Chapter 42

PC_Tree: Prime-Based and Compressed Tree
for Maximal Frequent Patterns Mining

Mohammad Nadimi-Shahraki, Norwati Mustapha, Md Nasir B Sulaiman,
and Ali B Mamat

Abstract Knowledge discovery or extracting knowledge from large amount of data
is a desirable task in competitive businesses. Data mining is an essential step in
knowledge discovery process. Frequent patterns play an important role in data min-
ing tasks such as clustering, classification, and prediction and association analysis.
However, the mining of all frequent patterns will lead to a massive number of pat-
terns. A reasonable solution is identifying maximal frequent patterns which form the
smallest representative set of patterns to generate all frequent patterns. This research
proposes a new method for mining maximal frequent patterns. The method includes
an efficient database encoding technique, a novel tree structure called PC_Tree and
PC_Miner algorithm. Experiment results verify the compactness and performance.

Keywords Maximal frequent pattern - frequent pattern - prime number - database
encoding

42.1 Problem of Maximal Frequent Patterns Mining

Since the introduction of the Apriori algorithms [1], frequent patterns mining plays
an important role in data mining research for over a decade. Frequent patterns are
itemsets or substructures that exist in a dataset with frequency no less than a user
specified threshold.

Let L = {ij,iy...i,} be a set of items. Let D be a set of database transactions
where each transaction T is a set of items and |D| be the number of transactions
inD. Given P = {ij...ix} be asubsetof L (j < kand 1 < j, k < n)is called a

M. Nadimi-Shahraki ()

Department of Computer Engineering, Islamic Azad University, Najafabad branch, Iran and PhD
student of Computer Science, Faculty of Computer Science and Information Technology, Putra
University of Malaysia, 43400 UPM, Selangor, Malaysia

E-mail: adminl @iaun.ac.ir

S.I. Ao and L. Gelman (Eds.), Advances in Electrical Engineering and Computational 495
Science, Lecture Notes in Electrical Engineering.
(© Springer Science + Business Media B.V. 2009

496 M. Nadimi-Shahraki et al.

pattern. The support of a pattern P or S (P) in D is the number of transactions in D
that contains P. Pattern P will be called frequent if its support is no less than a user
specified support threshold min_sup ¢ (0 < ¢ < |D|).

In many real applications especially in dense data with long frequent patterns
enumerating all possible 2" — two subsets of an L length pattern is infeasible [2].
A reasonable solution is identifying a smaller representative set of patterns from
which all other frequent patterns can be derived [3]. Maximal frequent patterns
(MFP) form the smallest representative set of patterns to generate all frequent pat-
terns [4]. In particular, the MFP are those patterns that are frequent but none of their
supersets are frequent. The problem of maximal frequent patterns mining is finding
all MFP in D with respect to o.

This research introduces a new method to find all MFP using only one database
scan. The method includes an efficient database encoding technique, a novel tree
structure called Prime-based encoded and Compressed Tree or PC_Tree and also
PC_Miner algorithm. The database encoding technique utilizes prime number the-
ory and transforms all items from each transaction into only a positive integer. The
PC_Tree is a novel and simple tree structure but yet efficient to capture whole of
transactions information. The PC_Miner algorithm traverses the PC_Tree efficiently
using pruning techniques to find the MFP.

42.2 Related Work

Many efficient algorithms have been introduced to solve the problem of maximal
frequent pattern mining more efficiently. They are almost based on three funda-
mental frequent patterns mining methodologies: Apriori, FP-growth and Eclat [5].
Mostly, they traverse the search space to find MFP. The key to an efficient traversing
is the pruning techniques which can remove some branches in the search space. The
pruning techniques can be categorized into two groups:

SUBSET FREQUENCY PRUNING: THE ALL SUBSETS OF ANY FREQUENT PATTERN
ARE PRUNED BECAUSE THEY CAN NOT BE MAXIMAL FREQUENT PATTERN.
SUPERSET INFREQUENCY PRUNING: THE ALL SUPERSETS OF ANY INFREQUENT
PATTERN ARE PRUNED BECAUSE THEY CAN NOT BE FREQUENT PATTERN.

The Pincer-Search algorithm [6] uses horizontal data layout. It combines a bottom-
up and a top down techniques to mine the MFP. However search space is traversed
without an efficient pruning technique. The MaxMiner algorithm [4] uses a breadth-
first technique to traverse of the search space and mine the MFP. It makes use of
a look ahead pruning strategy to reduce database scanning. It prunes the search
space by both subsets frequency and supersets infrequency pruning. The Depth
Project [7] finds MFP using a depth first search of a lexicographic tree of patterns,
and uses a counting method based on transaction projections. The DepthProject
demonstrated an efficient improvement over previous algorithms for mining MFP.
The Mafia [2] extends the idea in DepthProject. It uses a search strategy has been

42 PC_Tree 497

improved by an effective pruning mechanisms. The MaxMiner, DepthProject and
Mafia use Rymon’s set enumeration [8] to enumerate all the patterns. Thus these
algorithms avoid having to compute the support of all the frequent patterns. The
Flex [9] is a lexicographic tree designed in vertical layout to store pattern P and
list of transaction identifier where pattern P appears. Its structure is restricted test-
and-generation instead of Apriori-like is restricted generation-and-test. Thus nodes
generated are certainly frequent. The Flex tree is constructed in depth-first fash-
ion. Recently a new two-way-hybrid algorithm [10] for mining MFP uses a flexible
two-way-hybrid search method. The two-way-hybrid search begins the mining pro-
cedure in both the top-down and bottom-up directions at the same time. Moreover,
information gathered in the bottom-up can be used to prune the search space in the
other top down direction.

42.3 Proposed Method

This research proposes a new method to mine all MFP in only one database scan
efficiently. The method introduces an efficient database encoding technique, a novel
tree structure called PC_Tree to capture transactions information and PC_Miner
algorithm to mine MFP.

42.3.1 Database Encoding Technique

The presentation and encoding of database is an essential consideration in almost all
algorithms. The most commonly database layout is the horizontal and vertical layout
[11]. In both layouts, the size of database is very large. The database encoding is a
useful technique which can reduce the size of database. Obviously, reducing of the
size of database can enhance performance of mining algorithms. Our method uses a
prime-based database encoding technique to reduce the size of transaction database.
It transforms each transaction into a positive integer called Transaction Value (TV)
during of the PC_Tree construction as follows: Given transaction T = (tid, X) where
tid is the transaction-id and X = {i; ...ix} is the transaction-items or pattern X.
While the PC_Tree algorithm reads transaction T, the encoding procedure considers
a prime number p, for each item i, in pattern X, and then TVyq4 is computed by
Eq. (42.1). Therefore, all transactions can be represented in new layout using this
encoding technique.

k
TVig =[] Pr T = (id.X) 42.1)
J
X+ = {i; ...ir} and i, is presented by p,)

498 M. Nadimi-Shahraki et al.

Table 42.1 The transaction database DB and its Transaction Values

TID Items Encoded TV

1 A,B,C,D,E 2,3,5,7,11 2,310
2 A,B,C,D,F 2,3,5,7,13 2,730
3 A,B.E 2,3, 11 66
4 A,C,D,E 2,5,7,11 770
5 C,D,F 5,7,13 455
6 A,C,D,F 2,5,7,13 910
7 A,C,D 2,5,7 70
8 C,D,F 5,7,13 455

The encoding technique utilizes Eq. (42.1) based on simple following definitions.

A positive integer N can be expressed by unique product
N = pi"' p5? ... p;'" where P; is prime number,
p1 < p2 < --- pr and m; is a positive integer, called the multiplicity of p; [12].

For example, N = 1,800 = 23%32x52. Here we restrict the multiplicity to m; = 1
because there is no duplicated item in transaction T.

To facilitate the process of the database encoding technique used in our method,
let’s examine it through an example. Let item set L = {A, B, C, D, E, F} and the
transaction database, DB, be the first two columns of Table 42.1 with eight transac-
tions. The fourth column of Table 42.1 shows TV;4 computed for all transactions.

42.3.2 PC_Tree Construction

Using tree structure in mining algorithms makes two possibilities to enhance the
performance of mining. Firstly, data compressing by well-organized tree structures
like FP-tree. Secondly, reducing search space by using pruning techniques. Thus
the tree structures have been considered as a basic structure in previous data mining
research [5,9, 13]. This research introduces a novel tree structure called PC_Tree
(Prime-based encoded and Compressed Tree). The PC_Tree makes use of both
possibilities data compressing and pruning techniques to enhance efficiency.

A PC_Tree includes of a root and some nodes that formed sub trees as children
of the root or descendants. The node structure consisted mainly of several different
fields: value, local-count, global-count, status and link. The value field stores TV
to records which transaction represented by this node. The local-count field set by
1 during inserting current TV and it is increased by 1 if its TV and current TV
are equal. The global-count field registers support of pattern P which presented by
its TV.

In fact during of insertion procedure the support of all frequent and infrequent
patterns is registered in the global-count field. It can be used for interactive mining
where min_sup is changed by user frequently [13]. The status field is to keep track-

42 PC_Tree 499

2310:1 2730:1 2310:1 2730:1 2310:1 2730:1
TID TV | | \ |
1 2310 66:1 66:1 770:1 455:1
2 2730 (b) After insert TIDs 1-2 (c) After insert TID 3 (d) After insert TIDs 45
3 66
$om {} {} {}
5 455 / \ / \ / \
6 910
2310:1 2730:1 2310:1 2730:1 2310:1 2730:1
s e IN I T IN
8 455
66:1 770:1 910:1 66:1 770:1 910:1 66:1 770:1 910:1
(a) TVs of the DB | | |
455:1 70:1 455:1 70:1 455:2
(e) After insert TID 6 (f) After insert TID 7 (g) After insert TID 8

Fig. 42.1 Construction of PC_Tree

ing of traversing. When a node visited in the traversing procedure the status field is
changed from O to 1. The link field is to form sub trees or descendants of the root.
Figure 42.1 shows step by step construction of PC_Tree for transactions shown
in Table 42.1 which summarized in Fig. 42.1a.
The construction operation mainly consists of insertion procedure that inserts
TV(s) into PC_Tree based on definitions below:

Definition 42.1. IF TV OF NODE n, AND ng IS EQUAL THEN r = s. INSER-
TION PROCEDURE INCREASES LOCAL — COUNT FIELD OF NODE 71, BY 1l IF THE
CURRENT TV IS EQUAL WITH TV OF n,.

Definition 42.2. R = (n;,n;—;...nj,ron) 1S A DESCENDANT IFF TV OF NODE
n, € R(i < r < j) CAN DIVIDE ALL TVS KEPT IN NODES DESCENDANT
Ry = (n,+1,nr+2, NGE root).

Definition 42.3. TV OF THE ROOT IS ASSUMED NULL AND CAN BE DIVIDED
BY ALL TVSs.

Definition 42.4. NODE#n, CAN BE BELONGED TO MORE THAN ONE DESCENDANT.

Figure 42.1b shows insertion of the first and second transactions. The second TV
with value 2,730 can not be divided by the first TV with value 2,310 and it creates
a new descendant using definition 2 and 3. Transactions 3—6 are inserted into their
descendant based on definition 2 shown in Fig. 42.1c—e. Insertion of the seventh
transaction applies definition 4 when TV 70 is belonged to two descendants (second
descendant shown in the red and bold line) shown in Fig. 42.1f. The TV of eighth

500 M. Nadimi-Shahraki et al.

transaction with value 455 is equal with the fourth TV, then the local-count field
of forth TV is increased by 1 using definition 1 shown in Fig. 42.1g (shown in
underline).

Each TV in PC_Tree represents a pattern P and the support of pattern P or S (P)
is registered in the global-count field. Given pattern P and Q have been presented by
TVP and TVQ respectively, the PC_Tree has some nice below properties:

Property 42.1. The S (P) is computed by traversing only descendants of TVP.

Property 42.2. P and Q belong to descendant R and S (P) < S (Q) iff TVP can be
divided by TVQ.

Property 42.3. S (P) > o and S (P’s fathers in its descendants) < o IFF P is a
Maximal Frequent Pattern.

Property 42.4. Nodes are arranged according to TV order, which is a fixed global
ordering. In fact the PC_Tree is an independent-frequency tree structure.

Property 42.5. important procedures are almost done only by two simple math-
ematic operations product and division. Obviously using mathematic operation
enhances the performance instead of string operation.

42.3.2.1 PC_Miner Algorithm

As explained in previous section, during of insertion each TV in the PC_Tree, the
following procedures are done.

(a) Item-frequency counting
(b) Local-counting
(c) Global-counting
(d) Descendant constructing

The PC_Miner algorithm traverses the completed PC_Tree to discover the MFP in
top-down direction. There is no need to database scan again, because all informa-
tion about items and patterns are stored in the PC_Tree. However Fig. 42.1g as a
completed PC_Tree didn’t show some information like global-count stored in the
tree. The miner algorithm makes use of a combined pruning strategy including both
superset infrequency and subset frequency pruning. As a result the search space
is reduced, which dramatically reduces the computation and memory requirement
and enhances the efficiency. The superset infrequency pruning is assisted by the
frequency of items computed during the PC-Tree construction. Table 42.2 shows
the item frequency and considered prime number for transaction database shown in
Table 42.1.

To illustrate the pruning strategy used in the PC_Miner algorithm let’s examine
it by some examples. Figure 42.2 shows the completed PC_Tree using TVs and
patterns respectively. Given 0 = 5, according to Table 42.2, infrequent item set
(IFT) consists of {B, E, F} then all superset of IFI like node (A, B, C, D, E) can be

42 PC_Tree 501

Table 42.2 Frequency of items and considered prime numbers

Item Prime number Item frequency

A 2 6
B 3 3
C 5 7
D 7 7
E 11 3
F 13 4
{}
{} (A,B,C,D,E): 1 (A,B,C,D,F): 1
2310:1 2730:1 \
| \ | (A,B,E):1 (A,C,D,E): 1 A,C,D,F):1
66:1 770:1/910:1 ‘ /
70:1 455:2 (A, C,D): 1 (C,D,F): 2
(a) The completed PC_Tree using TVs (b) The completed PC_Tree using patterns

Fig. 42.2 The completed PC_Tree

pruned — the superset infrequency pruning. Given ¢ has been changed from 5 to 2
then all items are frequent. While the PC_Miner traverses left sub tree or descendant
of node (A, B, C, D, E), node (A, C, D, E) is found as a maximal frequent — the
property 3. Then all its subsets (here is only node (A, C, D)) are pruned — the subset
frequency pruning.

42.4 Experimental Results

In this section, the accuracy and performance of the method is evaluated. All the
experiments are performed on PC with CPU Intel P4 2.8 GHz, 2 GB main mem-
ory, and running Microsoft Windows XP. All the algorithms are implemented using
Microsoft Visual C++6.0.

In first experiment, the Synthetic data used in our experiments are generated
using IBM data generator which has been used in most studies on frequent patterns
mining. We generate five datasets with number of items 1,000, average transaction
length ten and number of transaction 1,000-10,000 that called D1, D2, D4, DS,
and D10 respectively. In this experiment, the compactness of our database encoding
technique is verified separately. In fact all TVs transformed are stored in a flat file

502 M. Nadimi-Shahraki et al.

7 A

@ 6 —— Original dataset
o —— Encoded File
S 97
i
g 37
=]
5 2
81
22}
0 T T T |
DI D2 D4 D8 D10

Fig. 42.3 The compactness of the database encoding technique

2500 -
2000 H
1500 -

1000 -

Numbers of MFP

500 -

0 T T T |
5 4 3 2

Min_sup %

—_

Fig. 42.4 The number of MFP discovered for T10.16.D10k

called encoded file then size of this file is compared with the size of original dataset.
It shows good results and reducing the size of these datasets more than half as shown
in Fig. 42.3.

In second experiment, we show accuracy and correctness of the method. The
test dataset T10.16.D10K is also generated synthetically by the IBM data generator.
Figure 42.4 shows the numbers of maximal frequent patterns discovered for the tests
at varying min_sup on this dataset.

In third experiment, in order to evaluate the scalability of our new algorithm,
we applied it as well as Apriori to four IBM dataset generated in experiment 1.
Figure 42.5 shows the performance of two algorithms as a function of the num-
bers of transactions for min_sup 2%. When number of transaction is less than 5,000
Apriori slightly outperforms the PC_Miner in execution time. When the numbers of
transactions are increased, the execution time of Apriori degraded as compared to
the PC_Miner.

Fourth experiment is to compare the performance of the PC-Miner with the Apri-
ori and Flex algorithms on the dataset mushroom, which is a real and dense dataset
contains characteristics of various species of mushrooms [14]. In dataset mushroom,
there are 8,124 transactions, the number of items is 119 and the average transaction
length is 23. Figure 42.6 shows the PC_Miner algorithm outperforms both Apriori
and Flex algorithms.

42 PC_Tree 503

74 —¥— Apriori
—o— PC_Miner

Time (100 sec)
N

0 T T T |
D1 D2 D4 D8 D10

Fig. 42.5 The scalability of PC_Miner vs. Apriori on datasets D1-D10

1.2+ —*— Flex

14 —e— PC_Miner
0.8 4 —&— Apriori
0.6
0.4+

Time (100 sec)

0.2
),
0

10 8 6 4 2
Min_sup %

—_

Fig. 42.6 The performance of PC-miner vs. Flex on dataset mushroom

42.5 Conclusion and Future Works

In this paper, we proposed a new method to discover maximal frequent patterns effi-
ciently. Our method introduced an efficient database encoding technique, a novel
tree structure called Prime-based encoded and Compressed Tree or PC_Tree and
also PC_Miner algorithm. The experiments verified the compactness of the database
encoding technique. The PC_Tree presented well-organized tree structure with nice
properties to capture transaction information. The PC_Miner reduced the search
space using a combined pruning strategy to traverses the PC_Tree efficiently. The
experimental results showed the PC_Miner algorithm outperforms the Apriori and
Flex algorithms. For interactive mining where min_sup can be changed frequently,
the information kept in the PC_Tree can be used and tree restructuring is no needed.

In fact this research introduced a number-theoretic method to discover MFP
that made use of prime number theory and simple computation based on division
operation and a combined pruning strategy. There are some directions for future
improvement optimal data structures, better memory management and pruning
method to enhance the efficiency. This method also can be extended for incremental
frequent patterns mining where transaction database is updated or minimum support
threshold can be changed [13].

504 M. Nadimi-Shahraki et al.

References

1. R. Agrawal and R. Srikant, Fast algorithms for mining association rules, 20th International
Conference. Very Large Data Bases, VLDB, 1215: 487-499 (1994).

2. D. Burdick, M. Calimlim, and J. Gehrke, Mafia: A maximal frequent itemset algorithm for
transactional databases, 17th International Conference on Data Engineering: pp. 443-452
(2001).

3. S. Bashir and A.R. Baig, HybridMiner: Mining Maximal Frequent Itemsets Using Hybrid
Database Representation Approach, 9th International Multitopic Conference, IEEE INMIC:
pp. 1-7 (2005).

4. R.J.Bayardo Jr, Efficiently mining long patterns from databases, ACM SIGMOD International
Conference on Management of Data: pp. 85-93 (1998).

5. J. Han, H. Cheng, D. Xin, and X. Yan, Frequent pattern mining: Current status and future
directions, Data Mining and Knowledge Discovery, 15(1): 55-86 (2007).

6. D.I Lin and Z.M. Kedem, Pincer-Search: A New Algorithm for Discovering the Maximum
Frequent Set, Advances in Database Technology—EDBT’98: 6th International Conference on
Extending Database Technology, Valencia, Spain (1998).

7. R.C. Agarwal, C.C. Aggarwal, and V.V.V. Prasad, Depth first generation of long patterns,
Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining:
pp. 108-118 (2000).

8. R. Rymon, Search through systematic set enumeration, Third International Conference on
Principles of Knowledge Representation and Reasoning: pp. 539-550 (1992).

9. N. Mustapha, M.N. Sulaiman, M. Othman, and M.H. Selamat, FAST DISCOVERY OF LONG
PATTERNS FOR ASSOCIATION RULES, International Journal of Computer Mathematics,
80(8): 967-976 (2003).

10. F. Chen, and M. Li, A Two-Way Hybrid Algorithm for Maximal Frequent Itemsets Mining,
Fourth International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2007.

11. M.J. Zaki, Scalable algorithms for association mining, IEEE Transactions on Knowledge and
Data Engineering, 12(3): 372-390 (2000).

12. T.T. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to algorithms: MIT Press,
Cambridge, MA (1990).

13. M. Nadimi-Shahraki, N. Mustapha, M.N. Sulaiman, and A. Mamat, Incremental updating of
frequent pattern: basic algorithms, Second International Conference on Information Systems
Technology and Management (ICISTM 08) (1): 145-148 (2008).

14. C.B.a.C. Merz, UCI Repository of Machine Learning, 1998.

