to zero of the 
determinant ∆ of  six order[5, 15, 23, 25, 27, 28]: 

a11    a12   a13    a14   a15    a16 
a21    a22   a23    a24   a25    a26 
a31    a32   a33    a34   a35    a36 

△=                    a41    a42    a43     a44   a45    a46 = 0;  (19) 
a51   a52   a53    a54   a55    a56 
a61   a62   a63    a64   a65    a66 

where : а11 = - (λ + 2µ) Jm
11(h1a) + λ[a-2 m2Jm(h1a) - 

a-1Jm
1(h1a)+ k2 Jm(h1a)];  

а12 = - (λ + 2µ) Nm
11(h1a) + λ[a-2 m2Nm(h1a) - a-1Nm

1(h1a)+ 

k2 Nm(h1a)];  
а 13 = (λ + 2µ){-iχm2[ Jm(χ1a) - Jm

1(χ1a)] + iχ Jm
11(χ1a) + 

iχk2[Jm(χ1a) + a Jm
1(χ1a)]} + λ{ iχa-2 Jm(χ1a)( m2 + k2) - iχa-1 

Jm
1(χ1a) ( m2 + k2) - 2iχ k2 Jm(χ1a) - iχ Jm

11(χ1a)};  
а 14 = (λ + 2µ){-iχm2[ Nm(χ1a) - Nm

1(χ1a)] + iχ Nm
11(χ1a) + 

iχk2[Nm(χ1a) + a Nm
1(χ1a)]} + λ{ iχa-2 Nm(χ1a)( m2 + k2) - 

iχa-1 Nm
1(χ1a) ( m2 + k2) - - 2iχ k2 Nm(χ1a) - iχ Nm

11(χ1a)}; 
а 15 = 2(λ + 2µ)( a-2-1)ikm Jm(χ1a);  а 16 = 2(λ + 

2µ)( a-2-1)ikm Nm(χ1a); 
а21 = - (λ + 2µ) Jm

11(h1b) + λ[b-2 m2Jm(h1b) - b-1Jm
1(h1b)+ k2 

Jm(h1b)];  
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а22 = - (λ + 2µ) Nm
11(h1b) + λ[b-2m2Nm(h1b) - b-1Nm

1(h1b)+ 

k2 Nm(h1b)]; 
а 23 = (λ + 2µ){-iχm2[ Jm(χ1b) - Jm

1(χ1b)] + iχ Jm
11(χ1b) + 

iχk2[Jm(χ1b) + b Jm
1(χ1b)]} + λ{ iχb-2 Jm(χ1b)( m2 + k2) - 

iχb-1 Jm
1(χ1b) ( m2 + k2) - 2iχ k2 Jm(χ1b) - iχ Jm

11(χ1b)}; 
а 24 = (λ + 2µ){-iχm2[ Nm(χ1b) - Nm

1(χ1b)] + iχ Nm
11(χ1b) 

+ iχk2[Nm(χ1b) + b Nm
1(χ1b)]} + λ{ iχb-2 Nm(χ1b)( m2 + k2) - 

iχb-1 Nm
1(χ1b) ( m2 + k2) - 2iχ k2 Nm(χ1b) - iχ Nm

11(χ1b)}; 
а 25 = 2(λ + 2µ)( b-2-1)ikm Jm(χ1b); а 26 = 2(λ + 

2µ)( b-2-1)ikm Nm(χ1b); 
а 31 = 2ma-1[Jm

1(h1a) - a-1Jm(h1a)];а 32 = 2ma-1[Nm
1(h1a) - 

a-1Nm(h1a)]; 
а 33 = iχm{ Jm(χ1a)[ a-2 (2- m2 ) - k2] - Jm

11(χ1a) - a-1 
Jm

1(χ1a) };  
а 34 = iχm{ Nm(χ1a)[ a-2 (2- m2) - k2] - Nm

11(χ1a) - a-1 
Nm

1(χ1a) };  
a35 = ikJm

1(χ1a)aχ2 ;  a36 = ikNm
1(χ1a)aχ2 ; 

а 41 = 2mb-1[Jm
1(h1b) - b-1Jm(h1b)]; а 42 = 2mb-1[Nm

1(h1b) - 
b-1Nm(h1b)]; 

а 43 = iχm{ Jm(χ1b)[ b-2 (2- m2) - k2] - Jm
11(χ1b) - b-1 

Jm
1(χ1b) };  
а 44 = iχm{ Nm(χ1b)[ b-2 (2- m2) - k2] - Nm

11(χ1b) - b-1 
Nm

1(χ1b) }; 
a45 = ikJm

1(χ1b)bχ2 ; a46 = ikNm
1(χ1b)bχ2 ; 

а 51 = -2ik Jm
1(h1a); а 52 = -2ik Nm

1(h1a); 
а 53 = - kχ[ Jm(χ1a)(m2 + a-1k2) + 5 Jm

1(χ1a) + aJm
11(χ1a)]; 

а 54 = - kχ[ Nm(χ1a)(m2 + a-1k2) + 5 Nm
1(χ1a) + aNm

11(χ1a)]; 
а 55 = χ2 m[a-1Jm(χ1a) - Jm

1(χ1a)];   а 56 = χ2 m[a-1Nm(χ1a) - 
Nm

1(χ1a)]; 
а 61 = -2ik Jm

1(h1b);   а 62 = -2ik Nm
1(h1b); 

а 63 = - kχ[Jm(χ1b)(m2 + b-1k2) + 5 Jm
1(χ1b) + bJm

11(χ1b)];  
а 64 = - kχ[ Nm(χ1b)(m2  + b-1k2) + 5 Nm

1(χ1b) + 
bNm

11(χ1b)]; 
а 65 = χ2 m[b-1Jm(χ1b) - Jm

1(χ1b)]; а 66 = χ2m[b-1Nm(χ1b) - 
Nm

1(χ1b)];  
In the figures 5 and 6 the results of calculations of  phase 

velocities of three-dimensional flexural waves for steel and 
alumin ium shells are represented. The following 
designations one can find : the curves 1, 2 corresponds m=1 
(zero mode); the curves 3, 4- m = 2; the curves 5, 6 - m = 3; 
the curves 7, 8- m = 4; The external rad ius of shells and was 
accepted equal 1,0 m. С1 – the velocity of longitudinal wave ; 
СR - the velocity of Relay‘s wave; Λ = (2πc1  / ω);  internal 
radius b = 0,99 м corresponds to a thin shell, b  = 0,8 м –  thick 
shell. 

The characteristic equation for wave numbers κ of 
three-dimensional flexural waves in the isotropic cylindrical 
bar of radius а =1,0, received with the help o f Debye’s 
potentials, looks like[22, 26]:  

{-(λ + 2µ) Jm
11(h1)+λ[(m2+k2)Jm(h1)-Jm

1(h1)]} 
{ikm{[2-(m2 + k2)]Jm(k1)-Jm

1(k1)-Jm
11(k1)} ×  

{ k2 m[Jm(k1)- Jm
1(k1)]}+{2iµk[(k2-m2)Jm(k1)+ 

(m2+k2)Jm
1(k1)+Jm

11(k1)]}[ikk2[Jm
1(k1)] × 

[-2ikJm
1(h1)]-{ kk[(m2+k2)]Jm(k1)+5Jm

1(k1)+Jm
11(k1)]} 

[-(λ+2µ)Jm
11(h1)+λ[(m2+k2)Jm(h1)-Jm

1(h1)]}- 
{k2 m[Jm(k1)-Jm

1(k1)]}{2m[Jm
1(h1)-Jm(h1)]} 

{2iµk[(k2- m2)Jm(k1)+ (m2 + k2) Jm
1(k1) + Jm

11(k1)]}= 0. (20) 
In the figure 7 the phase velocities of first three forms of 

flexural waves in  the steel cylindrical bar, received with the 
help of “such as Debye’s” potentials, are represented.[19, 
28]. 

The the phase velocities of axissymmetrical flexural 
waves (longitudinal and torsional in bars, longitudinal, 
torsional and flexural  in shells) are submitted in[5, 24, 26, 
27, 28]. As to anisotropic of shells and bars, the jobs are 
devoted to phase velocities of elastic waves in them[18, 29, 
30].  

On known phase velocities the components of a vector of 
displacement of an elastic body in any point with the help of 
results of job can be calculated[31].  

 
Figure 5.  The phase velocities of three-dimensional flexural waves in steel 
cylindrical shells 

 
Figure 6.  The phase velocities of three- dimensional flexural waves in 
aluminium cylindrical shells 
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Figure 7.  The phase velocities of  first three forms of flexural waves in 
the  steel cylindrical bar 

4. Conclusions 
The decision of a three-d imensional task o f radiation o f a 

sound by a cylindrical and spheroidal shells, which is raised 
by turbulent pulsations of a liquid flow is received. The 
characteristics of radiation by a spheroidal shell under action 
of such sources are calculated. 

The characteristic equations for wave numbers of the 
three-dimensional axial flexural waves, raised in an 
cylindrical shell and bar are received. The dispersive curves 
of phase velocities of the various forms of these waves for 
steel and aluminium shells of various thickness and for steel 
cylindrical bar are submitted. 
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