

Downloaded From: h

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX
Proceedings of IDETC/CIE 2006
ASME 2006 International Design Engineering Technical Conferences &

Computers and Information in Engineering Conference
September 10-13, 2006, Philadelphia, Pennsylvania, USA

 DETC2006-99292

LEA: SOFTWARE SYSTEM FOR MULTIMEDIA AND VIRTUAL-REALITY WEB-BASED
EDUCATION AND TRAINING

Tamer M. Wasfy
Advanced Science and Automation Corp., Indianapolis, IN
ABSTRACT
LEA (Learning Environments Agent) is a web-based software
system for advanced multimedia and virtual-reality education
and training. LEA consists of three fully integrated
components: (1) unstructured knowledge-base engine for
lecture delivery; (2) structured hierarchical process knowledge-
base engine for step-by-step process training; and (3)
hierarchical rule-based expert system for natural-language
understanding. In addition, LEA interfaces with components
which provide the following capabilities: 3D near photo-
realistic interactive virtual environments; 2D animated
multimedia; near-natural synthesized text-to-speech, speech
recognition, near-photorealistic animated virtual humans to act
as instructors and assistants; and socket-based network
communication. LEA provides the following education and
training functions: multimedia lecture delivery; virtual-reality
based step-by-step process training; and testing capability. LEA
can deliver compelling multimedia lectures and content in
science fields (such as engineering, physics, math, and
chemistry) that include synchronized: animated 2D and 3D
graphics, speech, and written/highlighted text. In addition, it
can be used to deliver step-by-step process training in a
compelling near-photorealistic 3D virtual environment. In this
paper the LEA system is presented along with typical
educational and training applications.

1. INTRODUCTION
The internet/web has the potential to dramatically increase the
accessibility and convenience and decrease the cost of
education and training. In order for that potential to be realized,
internet/web education and training must provide information
transfer and pedagogical benefit which are near (or in some
cases better) physical lab/classroom education and training. The
main difference between internet/web and classroom education
is that the later is delivered using a real live human instructor.
Humans are adapted to learn from other humans. A live human
instructor in a classroom provides the following capabilities:

• Instruction is presented using natural-language speech
including speech variation for example to stress important
points.
ttps://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Us
• Instruction is presented in conjunction with hand and body
gestures and lip-synching. For example, some recent studies
suggest that gestures are important in human cognition,
communication and learning across cultures [1]. Also, many
studies suggest that lip-reading is important for speech
understanding and cognition.

• The instructor synchronizes the presentation of the material
with his speech, pointing, writing, drawing, gestures, and lip
movements.

• The student can interrupt the instructor at any time to ask
him/her to:

o Explain a concept that they did not understand.
o Provide more detailed explanation.
o Repeat what they said.
o Skip the explanation if the student already knows the

material.
o Slow down or speed up the presentation.

• The instructor can ask the student questions during the
lecture to stimulate his/her thinking and to keep the student
engaged in learning.

• The instructor can use real-life objects that he/she are
explaining. The instructor can use, move, rotate, and
disassemble the objects. For example, the instructor can
explain the operating process of a machine by guiding the
student step-by-step through the process steps.

• The instructor can guide the student step-by-step through
solving any problem related to the course material.

A web-based system which includes the above combined
capabilities has the potential to substantially reduce reliance
and time requirements of human instructors. In addition, the
web-based system will provide additional advantages and
capabilities that real live instructors do not provide. Those
include:

• The student is in complete control the pace of instruction
delivery. The student can pause, rewind, repeat, skip, slow
down, and speed-up the delivery of instruction. In addition,
the student can be in control of the time and place of
instruction delivery. A human instructor will have more
1 Copyright © 2006 by ASME

e: http://www.asme.org/about-asme/terms-of-use

https://core.ac.uk/display/357404989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Downloa
restrictions on student control, especially if there is more
than one student in the classroom.

• The instruction can be delivered in a much more easy-to-
understand and compelling way. For example instead of
hand-drawn illustrations drawn on a blackboard, the
illustrations can be 3D animated photorealistic models.
Also, virtual computer models can be easily and quickly
disassembled, rotated, animated, or made semi-transparent
to show detailed that would otherwise be hidden in a real
machine.

• The instruction can be mass delivered over the internet with
significantly less cost than a human instructor.

LEA is a web-based education and training system that comes
close to providing the aforementioned combined capabilities.
LEA’s ultimate objective is to provide education and training
capabilities that are near those provided by a one-on-one human
instructor. The various components of LEA were presented to
various degrees of detail in previous publications [2-6]. In this
paper those components are integrated into a unified
architecture. This paper is organized as follows. In Section 2
the architecture of LEA is presented. In Sections 3-5, the three
components of LEA are described. Applications of LEA are
presented in Section 6. Finally some concluding remarks are
offered.

2. ARCHITECTURE OF LEA

LEA
(Learning Environments Agent)

Hierarchical Process Knowledge-
Base Engine

Speech recognition

User preferences
window

3D Course
presentation window

Lecture outline
window

Hierarchical voice
commands window

Unstructured Knowledge database

Vocabulary

Command history Process knowledge-base

Hierarchical rules

Lecture knowledge-
objects

Speech window

2D Course
Presentation window

VE Engine
Avatar Engine

Lecture Delivery System

Rule-Based Expert System
(Natural-Language Interface)

Search Engine

Knowledge Disseminator
Speech Synthesis

Figure 1 Architecture of LEA.

A schematic diagram of the architecture of the LEA system is
shown in Figure 1. LEA consists of three main components:

• Lecture delivery system. This includes an unstructured
knowledge data-base engine, a search engine, and a
knowledge disseminator. The knowledge data-base engine
handles access to the knowledge-base, which consists of
modular knowledge objects in the form of unstructured
HTML, XML or text segments. Those segments can have
hyperlinks referring to the locations of the multimedia
pictures, movies, and 2D/3D animated illustrations files.
The search engine is used to search the knowledge
database for words or labels. The knowledge disseminator
is the traffic controller that connects the user requests to
the knowledge-base to produce the output of LEA in the
form of instruction. The user requests are issued to the

ded From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use
knowledge disseminator from the natural-language
interface. The knowledge disseminator then sends the
request to the search engine which returns back the
appropriate knowledge object(s). The knowledge
disseminator then sends these knowledge objects to the 2D
and 3D course presentation windows, the speech window
to be displayed, as well as to the speech synthesis engine to
be spoken. Some of the graphical illustrations in the course
windows can be clickable, in which case the knowledge-
base request associated with the click event is sent to the
knowledge disseminator which fetches the corresponding
knowledge object(s).

• Rule-based expert system (Natural-language interface)
(see Section 4). The rule-based expert system provides
natural-language understanding. It processes sentences that
are spoken or typed by the user or that are generated by
clicking on an outline item (in the outline or hierarchical
voice-commands windows), interprets them, and sends
what it understood to the knowledge disseminator. For
example, if it understands the user sentence as a question
then it sends a command to search the knowledge database
(see Section 4.2) to the knowledge disseminator along with
a list of keywords to search for. If it understands the
sentence as a command to make an object semi-
transparent, then it sends a script to the knowledge
disseminator to be sent via a network socket connection to
the 3D or 2D display engines.

• Hierarchical process knowledge-base. This component
provides step-by-step process training. It stores a
hierarchical structured representation of a process as a list
of sub-processes, steps, and pre- and post-process
constraints. The step in-turn can also have pre- and post-
step constraints. When the user issues a natural-language
command to LEA to train him/her on a certain process,
then the process knowledge-base engine walks the user
step-by-step through the hierarchical process while
checking for constraint violation.

In addition, LEA includes interfaces to the following
components:

• Speech recognition engine. LEA has a built-in interface to
Microsoft SAPI 5.1. Any SAPI 5.1 compliant speech
recognition engine can be used for speech recognition. The
user’s speech is acquired using a good quality microphone.
There are two speech recognition modes in SAPI, namely,
continuous dictation mode (with a 30,000+ words
vocabulary) and single word/short phrase mode (or
command & control). The recognition rate of continuous
dictation is typically 75-85% for most users, which is too
low for the present application. The single word/short
phrase recognition rate is above 98% (with 2-3 short
training sessions). The high recognition rate of the single
word recognition mode is due to the fact that a smaller
vocabulary (~1000 words/phrases) is used and the
requirement that the user separates his/her words/phrases by
a short 0.2-0.4 sec pause. LEA can use continuous dictation,
single word/phrase recognition, or a combination of both for
speech recognition. When the two approaches are
combined, LEA first tries to resolve the user’s utterance
using single word recognition mode. If it cannot, then it
2 Copyright © 2006 by ASME

: http://www.asme.org/about-asme/terms-of-use

Download
tries the continuous dictation mode. This allows LEA to
achieve over 98% accuracy rate while still being able to
recognize, with 75-85% accuracy, utterances where the user
forgot or chose not to clearly separate words. The
vocabulary file for the single word consists of a list of all
the possible words/short phrases that can be used in any
combination to issue natural-language commands for the
specific training application. Typically, the number of
words/phrases in the list is about 1000 and includes in
addition to the regular conversation words (such as “show,”
“hide,” “set,” “is,” “are,” “in,” “at,”, etc.) all the key words
of the educational or training application. LEA determines
if a command has ended when the user says special
execution words (such as “do it,” “execute”, or “answer”).

• Speech synthesis engine. Any Microsoft SAPI 5.1 compliant
speech synthesis (text-to-speech) engine can be used for
generating the agent’s speech. LEA sends SAPI the text
string to be spoken. SAPI uses the speech synthesis engine
to generate the speech along with the following events:

o Start of sentence event. This event returns the starting
and ending character positions of the sentence that is
currently being spoken. This event is used by the
knowledge disseminator to highlight the sentence that
is currently being spoken as well as to run any scripts
that is contained within the sentence. Those include
scripts to synchronize 2D and 3D animated
illustrations with the speech as well as the agent body
and hand gestures.

o End of word event. This event returns the starting and
ending character positions of the word that is currently
being spoken. This event is used by the knowledge
disseminator to highlight the word that is currently
being spoken.

o Viseme events. These events are generated in order to
do the lip synchronization. They are passed by LEA to
the 3D VE engine, which in turn passes them to the
agent avatar display module to place the lips of the
agent avatar in the proper position.

• 2D multimedia display engine. Macromedia Flash 8 [7] is
used to display animated 2D graphics, which include vector
drawings, pictures and movies. LEA interfaces with Flash
using JAVA-script through the web-browser.

• Media player. Movies can be displayed using any Media
player web-browser plug-in such as Microsoft Media Player
or Apple Quick Time Player. JAVA-script is used to control
the movies (set the play frame/time, play, pause, and
resume).

• 3D VE engine. The IVRESS [8] object-oriented scene-graph
display engine is used to display animated 3D virtual
environments. Each object in IVRESS has properties that
determine its state and behavior, and methods, which are
functions that it can perform. In addition, interface objects
have events that are triggered when certain conditions,
initiated by the user or the passage of time, are met.
IVRESS includes JAVA-script and VB-script to allow
writing custom event handling routines. Custom objects can
be added to IVRESS by writing C/C++ code for the object
and linking that code to IVRESS either dynamically (using
a dynamic link library), or statically (by linking with an
IVRESS static library file). IVRESS can interface with

ed From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: h
output devices, including immersive stereoscopic screen(s)
and stereo speakers; and a variety of input devices,
including body tracking devices (head and hands), haptic
gloves, wand, joystick, mouse, microphone, and keyboard.
IVRESS can read and write file formats for geometry data
such as VRML 2.0 [9], pictures such as Bitmaps, PNG,
JPEG, and GIF; and movies such as MPEG, AVI, and
MNG. Four classes of objects are used to construct a VE in
IVRESS:

o Interface objects include many types of user interface
widgets (e.g. label, text box, button, check box, slider
bar, dial/knob, table, and graph) as well as container
objects (including Group, Transform, Billboard, etc).
The container allows grouping objects including other
containers. This allows a hierarchical tree-type
representation of the VE called the “scene graph”.

o Geometric entities represent the geometry of the
various physical components. Typical geometric
entities include unstructured surfaces, boundary-
representation solid, box, cone and sphere. Geometric
entities can be textured using bit-mapped images and
colored using the light sources and the material
ambient, diffuse, and specular RGBA colors.

o Finite elements represent solid and fluid computational
domains.

o Support objects contain data that can be referenced by
other objects. Typical support objects include material
color, position coordinates, and interpolators. For
example, a sphere geometric entity can reference a
material color support object. Arithmetic operations
(such as addition, multiplication and division) and
logical operations (such as “and”, “or”, and “not”) can
be performed on support objects.

• Avatar display engine. The animated human avatar is driven
by the Haptek API [10] and is displayed using IVRESS [8]
virtual-reality display engine. A wrapper IVRESS object
encapsulates the Haptek API and allows displaying full
body textured highly detailed male and female characters in
a 3D virtual environment window. The character has a large
set of pre-defined gestures. Typical gestures include:
looking up, down, right and left; torso bend, twist, and bow;
right/left hand; smile; blink; walk; etc. In addition, the
gestures also include the visemes (e.g. aa, ih, g, s, eg, uh,
etc.) which are lip and face positions for lip-synching. Also,
the API allows setting the character’s joints rotations and
positions to any desired value. In addition, the IVRESS
wrapper object allows animation of the character’s hand
motions by linear interpolation of the joint positions or
angles. In order to effectively deliver the lecture, the agent
avatar includes the following capabilities:

o Lip synching. The lips of the virtual instructor avatar
are synched with the speech. The text-to-speech
engine “visemes” events are used to set the lip and
mouth positions during speech and thus provide “lip
synching”. The visemes are fed from LEA (using
SAPI) to the avatar (via IVRESS) using a TCP/IP
network connection.

o Natural random and cyclic motions. These include
breathing, eye blinking, and natural random hand and
body motions. Those motions are generated
automatically by the Haptek engine.
3 Copyright © 2006 by ASME

ttp://www.asme.org/about-asme/terms-of-use

Download
o Gestures. These include hand gestures and pointing.
These are embedded in the knowledge object HTML
using a tag to send script to the avatar. An example tag
is “<!IVRscript Agent.setSw = "**count L3" IVRend>”. The
script that is sent by LEA to the avatar (via IVRESS)
is “Agent.setSw = "**count L3"”, which makes the agent
use the left hand to display a count of three.

o Facial expressions. These are embedded in the
knowledge object HTML using the same script tag as
the gestures.

Figure 2 Typical LEA screen for a web-based lecture delivery

application on “Shielded Metal Arc Welding.”

Figure 3 Typical LEA screen for a web-based training application

on “Shielded Metal Arc Welding.”

Figure 4 Typical tabs from the user’s preferences window including
Agent tab and font tab.

LEA runs inside a web-browser page. Figures 2 and 3 show
typical LEA user interface screens for web-based education and

ed From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use:
training applications. The interface consists of the following
windows:
• Course presentation window (Media Screen): shows the

course material that includes text and animated 2D and 3D
graphics synchronized with the speech. This window is a
web-browser that can display: HTML with embedded
pictures, movies, and Flash animations. Parts of the
illustrations can be clickable such that when the user
clicks, LEA jumps to a corresponding outline item.

• Outline window: shows a hierarchical-tree of the lecture
outline. Branches can be expanded or contracted by
clicking on the “+” or “–” buttons that are on the left side
of a given branch heading. The student can either let the
entire lecture play continuously until its conclusion or
he/she can click on any item of the outline to directly go to
that item. Navigation buttons at the top of the outline allow
the user to: Go forward/backward one outline item; Go
forward/backward one sentence; Play/Stop the lecture;
Pause or resume playing the lecture.

• Voice commands window: shows a hierarchical-tree of
voice commands. The user can click on the command from
the list, or type/speak the command in natural-language.

• Speech window: displays what the agent is saying. The
current sentence is highlighted. Also, the current word is
highlighted with a different color to help the student follow
the agent. The learner can read ahead or look at any text
he/she missed in the speech window.

• 3D virtual environment window: shows a fully interactive
“video-game” quality 3D virtual environment that can be
used for hands-on training (Figure 3). In addition, a photo-
realistic animated virtual human avatar of the instructor
can also be displayed within the virtual environment. The
lips of the avatar are synched with the speech. The avatar
can gesture, point, and display facial expressions
(including anger, sadness, happiness, etc.). The user can
translate, rotate, or scale the avatar.

• Preferences window: allows the user to change the
instructor avatar, the voice type, the volume and speed of
the speech, the color scheme of the windows, the font
sizes, and other display options for the course (Figure 4).

3. UNSTRUCTURED KNOWLEDGE-BASE ENGINE
Unstructured knowledge is natural-language knowledge that is
in sources such as scientific papers, documents, web pages, etc.
Unstructured knowledge in LEA consists of “knowledge
objects” that can be arranged in any order to form a lecture. A
given knowledge object can be reused in multiple courses. A
knowledge object is a short HTML/XML segment with
embedded multimedia content and LEA-specific tags (it can
also be a simple ASCII text segment). Self-contained
knowledge objects are also used in the SCORM standard [11]
which defines a SCO (Sharable content object) as the smallest
stand-alone and meaningful component of a course that is
reusable, interoperable and modular. SCORM is an emerging
standard that is being adopted in online course development
tools. Like LEA, the SCORM standard is geared towards
single-learner, self-paced and self-directed training. The LMS
(Learning Management System) in SCORM is responsible for
controlling the delivery and organization of the SCOs.
However, the SCORM standard still has a long way before
4 Copyright © 2006 by ASME

 http://www.asme.org/about-asme/terms-of-use

Downloa
realizing the stated goal of this paper “replacing the human
instructor.” Unlike LEA, SCORM does not include essential
features such as 3D virtual environments, intelligent photo-
realistic animated human instructors, process training
capability, and a natural-language understanding capability.

LEA knowledge objects are stored in knowledge files. A
knowledge-base file is simply a collection of knowledge
objects separated by new-lines. Multiple knowledge-base files
can to be loaded at the same time. A file is loaded using it’s
URL. Thus the knowledge files can be located anywhere on the
web. LEA includes a text search capability to enable answering
the user’s questions from the unstructured knowledge-base.

Table 1 Most used LEA tags.
Tag Description

<!IVRrun … script… IVR> This runs a JAVA-script from the knowledge
object on the course web-browser window.

<!IVRrunBackground …
script… IVR>

This runs JAVA-script on the background web
browser window.

<!IVRrun0 ...script… IVR>
<!IVRrun1 ...script… IVR>
<!IVRrunn ...script… IVR>

This runs JAVA-script in the web browser utility
windows 0, 1, 2, ...

<!IVAcom …command...
IVA>

Runs a LEA specific command. These include
commands to control the fonts, the window sizes
and positions, etc.

<!IVRscript …script… IVR> Sends a script to the agent avatar.
<!IVRalias aliasname> This gives a knowledge objects an “aliasname”

that can be used to call it from the outline. More
than one knowledge object can have the same
alias. In this case a request for this alias returns
all the knowledge objects containing this alias.
More than one alias can be associated with one
knowledge object.

<!IVRnoSearch> This is a switch that instructs LEA not to include
this knowledge object in text searches which
look for answers to the user’s questions. This is
useful to tag, for example, outline knowledge
objects which, although may contain the search
keywords, cannot be answers to questions.

The human instructor (subject-matter expert) constructs the
knowledge-base by identifying the knowledge sources: papers,
presentations, web content, etc. (these can also include
structured knowledge bases such as an ontology or a concept
map). These sources can be used directly as knowledge-base
files. Alternatively, the instructor can do some editing to add
multimedia content and to add LEA specific tags. For example,
the instructor can create a knowledge object by cutting and
pasting a text segment from a technical source into the
knowledge-base. The text segment by itself is a knowledge
object. Optionally, the instructor can embed multimedia content
by adding HTML tags for the multimedia content using an
HTML editor. Also, optionally the instructor can then add the
LEA specific tags for controlling the agent avatar and
synchronize the multimedia content with the speech. A list of
the most used LEA specific tags that can be embedded in the
knowledge object along with a brief description of the function
of each tag is given in Table 1.

Figure 5 shows a typical multimedia HTML knowledge object.
Figure 6 shows a snapshot of the course corresponding to this
knowledge object. The knowledge disseminator sends this
knowledge object as is to the course presentation window,
which is essentially a web browser. The LEA-specific tags are
ignored by the browser because they are in the form of
comment tags. The knowledge disseminator also strips all the
tags from the knowledge object (thus all what is left is the text

ded From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Us
of the sentences) and then sends this text to the speech window
and to the text-to-speech engine to be spoken. The text-to-
speech engine provides the sentence events that are used to
synchronize the animations of the graphical illustrations (in the
course presentation window), the agent gestures, and the
sentence highlighting. The text-to-speech engine also provides
the word events that are used to highlight the words and the
viseme events that are used for lip-synching of the virtual
instructor.

The graphical illustration in the knowledge object in Figure 5 is
a FLASH movie. The movie is accessed using its URL and thus
can be located anywhere on the web. Each sentence in the
knowledge object is separated using a period. The first sentence
is “In this brief introduction to machining centers, I will present
the following.” At the beginning of this sentence a script is sent
to the Flash movie in the course presentation window to
advance the Flash movie to the next synchronization point
“intro”. The script is: “document.intro.TGotoLabel('/','intro');
document.intro.Play();”. The script is sent using the LEA tag
“<!IVRrun …script… IVRend>”. This tag runs a JAVA-script
segment on the course presentation window (the course
presentation window is web a browser). Also, a script is sent to
IVRESS to instruct the instructor’s avatar to display a gesture
indicated using the tag “<!IVRscript …script… IVR>”. The
script that is sent to the avatar is: “Agent.setSw = "lookeleft b"”
which instructs the avatar to look left. The next sentence is “1,
general characteristics of modern CNC machine tools.” At the
beginning of this sentence the agent avatar is instructed to do a
talking left hand gesture using the script “IVRESSagent.setSw =
"talkGestL2 start"”. The rest of knowledge object in Figure 5
consists of sentences with embedded JAVA-script to play the
corresponding FLASH movie segment and script to control the
agent gestures. At the end of the knowledge object the tag
“IVRalias” defines an “alias” for this knowledge object. This
alias is used in the outline to request this particular knowledge
object using the “what” natural-language rule presented in
Section 3.2. Note that more than one knowledge object can
have the same alias. In this case a request for this alias returns
all the knowledge objects containing this alias. Also, more than
one alias can be associated with one knowledge object.

Another capability built into the LEA system is enabling the
user to click on “hotspots” in the multimedia illustrations and
jump to the corresponding lecture segment. This is enabled
using the extra JAVA-script shown in cyan in Figure 5. This
script uses the external script support capability in Flash
through “FScommand” to instruct LEA to go to a specific
knowledge object when the user clicks on the hotspot.

3.1 Lecture Outline
The outline window is shown on the left-hand-side in Figures 2
and 3. A typical outline file (as typed by the course instructor)
is shown in Figure 7. The outline consists of the subject
headings with child headings indented using tabs. Each heading
is “piped” into a question that is sent to the knowledge
disseminator (see Figure 1).

The instructor creates the course by writing the course outline
shown in Figure 7. The instructor writes the subject headings
and the corresponding question, which will be sent to the
knowledge disseminator. The question can be in the form of a
natural-language question in which case the search engine will
5 Copyright © 2006 by ASME

e: http://www.asme.org/about-asme/terms-of-use

Downloa
search the knowledge base for the “best” answer to that
question (see Section 4.2). Alternatively, LEA can search for a
specific label in the knowledge-base and display the knowledge
objects, which have this label. This is done using the special tag
“<!IVRalias label_name>”. The search engine only returns the
knowledge object(s) which has the label “label_name”. Thus,
the lecture consists of the answers to the outline questions.

 <div align="center">
<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" width="100%"
height="100%" id="intro">
 <PARAM NAME=movie VALUE="Flash\MCintro.swf">
 <PARAM NAME=play VALUE=false>
 <PARAM NAME=loop VALUE=false>
 <PARAM NAME=menu VALUE=true>
 <PARAM NAME=quality VALUE=best>
</object>

<comment>
In this brief introduction to machining centers, I will present the following
<!IVRrun document.intro.TGotoLabel('/', 'intro');document.intro.Play(); IVRend>
<!IVRscript IVRESSagent.setSw = "lookleft b" IVR>.
1, general characteristics of modern CNC machine tools
<!IVRrun document.intro.TGotoLabel('/', '1');document.intro.Play(); IVRend>
<!IVRscript IVRESSagent.setSw = "talkGestL2 start" IVR>.
2, different types of Machining Centers
<!IVRrun document.intro.TGotoLabel('/', '2');document.intro.Play(); IVRend>
<!IVRscript IVRESSagent.setSw = "talkGestR3 start" IVR>.
3, Pallet Changers
<!IVRrun document.intro.TGotoLabel('/', '3');document.intro.Play(); IVRend>
<!IVRscript IVRESSagent.setSw = "talkGestL1 start" IVR>.
4, various Cutting Tools
<!IVRrun document.intro.TGotoLabel('/', '4');document.intro.Play(); IVRend>
<!IVRscript IVRESSagent.setSw = "lookleft a" IVR>.
5, Fixtures
<!IVRrun document.intro.TGotoLabel('/', '5');document.intro.Play(); IVRend>
<!IVRscript IVRESSagent.setSw = "talkGestL3 start" IVR>.
6, programming of Machining Centers
<!IVRrun document.intro.TGotoLabel('/', '6');document.intro.Play(); IVRend>
<!IVRscript IVRESSagent.setSw = "**Lpoint F_up" IVR>.
</comment>
</div>
<!IVRalias intro><!IVRnosearch>
<SCRIPT LANGUAGE="JavaScript" For="intro"
Event="FSCommand(command,args)"><!--
// command is 'call'
switch(args) {
 case 's1': label='general characteristics' ; alias='modern_chrac'; break;
 case 's2': label='types of Machining Centers'; alias='MC_types'; break;
 case 's3': label='Pallet Changers' ; alias='MC_pallet'; break;
 case 's4': label='Cutting Tools' ; alias='MC_tools'; break;
 case 's5': label='Fixtures' ; alias='MC_fix'; break;
 case 's6': label='programming' ; alias='MC_prog'; break;
 default: return;
}
document.cookie = label + ' | what is ' + '<!IVR' + 'alias ' + alias +'>';
//--></SCRIPT>

Figure 5 Typical knowledge object. Flash multimedia content tags
are shown in blue. HTML tags are shown in green. LEA specific

tags are shown in red. The lecture text is shown in black. Tags for
the extra navigation script is shown in cyan.

Figure 6 Snapshot of the course corresponding to the knowledge

object in Figure 5.

ded From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Us
 Lab overview | what is <!IVRalias overview>
Introduction to Machining Centers | what is <!IVRalias intro>
 Characteristics of Modern CNC Machine Tools | what is <!IVRalias modern_chrac>
 Types of Machining Centers | what is <!IVRalias MC_types>
 3-Axes Machining Centers | what is <!IVRalias 3axes>
 Horizontal 3-Axes Machining Centers | what is <!IVRalias H3axes>
 4-Axes Machining Centers | what is <!IVRalias 4axes>
 5-Axes Machining Centers | what is <!IVRalias 5axes>
 Pallet Changers | what is <!IVRalias MC_pallet>
 Cutting Tools | what is <!IVRalias MC_tools>
 Endmills | what is <!IVRalias endmills>
 Facemills | what is <!IVRalias facemills>
 Ball Endmills | what is <!IVRalias ballmills>
 Slitting and Side cutters | what is <!IVRalias sidecut>
 Drills, Taps, and Reamers | what is <!IVRalias drills>
 Tool Holder | what is <!IVRalias toolholder>
 Fixtures | what is <!IVRalias MC_fix>
 Speed and Feed Calculation | what is <!IVRalias MC_Speedfeed>

Figure 7 Outline of the course.

3.2 Testing Capability
Figure 8 shows a source HTML/XML code of a LEA question
knowledge object. Figure 9 shows a screen-shot of this
questions displayed using LEA. The following LEA specific
tags are used to define a question-type knowledge object:

• <!IVRquestion>: Sets knowledge object type to question.
• <!IVRquestionScore 1>: Defines the score given to the

student for correctly answering this question.
• <!IVRanswerType [string/real/integer]>: Defines type of

answer for the question. For multiple choice questions the
answer type is string (‘A’, ‘B’ …).

• <!IVRanswer "A">: Defines the correct answer.
• <!IVRanswerTol 0.1>: Defines the absolute +/- tolerance

for the correct answer for real number answers.
• <!IVRquestionLevel 5>: A number between 1 and 10 which

specifies the difficulty level of the question.
• <!IVRanswerTime 30>: Defines the nominal answer time.

Figure 8 LEA question knowledge object.

Figure 9 Snapshots from the AVML showing typical quiz questions

implemented using the LEA system.
6 Copyright © 2006 by ASME

e: http://www.asme.org/about-asme/terms-of-use

Downlo
The student can enter the answer to the question using option
boxes (for multiple choice questions), check boxes, or text
boxes. LEA supports three types of testing modes:

• Question by question practice: In this mode when the
student hits the “submit” button, the answer is checked
against the correct answer and the agent says whether the
answer is right or wrong.

• Practice test: In this mode a complete test is offered to the
student. The instructor specifies the database of question
knowledge objects, the difficulty level of the total test, and
the minimum/maximum allowed question difficulty level.
LEA then assembles a random test from the database which
satisfies the instructor’s requirements. For each question,
when the student hits the “submit” button, the answer is
checked with the correct answer and the question score is
added to the total score. At the end of the practice test the
agent speaks the total score and shows a list of the student
answers and the correct answer for each question.

• Official test: same as practice test except for the following:
o The instructor specifies the total allowed test time. LEA

keeps track of the time during the test.
o The test score and list of student’s answers are

electronically sent to the instructor.

4. RULE-BASED EXPERT SYSTEM FOR NATURAL-
LANGUAGE UNDERSTANDING
The rule-based expert system converts the user’s natural-
language speech or written text to commands and script that are
sent to the knowledge disseminator (Figure 1). Details of the
rule-based expert system for natural-language understanding
were presented in [2, 4]. The expert system rule hierarchy
consists of two types of objects: Rule and Group.

4.1 Group
The Group object allows grouping a set of rules, including
other groups, in order to provide the ability to construct
hierarchies of rules. Each group has a name and includes a list
of rule names or group names, which are contained within the
group (Figure 10).

4.2 Rules
A rule is an object that consists of a name and a list of
properties and property values. The properties determine when
a rule is triggered and the actions performed by the rule when it
is triggered. A rule has the following types of properties:

• Word properties used to calculate a satisfaction score for
the rule. If that score is greater than a certain threshold, then
the rule is triggered. A command consists of a number of
words. Each command word is checked against a set of
“required” and “ignored” words (Figure 11 and Table 2).
The total score for a rule is equal to the summation of the
plusScore for the required that are found, the minusScore
for the required that are not found, and the scoreOther for
the other words that are neither required words nor ignored
words. If the plusScore for the required words is negative,
this means that if those words are found then the score is
reduced. Ignored words do not add or subtract from the
score. Any rule with a score above a certain threshold (say
75) is triggered. For example the rule in Figure 11 is

aded From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use:
triggered by saying: “hide the controller” “turn off control
box” or “switch off the controller”, etc.

DEF GroupName Group {
children [
 DEF rule1 RuleType1 { … }
 DEF rule2 RuleType1 { … }
 DEF rule3 RuleType1 { … }
 DEF group1 Group { … }
 USE rule4
 USE group2
 …
]
}

Figure 10 Rules group

hide wind tunnel
DEF tunnel_hide RuleType1 {
 require 50 -100 ["hide" "turn off" "switch off"]
 require 50 -100 ["controller" "control box"]
 ignore ["the" "a" "from" "me" "my" "view"]
 scoreOther -10
 state1 "controller"
 reply "Hiding controller"
 speak "Hiding controller"
 script [Cont_Controller.visible = 0]
}

Figure 11 Typical rule.

Table 2 Word properties
Attribute Variables Description

require plusScore
minusScore
[“word1”
“word2”…]

Looks for any of the words listed within square
brackets. Adds plusScore when a spoken command
word is matched, or adds minusScore (generally
negative) if none of the words are matched.

ignore [“word1”
“word2”…]

List of words that may be included in the spoken
command, but that do not add to the meaning. Those
words are ignored and do not contribute to the score.

scoreOther Score Adds score (generally negative) for other words that
are neither required nor ignored words. Thus, if a
command contains too many extraneous words then
the agent will say “your command is not clear.”

• Script property contains the script that is to be sent to the
VE upon triggering the rule (Figure 11).

• Output properties. The speak and reply properties output
spoken messages and on-screen messages, respectively
(Figure 11).

• Variable manipulation properties are used to create and set
the values of LEA variables. The values of these variables
are stored during the hierarchical evaluation of a command
so that they can be accessed by subsequent rules. Any script
or output text can contain the names of these variables.
Before the script is sent to the VE or before the text string is
sent to the speech synthesis engine, the names of the
variables are substituted by their values.

• Rule group hierarchy properties allow the rule to connect to
other rules or other rule groups. This allows the formation
of the rules’ hierarchy.

• Feedback properties. LEA uses the history of an expert user
to intelligently provide useful feedback in the form of
suggestions to novice users.

• Process control properties used to execute a process or in
other words train the user through a process. The process
can be executed in four main types of modes: tutor, guide,
supervisor, or certification (see Section 5).

• Knowledge-base search properties allow the rule to initiate
a knowledge base search. Figure 12a shows the rule that
handles the user’s questions. This rule “requires” the user to
say “what”, “tell”, “explain”, etc. to be triggered. Using this
rule the system can understand questions such as: “what are
the major characteristics of machining centers?” The rule-
based expert system recognizes the question by the words
“what”. Then the ignored words are stripped out of the
question to yield the search string of keywords “major;
characteristics; machining; centers.” LEA then retrieves the
knowledge object(s) that closely answers this question. The
command “searchKnowledge” (Figure 12a) instructs the
search engine to search the knowledge base using the search
string. The knowledge object(s) with the highest score is
7 Copyright © 2006 by ASME

http://www.asme.org/about-asme/terms-of-use

Downloa
offered as the answer to the user’s questions. Note that if
the user asks the same question twice the same answer is
returned. In Figure 12b the rule for showing the user more
information is shown. This rule is triggered when the user
says, for example, “tell me more.” The required words
“tell” and “more” trigger the rule. The command
“searchKnowledgeMore” instructs the search engine to find
more documents that contain the last search string keywords
ranked by relevance. Thus, the first time the user says “tell
me more” the knowledge objects that give the highest
search score are returned. The second time, the knowledge
objects with the next highest score are returned and so on.
Depending on the search score the agent will say before
speaking a knowledge item an appropriate remark such as
“Here is a possible answer” or “I am not sure about this
answer.” Also, when any knowledge object is presented to
the student, it is time stamped. This time stamp is used to
insure that the “searchKnowledgeMore” does not keep
returning the same answer. Any knowledge item presented
within a certain time (say 5 min.) is excluded from the
search. If no more information is found, then a web search
is initiated using the search keywords. LEA dynamically
creates a web page of the top 4 links, displays it, and the
virtual instructor speaks the content to the user.

 (a)

(b)

DEF what_rule RuleType1 {
 require 100 -100 ["what" "tell" "amplify" "explain" "elaborate"
 "describe" "can" "how" "why" "when" “give detail”

 "give details"]
 require -100 0 ["value" "color" "more"]
 ignore ["i" "would" "to" "two" "like" "know" "a" "the" "me" "do"

 "does" "about" "on" "regarding" "concerning" "by" "you"]
 searchKnowledge concept_Phrases concept_Objs 2
}

DEF moreinfo_rule RuleType1 {
 require 50 -100 ["tell" "amplify" "explain" "elaborate" "describe" "can"
 "how" "why" "when" “give detail” “give details”]
 require 50 -100 ["more" "detail"]
 require -100 0 ["value" "color"]
 ignore ["i" "would" "to" "two" "like" "know" "a" "the" "me" "do"

 "does" "about" "on" "regarding" "concerning" "by" "you"
 "information"]

 searchKnowledgeMore concept_Phrases concept_Objs 3
}

Figure 12 (a) Typical question rule; and (b) typical “more
information” rule.

• State properties define the state in which LEA is to be left
after execution of a command. State attributes allow LEA to
remember information about the last command. This
information can be used in the current command so that the
user does not have to repeat the context of the command.
For example, the user can say “turn marshaling box control
selector switch to local”. This will trigger the rules, which
will execute the command and at the same time set the state
to “marshaling box control selector switch.” The next
command, the user can say “turn it to remote.” LEA tries to
execute the command first without using any states. If it
cannot, then it appends the first state to the command and
tries to execute it. Then it appends the second state and so
on until the command can be executed. Thus, the command
will be interpreted as “turn marshaling box control selector
switch to remote.”

The hierarchical rules approach takes advantage of the object-
oriented hierarchical data structure of the 2D and 3D display

ded From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Us
engines. Typically the rules are organized into three main types,
namely, object, property, and action rules:

• An object rule is triggered when the object name/alias is
found in the user’s command. It then ‘connects’ to a rules
group containing a set of rules that correspond to the
properties of the object.

• A property rule is triggered when the property name/alias is
found in the user’s command. It connects to a group of rules
containing actions that can be performed on the property.

• Actions rules contain a set of actions that can be performed
on properties. These include:
o Setting the property to a desired numerical or linguistic

value (very high, high, medium, low, very low, etc.). An
example of a command is: “Set the fan speed to high.”
In this case, “fan” is the object, “speed” is the property,
“set” is the action, and “high” is the value.

o Increasing or decreasing the property by a desired
numerical value or linguistic value (“increase value a
little”, “decrease fan speed a lot”, “reduce pressure by a
moderate amount”, etc.).

o Increasing or decreasing the property by a desired
percentage.

o Inquiring about the value of an object’s property. For
example, “what is the pressure valve position?”

5. PROCESS KNOWLEDGE-BASE ENGINE
The hierarchical process knowledge base enables LEA to train
a student step-by-step how to perform a certain task. A process
consists of a set of steps as well as other processes. Each
process and step can have pre- and post-constraints. Pre-
constraints have to be satisfied before the step/process can be
started. Post-constraints have to be satisfied before the
step/process is completed. Not that the process, step and
constraint are objects. Figure 13 shows an example of a
process, process steps and associated constraints. The process
has the following types of properties:

• Spoken messages including the process objective and short
message which the agent can speak at the beginning of
tutoring or guiding the user through this process.

• A set of suggestion questions that the agent can ask the user.
If the user answers yes to the question, then the specific
process mode (tutor, guide, supervisor, etc.) is executed.

• A set of natural-language navigation rules including the
natural-language rules for recognizing: yes, no, go back a
step, skip, continue, pause, and abort.

• Time constants for the various training modes.
• A list of the process steps including other processes needed

to complete the process.
• A list of the process pre-constraints.
• A list of the process post-constraints.

The Step object properties specify either an action or a passive
action (e.g., observing) that is to be performed as part of the
step. The action is written as a natural-language command and
is sent to the knowledge disseminator to be spoken and
converted to a script through the expert system. The script is
sent to the 3D or 2D display engines. The passive action is
spoken by the agent and is not sent to the expert system (e.g.
“verify that breaker 31 15 is closed by viewing that it is
8 Copyright © 2006 by ASME

e: http://www.asme.org/about-asme/terms-of-use

Downloa
illuminated red” in Figure 13). A step also has a property
“runScript” that specifies a script that is to be sent to the
display engine. This allows sending script to the avatar to point
at a specific object or displaying a pointing arrow. Similar to
processes, steps also have pre-constraints and post-constraints.

The Constraint object properties include a property that sends a
script requesting a state variable(s) from the display engine.
Depending on the value of this variable, the agent can
determine if the constraint is violated or not. If the constraint is
not violated, then the next step is presented to the trainee. If the
constraint is violated, then a message informing the user of the
detected constraint violation and proposed corrective measures
is spoken to the user. The user is then requested to repeat the
step where the constraint was violated.
 DEF Proc_ground_maindrive Process {
 objective "ground the tunnel main drive"
 message "Grounding or securing the main drive consists of 21 steps"
 tutorQuestion "Would you me to show you how to ground the main drive?"
 guideQuestion "Would you like me to guide you through grounding the main drive?"
 superQuestion "Would you like to ground the main drive?"
 infoQuestion "Would you like me to tell you the steps for grounding the main drive?"
 continueRule USE continue_rule
 skipRule USE skip_rule
 backRule USE back_rule
 yesRule USE yes_rule
 noRule USE no_rule
 abortRule USE abort_rule
 pauseRule USE pause_rule
 doneRule USE done_rule
 speakTime 3 tutorTime 10 guideTime 60
 steps [Step {state1 "e e room"

 action "go to the e e room"
noAction "My assistant can guide you through the process."
runScript "EEroomAgent.goto = EEroom_Loc;"

 }
 Step {action "go to the blue marshaling box"

runScript "EEroomAgent.goto = EEroom_MarshalingBox_Loc;"
 }

 Step {noAction "verify that breaker 31 15 are closed by viewing that it is illuminated red."
runScript "ree_marshalbox_ind3115.showArrow; "
postConstraints [DEF cst_ree_marshalbox_ind3115 Constraint

{condition "IvServer.sendString = ree_marshalbox_ind3115.value;"
 trueValue "1"
 caseFalse "An error was detected." "Breaker 31 15 is open."

 "Please perform procedure x to close breaker 31 15."
}

]
 }

 Step {action "turn marshaling box key to local"
 runScript "ree_marshalbox_key.showArrow;"
 postConstraints [DEF cst_ree_marshalbox_key_local Constraint

{condition "IvServer.sendString = ree_marshalbox_key.value;"
 trueValue "1"
caseFalse "You made a mistake

 <!IVRscript tutor.setSw = 'emot eyesmad3 headshake’>."
"You left the marshaling box key on remote
<!IVRscript tutor.setSw = 'emot off' IVR>."
"Marshaling box key should be set to local."

}
]

}
…………
]

postConstraints [USE cst_ree_pcc_indIsolatorGround_on
 USE cst_ree_pcc_selswitch_remote
 USE cst_ree_cubicledoor_close
 USE cst_ree_cubicle_keyKG_cam_in
]

}

Process objective

Process time
constants

Process
Post-constraints

Figure 13 Example of a hierarchical process object.

LEA process training supports the following training modes:
• Process Tutor. The virtual tutor performs the process steps

while the user is watching. The user can pause/resume,
repeat (go back) a step, or skip a step.

• Process Guide. The tutor guides the user step-by-step
through the process. The tutor will not go to the next step
until the user says a command such as “go on”, “continue”,
or “proceed.” The user has to perform each process step.
The agent checks the process constraints to determine if the

ded From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Us
user performed the step correctly. If a constraint is violated,
then the tutor instructs the user to repeat the step. If the user
does not perform the step correctly three times in a row,
then the tutor performs the step.

• Process Info. This mode is similar to the tutor mode except
that the agent will only recite the process steps to the user
without demonstrating how they are done.

• Process Certification. The tutor instructs the user to
perform the process. LEA keeps track of the user’s mistakes
and lists them at the end of the process. If no mistakes are
detected, then the tutor certifies the user in the process.

• Intelligent Virtual Assistant. The virtual assistant asks the
avatar to perform a process. The assistant performs the
process while the user can either watch the agent or do
something else.

6. APPLICATIONS
Figure 2 shows a screenshot of a lecture driven using LEA on
“Shielded Metal Arc Welding.” The Figure shows the virtual
instructor speaking the material. The virtual instructor lips and
gestures are synched with the speech. The speech is displayed
and highlighted on the bottom of the screen. The lecture outline
is shown on the left-hand-side along with the current outline
item that is being delivered. In the center of the screen a
multimedia presentation that is synchronized with the
instructor’s speech and that includes text, pictures and a movie
is shown. If the student pauses the lecture, the instructor’s
speech along with the multimedia illustrations and movie are
paused.

Figure 6 shows a screenshot of a lecture on “CNC machining
centers.” Figure 9 shows a screenshot of a quiz question from
that lecture. Figure 14 shows a screenshot of a lecture on
“Launch vehicle design process.” Note that the location of the
instructor, tutor, and outline windows are different than in the
previous figures. Also, note that for this lecture a custom
navigation screen is used. LEA allows the user interface to be
customizable. In addition, LEA windows can be moved and
resized by the user.

Figure 15 shows a lecture on “CFD visualization of a blended-
wing body aircraft.” In this lecture LEA is controlling IVRESS
(3D VE engine) to display a 3D large-scale CFD dataset [3-5].
The virtual instructor gives the user a lecture on how to use
natural-language to control the CFD visualization such as
coloring/contouring the airplane using a scalar response
quantity such as pressure (Figure 15a); displaying streamlines
with animated particles (Figure 15b); displaying an iso-surface
of a scalar response quantity; or flow feature extraction such as
vortex cores and surface flow characteristics.

Figure 16 shows the instructor showing the student one of the
steps a CNC milling machine startup procedure: LEA controls
IVRESS to show the arrow pointing at the machine power lever
and controls the avatar display engine so that the instructor can
walk to face the machine power junction cabinet.
9 Copyright © 2006 by ASME

e: http://www.asme.org/about-asme/terms-of-use

Download

Figure 14 LEA screen of a lecture on launch vehicle design

consisting of: course, agent, speech, outline & navigation windows

(a)

(b)

Figure 15 Typical screens form a LEA lecture on CFD visualization

of a blended wing body aircraft.

Figure 16 A snapshot taken during training a step of a CNC milling

machine start-up procedure.

ed From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Us
7. CONCLUDING REMARKS
LEA, a web-based software system for advanced multimedia
and virtual-reality education and training, was presented. LEA
provides the following education and training functions:
• Multimedia lecture delivery including synchronized:

animated 2D and 3D graphics, speech, and
written/highlighted text

• Virtual-reality based step-by-step process training in a
compelling near-photorealistic 3D virtual environment.

• Testing capability.

LEA includes many of the capabilities that are currently only
available through a human instructor such as: instruction
delivery using natural speech and gestures; capability to answer
the student’s natural-language questions; and ability of the
student to pace the instruction delivery.

ACKNOWLEDGEMENTS
Applications of LEA were supported by several federal and
state research contracts and grants, namely: NSF STTR grants
number 0339024 and 0521710; Indiana 21st Century Research
& Technology Fund grant number 0043; Virginia Institutes of
Excellence contracts; and NASA sub-contracts. The author
would also like to acknowledge the collaboration with various
education and research institutions including Paul D. Camp
Community College, Franklin, VA and IUPUI, Indianapolis,
IN; and companies including Northrop Grumman, Philip
Morris and DuPont in developing various LEA applications.
The author would also like to thank Haptek Inc. for providing
the human avatars’ display engine.

REFERENCES
1. Roth, W-M., “Gestures: their role in teaching and learning,”

Review of Educational Research, Vol. 71(3), pp. 365-392, 2001.
2. Wasfy, T.M. and Noor, A.K., “Rule-based natural-language

interface for virtual environments,” Advances in Engineering
Software, Vol. 33(3), pp. 155-168, 2002.

3. Wasfy, T.M. and Wasfy, A.M., “Strategy for effective
visualization of CFD datasets in virtual environments,” ASME
Paper No. DETC2003-48294, Proceeding of the DETC: 23rd
Computers and Information in Engineering (CIE) Conference,
ASME DETC, Chicago, IL, 2003.

4. Wasfy, A.M., Wasfy, T.M. and Noor, A.K., “Intelligent virtual
environment for process training,” Advances in Engineering
Software, Vol. 35(6), pp. 337-355, 2004.

5. Wasfy, H.M, Wasfy, T.M. and Noor, A.K., “An interrogative
visualization environment for large-scale engineering
simulations,” Advances in Engineering Software, Vol. 35(12), pp.
805-813, 2004.

6. Wasfy, A.M., Wasfy, T.M., El-Mounayri, H., and Aw, D., “Web-
based multimedia lecture delivery system with text-to-speech and
virtual instructors,” DETC2005-84692, 25th Computers and
Information in Engineering Conference, Long Beach, CA, 2005.

7. http://www.macromedia.com/software/, Macromedia Flash 8
Player.

8. IVRESS (Integrated Virtual Reality Environment for Synthesis
and Simulation), http://www.ascience.com/ScProducts.htm,
Advanced Science and Automation Corp., 2006.

9. ISO/IEC 14772-1: 1997 Virtual Reality Modeling Language
(VRML97), The VRML Consortium Incorporated, 1997.

10. www.haptek.com
11. Sharable Content Object Reference Model (SCORM), 2nd

Edition, www.adlnet.org, 2004.
10 Copyright © 2006 by ASME

e: http://www.asme.org/about-asme/terms-of-use

