
Temporal LogicMotionPlanning forDynamicRobots

Georgios E. Fainekos a, Antoine Girard b, Hadas Kress-Gazit a, George J. Pappas a

a3330 Walnut St, GRASP Laboratory, University of Pennsylvania, PA 19104, US

bLaboratoire Jean Kuntzmann, Université Joseph Fourier

Abstract

In this paper, we address the temporal logic motion planning problem for mobile robots that are modeled by second order
dynamics. Temporal logic specifications can capture the usual control specifications such as reachability and invariance as
well as more complex specifications like sequencing and obstacle avoidance. Our approach consists of three basic steps. First,
we design a control law that enables the dynamic model to track a simpler kinematic model with a globally bounded error.
Second, we built a robust temporal logic specification that takes into account the tracking errors of the first step. Finally, we
solve the new robust temporal logic path planning problem for the kinematic model using automata theory and simple local
vector fields. The resulting continuous time trajectory is provably guaranteed to satisfy the initial user specification.

Key words: Motion Planning, Temporal Logic, Robustness, Hybrid Systems, Hierarchical Control.

1 Introduction

One of the main challenges in robotics is the development
of mathematical frameworks that formally and verifi-
ably integrate high level planning with continuous con-
trol primitives. Traditionally, the path planning problem
for mobile robots has considered reachability specifica-
tions of the form “move from the Initial position I to the
Goal position G while staying within region R”. The so-
lutions to this well-studied problem span a wide variety
of methods, from continuous (like potential or naviga-
tion functions [4, §4]) to discrete (like Canny’s algorithm,
Voronoi diagrams, cell decompositions and probabilistic
road maps [4,24]).

Whereas these methods solve the basic path planning
problem, they do not address high level planning issues
that arise when one considers a number of goals or a
particular ordering of them. In order to manage such
constraints, one should employ one of the existing high
level planning methods [24]. Even though the aforemen-
tioned methods can handle partial ordering of goals, they

? Corresponding author G. E. Fainekos. This research is
partially supported by NSF EHS 0311123, NSF ITR 0121431
and ARO MURI DAAD 19-02-01-0383.

Email addresses: fainekos@grasp.upenn.edu (Georgios
E. Fainekos), antoine.girard@imag.fr (Antoine Girard),
hadaskg@grasp.upenn.edu (Hadas Kress-Gazit),
pappasg@grasp.upenn.edu (George J. Pappas).

cannot deal with temporally extended goals. For such
specifications, planning techniques [15] that are based
on model checking [5] seem to be a better choice. Using
temporally extended goals, one would sacrifice some of
the efficiency of the standard planning methods for ex-
pressiveness in the specifications. Temporal logics such
as Linear Temporal Logic (LTL) [30] and its continuous
time version propositional temporal logic over the reals
(RTL) [31] have the expressive power to describe a con-
ditional sequencing of goals under a well defined formal
framework.

Such a formal framework can provide us with the tools
for automated controller synthesis and code generation.
Beyond the provably correct synthesis of hybrid con-
trollers for path planning from high level specifications,
temporal logics have one more potential advantage when
compared to other formalisms, e.g., regular languages
[22]. That is to say, temporal logics were designed to bear
a resemblance to natural language. Along the same lines,
one can develop computational interfaces between nat-
ural language and temporal logics [23]. This fact alone
makes temporal logics a suitable medium for our daily
discourse with future autonomous agents.

In our previous work [11], we have combined such plan-
ning frameworks with local controllers defined over con-
vex cells [3,7] in order to perform temporal logic mo-
tion planning for a fully actuated kinematics model of
a robot. In a kinematics model, the control inputs to

Preprint submitted to Automatica 10 December 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357404217?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the system are actually the desired velocities. However,
when the velocity of the mobile robot is high enough, a
kinematics model is not enough any more, necessitating
thus the development of a framework that can handle a
dynamics model. In a dynamics model, as opposed to a
kinematics model, the control inputs are the forces (or
accelerations) that act upon the system. In this paper,
we provide a tractable solution to the RTL motion plan-
ning problem for dynamics models of mobile robots.

2 Problem Description

We consider a mobile robot which is modeled by the
second order system Σ (dynamics model):

ẍ(t) = u(t), t ≥ 0, x(0) ∈ X0, ẋ(0) = 0,

x(t) ∈ X, u(t) ∈ U = {µ ∈ R2 | ‖µ‖ ≤ umax}
(1)

where x(t) ∈ X is the position of the robot in the plane,
X ⊆ R2 is the free workspace of the robot andX0 ⊆ X is
a compact set that represents the set of initial positions.
Note that the robot is initially at rest, i.e., ẋ(0) = 0,
and that the acceleration bound umax > 0 models the
constraints on the control input u(t) (forces or accelera-
tion). Here, ‖ · ‖ is the Euclidean norm.

The goal of this paper is to construct a hybrid controller
that generates control inputs u(t) for system Σ so that
for the set of initial states X0, the resulting motion x(t)
satisfies a formula-specification φ in the propositional
temporal logic over the reals [31]. Following [31], we refer
to this logic as RTL. For the high level planning prob-
lem, we consider the existence of a number of regions of
interest to the user. Such regions could be rooms and cor-
ridors in an indoor environment or areas to be surveyed
in an outdoor environment. Let Π = {π0, π1, . . . , πn} be
a finite set of symbols that label these areas. The deno-
tation [[·]] : Π→ P(X) of each symbol in Π is a subset of
X, i.e., for any π ∈ Π we have [[π]] ⊆ X. Here, P(Γ) de-
notes the powerset of a set Γ . We reserve the symbol π0

to model the free workspace of the robot, i.e., [[π0]] = X.

In order to make apparent the use of RTL for the com-
position of motion planning specifications, we first give
an informal description of the traditional and temporal
operators. The formal syntax and semantics of RTL are
presented in Section 3. RTL formulas are built over a set
of propositions, the set Π in our case, using combinations
of the traditional and temporal operators. Traditional
logic operators are the conjunction (∧), disjunction (∨)
and negation (¬). Some of the temporal operators are
eventually (3), always (2), until (U) and release (R).
The propositional temporal logic over the reals can de-
scribe the usual properties of interest for control prob-
lems, i.e., reachability (3π) and safety: (2π or 2¬π). Be-
yond the usual properties, RTL can capture sequences
of events and infinite behaviours. For example:

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

x
1

x 2

0

1

2

3

4

Fig. 1. The simple environment of Example 1. The four re-
gions of interest π1, π2, π3, π4 are enclosed by the polygonal
region labeled by π0.

• Reachability while avoiding regions: The formula
¬(π1∨π2∨· · ·∨πn)Uπn+1 expresses the property that
the sets [[πi]] for i = 1, . . . , n should be avoided until
[[πn+1]] is reached.

• Sequencing: The requirement that we must visit
[[π1]], [[π2]] and [[π3]] in that order is captured by the
formula 3(π1 ∧3(π2 ∧3π3)).

• Coverage: Formula 3π1 ∧3π2 ∧ · · · ∧3πn reads as
the system will eventually reach [[π1]] and eventually
[[π2]] and ... eventually [[πn]], requiring the system to
eventually visit all regions of interest without impos-
ing any ordering.

• Recurrence (Liveness): The formula 2(3π1∧3π2∧
· · · ∧3πn) requires that the trajectory does whatever
the coverage does and, in addition, will force the sys-
tem to repeat the desired objective infinitely often.

More complicated specifications can be composed from
the basic specifications using the logic operators. In or-
der to better explain the different steps in our frame-
work, we consider throughout the paper the following
example.

Example 1 Consider a robot that is moving in a con-
vex polygonal environment π0 with four areas of interest
denoted by π1, π2, π3, π4 (see Fig. 1). Initially, the robot
is placed somewhere in the region labeled by π1 and its
velocity is set to zero. The robot must accomplish the fol-
lowing task : “Visit area [[π2]], then area [[π3]], then area
[[π4]] and, finally, return to and stay in region [[π1]] while
avoiding areas [[π2]] and [[π3]]”. Also, it is implied that the
robot should always remain inside the free workspace X,
i.e., region [[π0]], and that X0 = [[π1]].

In this paper, for such specifications, we provide a com-
putational solution to the following problem.

Problem 2 Given the system Σ and an RTL formula
φ, construct a hybrid controller Hφ for Σ such that the
trajectories of the closed-loop system satisfy formula φ.

We propose a hierarchical synthesis approach which con-
sists of three components : tracking control using ap-

2

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

x
1

x 2

0

1

2

3

4

Fig. 1. The simple environment of Example 1. The four re-
gions of interest π1, π2, π3, π4 are enclosed by the polygonal
region labeled by π0.

example.

Example 1 Consider a robot that is moving in a con-
vex polygonal environment π0 with four areas of interest
denoted by π1, π2, π3, π4 (see Fig. 1). Initially, the robot
is placed somewhere in the region labeled by π1 and its
velocity is set to zero. The robot must accomplish the fol-
lowing task : “Visit area [[π2]], then area [[π3]], then area
[[π4]] and, finally, return to and stay in region [[π1]] while
avoiding areas [[π2]] and [[π3]]”. Also, it is implied that the
robot should always remain inside the free workspace X,
i.e., region [[π0]], and that X0 = [[π1]].

In this paper, for such specifications, we provide a com-
putational solution to the following problem.

Problem 2 Given the system Σ and an RTL formula
φ, construct a hybrid controller Hφ for Σ such that the
trajectories of the closed-loop system satisfy formula φ.

We propose a hierarchical synthesis approach which con-
sists of three components : tracking control using ap-
proximate simulation relations [20], robust satisfaction
of RTL formulas [12] and hybrid control for motion plan-
ning [14,13]. First, Σ is abstracted to the first order sys-
tem Σ′ (kinematics model):

ż(t) = v(t), t ≥ 0, z(0) ∈ Z0,

z(t) ∈ Z, v(t) ∈ V = {ν ∈ R2| ‖ν‖ ≤ vmax}
(2)

where z(t) ∈ Z is the position of the robot in the kine-
matics model, Z ⊆ R2 is a modified free workspace,
Z0 = X0 is the set of possible initial positions and
vmax > 0 is a velocity bound on the control input values
v(t). Using the notion of approximate simulation rela-
tion, we evaluate the precision δ with which the system
Σ is able to track the trajectories of the abstraction Σ′
and design a continuous tracking controller that we call
interface. Secondly, from the RTL formula φ and the pre-
cision δ, we derive a more robust formula φ′ such that if
a trajectory z satisfies φ′, then any trajectory x remain-

Interface: uW

θ

u

v

z

Abstraction: Σ′

Dynamic Robot: Σ
(x, [[·]]) |= φ

Hybrid controller: Hφ

Hybrid motion planner: H′
φ′

(z, [[·]]δ) |= φ′

Fig. 2. Hierarchical architecture of the hybrid controller Hφ.

ing at time t within distance δ from z(t) satisfies the for-
mula φ. Thirdly, we design a hybrid controller H ′

φ′ for
the abstraction Σ′, so that the trajectories of the closed
loop system satisfy the formula φ′. Finally, by putting
these three components together, as shown in Fig. 2, we
design a hybrid controller Hφ solving Problem 2. In the
following, we detail each step of our approach.

3 Propositional Temporal Logic over the Reals

Physical processes, such as the motion of a robot, evolve
in continuous time. As such, it is more intuitive for the
user to state the desired robotic behavior using temporal
logics with underlying continuous time semantics [41]
instead of discrete [40]. In this paper, we advocate the
applicability of the propositional temporal logic over the
reals with the until connective (RTL) [41] as a natural
formalism for a motion planning specification language.
First, we introduce the syntax of RTL formulas.

Definition 3 (RTL/LTL Syntax) The set ΦΠ of all
well formed formulas (wff) over the set of atomic propo-
sitions Π is constructed using the grammar

φ ::=
 | ⊥ | π | ¬φ | φ ∨ φ | φ ∧ φ | φUφ | φRφ

where π ∈ Π and
 and ⊥ are the Boolean constants true
and false respectively. If the rule ¬φ is replaced by ¬π,
then we say that the formula is in Negation Normal Form
(NNF) and the set of wff is denoted by Φnnf

Π . If the rule¬φ
is dropped from the grammar, then no negation operator
appears in a formula and the set of wff is denoted by Φ+

Π.

Formally, the semantics of RTL formulas is defined over
continuous time Boolean signals. Here, we instantiate
the definitions of the semantics over abstractions of the
trajectories of the system Σ with respect to the sets [[π]]
for all π ∈ Π. Let (x, [[·]]) |= φ denote the satisfaction
of the RTL formula φ over the trajectory x starting at

3

Fig. 2. Hierarchical architecture of the hybrid controller Hφ.

proximate simulation relations [16], robust satisfaction
of RTL formulas [10] and hybrid control for motion plan-
ning [11]. First, Σ is abstracted to the first order system
Σ′ (kinematics model):

ż(t) = v(t), t ≥ 0, z(0) ∈ Z0,

z(t) ∈ Z, v(t) ∈ V = {ν ∈ R2| ‖ν‖ ≤ vmax}
(2)

where z(t) ∈ Z is the position of the robot in the kine-
matics model, Z ⊆ R2 is a modified free workspace,
Z0 = X0 is the set of possible initial positions and
vmax > 0 is a velocity bound on the control input values
v(t). Using the notion of approximate simulation rela-
tion, we evaluate the precision δ with which the system
Σ is able to track the trajectories of the abstraction Σ′
and design a continuous tracking controller that we call
interface. Second, from the RTL formula φ and the pre-
cision δ, we derive a more robust formula φ′ such that
if a trajectory z satisfies φ′, then any trajectory x re-
maining at time t within distance δ from z(t) satisfies
formula φ. Thirdly, we design a hybrid controller H ′φ′ for
the abstraction Σ′, so that the trajectories of the closed
loop system satisfy the formula φ′. Finally, by putting
these three components together, as shown in Fig. 2, we
design a hybrid controller Hφ solving Problem 2. In the
following, we detail each step of our approach.

3 Propositional Temporal Logic over the Reals

Physical processes, such as the motion of a robot, evolve
in continuous time. As such, it is more intuitive for the
user to state the desired robotic behavior using tempo-
ral logics with underlying continuous time semantics [31]
instead of discrete [30]. In this paper, we advocate the
applicability of the propositional temporal logic over the
reals with the until connective (RTL) [31] as a natural
formalism for a motion planning specification language.
First, we introduce the syntax of RTL formulas in Nega-
tion Normal Form (NNF) [5, §9.4].

Definition 3 (RTL/LTL Syntax) The set ΦΠ of all
well formed formulas (wff) over the set of atomic propo-
sitions Π is constructed using the grammar

φ ::= > | ⊥ | π | ¬π | φ ∨ φ | φ ∧ φ | φUφ | φRφ

where π ∈ Π and >, ⊥ are the Boolean constants true
and false respectively. If the rule ¬π is dropped from the
grammar, then no negation operator appears in a formula
and the set of wff is denoted by Φ+

Π.

Formally, the semantics of RTL formulas is defined over
continuous time Boolean signals. Here, we instantiate
the definitions of the semantics over abstractions of the
trajectories of the system Σ with respect to the sets [[π]]
for all π ∈ Π. Let (x, [[·]]) |= φ denote the satisfaction
of the RTL formula φ over the trajectory x starting at
time 0 with respect to the atomic proposition mapping
[[·]]. If x does not satisfy φ under the map [[·]], then we
write (x, [[·]]) 6|= φ. If all the trajectories x of the system
Σ driven by a hybrid controller H and associated to an
initial state in X0 are such that (x, [[·]]) |= φ, then we
write ([Σ, H], [[·]]) |= φ and we say that [Σ, H] satisfies
φ. In the following, given any function f from some time
domain T (e.g., R or N) to some set X, we define f |t
for t ∈ T to be the t time shift of f with definition
f |t(t′) = f(t+ t′) for t′ ∈ T.

Definition 4 (RTL Semantics) Let x be a trajectory
of Σ. The semantics of any formula φ ∈ ΦΠ can be re-
cursively defined as:

(x, [[·]]) |= >, (x, [[·]]) 6|= ⊥
(x, [[·]]) |= π iff x(0) ∈ [[π]]
(x, [[·]]) |= ¬π iff x(0) 6∈ [[π]]
(x, [[·]]) |= φ1 ∨ φ2 iff (x, [[·]]) |= φ1 or (x, [[·]]) |= φ2

(x, [[·]]) |= φ1 ∧ φ2 iff (x, [[·]]) |= φ1 and (x, [[·]]) |= φ2

(x, [[·]]) |= φ1 Uφ2 iff ∃t ≥ 0 such that (x|t, [[·]]) |= φ2

and ∀t′ with 0 ≤ t′ < t we have (x|t′ , [[·]]) |= φ1

(x, [[·]]) |= φ1Rφ2 iff ∀t ≥ 0 we have (x|t, [[·]]) |= φ2

or ∃t′ such that 0 ≤ t′ < t and (x|t′ , [[·]]) |= φ1

where t, t′ ∈ R≥0.

Therefore, the formula φ1 Uφ2 intuitively expresses the
property that over the trajectory x, φ1 is true until φ2

becomes true. The release operator φ1Rφ2 states that φ2

should always hold, a requirement which is released when
φ1 becomes true. Furthermore, we can derive additional
temporal operators such as eventually 3φ = >Uφ and
always 2φ = ⊥Rφ. The formula 3φ indicates that over
the trajectory x the subformula φ eventually becomes
true, whereas 2φ indicates that φ is always true over x.

Example 5 Going back to Example 1, we can now for-
mally define the specification using an RTL formula as :
ψ1 = 2π0 ∧3(π2 ∧3(π3 ∧3(π4 ∧ (¬π2 ∧¬π3)U2π1))).

3

Finally, one important assumption, which we need to
make when we write specifications for physical processes,
is that the trajectories must satisfy the property of fi-
nite variability [2]. The finite variability property re-
quires that within a finite amount of time there cannot
be an infinite number of changes in the satisfaction of
the atomic propositions with respect to the trajectory.
In other words, we should not consider Zeno trajectories
[26]. We address this issue in the design of our hybrid
controllers in Section 6.3.

4 Tracking using Approximate Simulation

In this section, we present a framework for tracking con-
trol with guaranteed error bounds. It allows us to design
an interface between the dynamics model Σ and its kine-
matics abstraction Σ′ so that Σ is able to track the tra-
jectories of Σ′ with a given precision. It is based on the
notion of approximate simulation relation [17]. Whereas
exact simulation relations require the observations, i.e.,
x(t) and z(t), of two systems to be identical, approximate
simulation relations allow them to be different provided
their distance remains bounded by some parameter.

Let us first rewrite the 2nd order model Σ as a system
of 1st order differential equations

Σ :

{
ẋ(t) = y(t), x(t) ∈ X, x(0) ∈ X0

ẏ(t) = u(t), y(t) ∈ R2, y(0) = [0 0]T

where x(t) is the position of the mobile robot and y(t)
its velocity at time t ≥ 0. Here, T denotes the transpose.
If we let θ(t) = [xT (t) yT (t)]T , i.e., θ : R≥0 → R4, with
θ(0) ∈ Θ0 = X0 × {(0, 0)}, then

θ̇(t) = Aθ(t) +Bu(t) and x(t) = Cxθ(t), y(t) = Cyθ(t)

where

A =
[
02 12
02 02

]
, B =

[
02
12

]
, Cx = [12 02] , Cy = [02 12] .

Here, 0m and 1m are the zero and identity m×m matri-
ces respectively. Then, the approximate simulation rela-
tion is defined as follows.

Definition 6 (Simulation Relation) A relation
W ⊆ R2 × R4 is an approximate simulation relation of
precision δ of Σ′ by Σ if for all (z0, θ0) ∈ W,

(1) ‖z0 − Cxθ0‖ ≤ δ
(2) For all state trajectories z of Σ′ such that z(0) = z0

there exists a state trajectory θ of Σ such that θ(0) =
θ0 and ∀t ≥ 0, (z(t), θ(t)) ∈ W.

An interface associated to the approximate simulation
relation W allows to choose the input of Σ so that the
states of Σ′ and Σ remain in W.

Definition 7 (Interface) A continuous function uW :
V ×W → U is an interface associated with an approxi-
mate simulation relation W, if for all (z0, θ0) ∈ W, for
all trajectories z of Σ′ associated with a given input func-
tion v such that z(0) = z0, the trajectory θ of Σ starting
at θ(0) = θ0 given by the solution of

θ̇(t) = Aθ(t) +BuW(v(t), z(t), θ(t)) (3)

satisfies for all t ≥ 0, (z(t), θ(t)) ∈ W.

Thus, by interconnecting Σ and Σ′ through the interface
uW as shown on Fig. 2, the system Σ tracks the trajec-
tories of the abstraction Σ′ with precision δ. The next
result is immediate from Definitions 6 and 7.

Proposition 8 Let θ0 ∈ Θ0 and z0 = Cxθ0 ∈ Z0 such
that (z0, θ0) ∈ W, then for all trajectories z of Σ′ asso-
ciated with a given input function v and initial state z0,
the trajectory θ of Σ given by (3) for θ(0) = θ0, satisfies
for all t ≥ 0, ‖Cxθ(t)− z(t)‖ ≤ δ.

The construction of approximate simulation relations
can be done effectively using a class of functions called
simulation functions [17]. Essentially, a simulation func-
tion of Σ′ by Σ is a positive function bounding the dis-
tance between the observations and non-increasing un-
der the parallel evolution of the systems.

Definition 9 (Simulation Function) Let F : R2 ×
R4 → R≥0 be a continuous and piecewise differentiable
function and uF : V × R2 × R4 → R2 be a continuous
function. If for all (z, θ) ∈ R2 × R4 the following two
inequalities hold

F(z, θ) ≥ ‖z − Cxθ‖2 (4)

sup
v∈V

(
∂F(z, θ)
∂z

v +
∂F(z, θ)
∂θ

(Aθ +BuF (v, z, θ))
)
≤ 0

(5)
then F is a simulation function of Σ′ by Σ.

Then, approximate simulation relations can be defined
as level sets of the simulation function.

Theorem 10 Let the relationW ⊆ R2×R4 be given by

W =
{

(z, θ) ∈ R2 × R4 | F(z, θ) ≤ δ2
}
.

If for all v ∈ V , for all (z, θ) ∈ W, we have uF (v, z, θ) ∈
U , thenW is an approximate simulation relation of pre-
cision δ of Σ′ by Σ and uW : V × W → U given by
uW(v, z, θ) = uF (v, z, θ) is an associated interface.

PROOF. Let (z0, θ0) ∈ W, then from (4), we have
‖z0 − Cxθ0‖ ≤

√
F(z0, θ0) ≤ δ. Let z be a trajectory

4

of Σ′ generated by a given input function v such that
z(0) = z0. Let θ starting at θ(0) = θ0 be given by the
solution of θ̇(t) = Aθ(t) + BuF (v(t), z(t), θ(t)). From
equation (5), we have that dF(z(t), θ(t))/dt ≤ 0. There-
fore, for all t ≥ 0, (z(t), θ(t)) ∈ W. Furthermore, it im-
plies that for all t ≥ 0, uF (v(t), z(t), θ(t)) ∈ U . Thus, θ
is a trajectory of Σ which allows to conclude. 2

Now we are in position to state the result that will enable
us to perform tracking control.

Proposition 11 Assume that for the systems Σ and Σ′
the constraints umax and vmax satisfy the inequality

vmax
2

(
1 + |1− 1/α|+ 2/

√
α
)
≤ umax (6)

for some α > 0. Then, an approximate simulation rela-
tion of precision δ = 2vmax of Σ′ by Σ is given by

W = {(z, θ) ∈ R2 × R4 | F(z, θ) ≤ 4v2
max}

where F(z, θ) = max
(
Q(z, θ), 4v2

max

)
with

Q(z, θ) = ‖Cxθ − z‖2 + α‖Cxθ − z + 2Cyθ‖2

and uW(v, z, θ) = v
2 + −1−α

4α (Cxθ− z)−Cyθ is an asso-
ciated interface.

PROOF. First, let us remark that (4) clearly holds.
Now, let uF (v, z, θ) = uW(v, z, θ). If Q(z, θ) ≤ 4v2

max,
then it is clear that (5) holds. If Q(z, θ) ≥ 4v2

max, then
we can show that (see [9,16] for additional details)

∂F(z, θ)
∂z

v +
∂F(z, θ)
∂θ

(Aθ +BuF (v, z, θ)) =

= −Q(z, θ)− 2(Cxθ − z) · v ≤
≤ −Q(z, θ) + 2vmax‖Cxθ − z‖.

Since ‖Cxθ − z‖2 ≤ Q(z, θ), we have

∂F(z, θ)
∂z

v +
∂F(z, θ)
∂θ

(Aθ +BuF (v, z, θ)) ≤

≤ −Q(z, θ) + 2vmax
√
Q(z, θ) ≤

≤
√
Q(z, θ)(2vmax −

√
Q(z, θ)).

Since Q(z, θ) ≥ 4v2
max, equation (5) holds and F is a

simulation function of Σ′ by Σ, and uF is an associated
interface. Moreover, for all v ∈ V , (z, θ) ∈ W, the inter-
face uF (v, z, θ) satisfies the velocity constraints of Σ:

‖uF‖= ‖uW‖ = ‖v2 + −1+α−2α
4α (Cxθ − z)− Cyθ‖

=
∥∥ v

2 + −1+α
4α (Cxθ − z)− 1

2 (Cxθ − z + 2Cyθ)
∥∥

≤ vmax
2 + |−1+α|

4α

√
F(z, θ) + 1

2

√
F(z,θ)
α

≤ vmax
2

(
1 + |1− 1/α|+ 2/

√
α
)
≤ umax.

Therefore, Theorem 10 applies and W is an approxi-
mate simulation relation of precision 2vmax of Σ′ by Σ
and an associated interface is given by uW(v, z, θ) =
uF (v, z, θ). 2

The importance of Proposition 11 is the following. As-
sume that the initial state of the abstraction Σ′ is chosen
so that z(0) = Cxθ(0) and that Σ′ and Σ are intercon-
nected through the interface uW . Then, from Proposi-
tion 8, the observed trajectories x(t) of system Σ track
the trajectories z(t) of Σ′ with precision 2vmax.

5 Robust Interpretation of RTL Formulas

In the previous section, we designed a control interface
which enables the dynamic model Σ to track its abstract
kinematic model Σ′ with accuracy 2vmax. In this section,
we define a new mapping [[·]]δ for the atomic propositions
which takes into account a bound δ on the tracking er-
ror. The new map [[·]]δ provides us with a δ-robust inter-
pretation of the motion planning specification φ. Intu-
itively, in order to achieve a robust interpretation of the
specification φ, [[·]]δ should contract by δ the areas that
must be visited and expand by δ the areas that must be
avoided. The fact that we have introduced RTL syntax
in NNF enables us to classify the atomic propositions in
the input formula φ according to whether they represent
regions that must be reached (no negation in front of
the atomic proposition) or avoided (a negation operator
appears in front of the atomic proposition).

Furthermore, for technical reasons, we need to remove
any negation operators that appear in the input formula.
Therefore, we introduce the extended set of atomic propo-
sitions ΞΠ. In detail, we first define two new sets of sym-
bols Ξ+

Π = {ξπ | π ∈ Π} and Ξ−Π = {ξ¬π | π ∈ Π} and,
then, we set ΞΠ = Ξ+

Π ∪ Ξ−Π . We also define a transla-
tion algorithm pos : ΦΠ → Φ+

ΞΠ
which takes as input an

RTL formula φ in NNF and it returns a formula pos(φ)
where the occurrences of the terms π and ¬π have been
replaced by the members ξπ and ξ¬π of ΞΠ respectively.
Since we have a new set of atomic propositions, namely
ΞΠ, we need to define a new map [[·]]ε : ΞΠ → P(X) for
the interpretation of the propositions. This is straight-
forward : ∀ξ ∈ ΞΠ, if ξ = ξπ, then [[ξ]]ε =: [[π]], else (i.e.,
if ξ = ξ¬π) [[ξ]]ε =: X\[[π]]. Then, the following result is
immediate from the definition of [[·]]ε.

Lemma 12 Given a formula φ ∈ ΦΠ, a map [[·]] : Π →
P(X) and a trajectory x of Σ, we have (x, [[·]]) |= φ iff
(x, [[·]]ε) |= pos(φ).

The importance of the previous lemma is the following.
Since a formula φ ∈ ΦΠ is equivalent to the formula
φ′ = pos(φ) under the maps [[·]] : Π → P(X) and [[·]]ε :
ΞΠ → P(X) respectively, for the rest of the paper we

5

can assume that the input specification is given without
any negation operators. That is, the next results are
given with respect to a formula φ′ ∈ Φ+

ΞΠ
and a map

[[·]]ε : ΞΠ → P(X). For clarity in the presentation, we
denote all RTL formulas in NNF without any negation
operator using primed Greek letters, e.g., φ′, φ′1, ψ′.

At this point, we have distinguished the regions that
must be avoided (Ξ−Π) and the regions that must be
reached (Ξ+

Π). We proceed to formally define what we
mean by region contraction in order to define our notion
of robustness.

Definition 13 (δ-Contraction) Given a radius δ ∈
R≥0∪{+∞} and a point λ in a normed space Λ, the δ-ball
centered at λ is defined as Bδ(λ) = {λ′ ∈ Λ | ‖λ− λ′‖ <
δ}. If Γ ⊆ Λ, then Cδ(Γ) = {λ ∈ Λ | Bδ(λ) ⊆ Γ} is the
δ-contraction of the set Γ .

Now, the δ-robust interpretation of a given RTL formula
φ can be achieved by simply introducing a new map [[·]]δ :
ΞΠ → P(Z), where Z = Cδ(X) is the free workspace of
Σ′. For a given δ ∈ R≥0, the definition of the map [[·]]δ is
founded on the map [[·]]ε as follows:

∀ξ ∈ ΞΠ, [[ξ]]δ =: cl(Cδ([[ξ]]ε)).

The operator cl(Γ) denotes the closure of a set Γ , that
is, the intersection of all closed sets containing Γ .

Example 14 Let us revisit Examples 1 and 5. The for-
mula ψ1 is converted to ψ′1 = pos(ψ1) = 2ξπ0 ∧3(ξπ2 ∧
3(ξπ3 ∧3(ξπ4 ∧ (ξ¬π2 ∧ ξ¬π3)U2ξπ1))). We can now ap-
ply the contraction operation on the regions of interest
labeled by ΞΠ and the free workspace X and derive the
δ-robust interpretation of the propositions in ΞΠ and the
modified workspaceZ (see Fig. 3). For the purposes of this
example, we define the map hδ : Z → P(ΞΠ) such that
for any z ∈ Z we have hδ(z) = {ξ ∈ ΞΠ | z ∈ [[ξ]]δ}. Any
point z in the cell 10 (yellow or light gray) is labeled by the
set of propositions hδ(z) = {ξπ0 , ξ¬π1 , ξπ2 , ξ¬π3 , ξ¬π4},
while any point z in the annulus region consisting by the
cells 6, 7, 8 and 9 (red or dark gray) is labeled by the set
hδ(z) = {ξπ0 , ξ¬π1 , ξ¬π3 , ξ¬π4}. Notice that Z = [[ξπ0]]δ
and that Z0 = X0 = [[π1]].

Remark 15 The δ-contraction of a polyhedral set is not
always a polyhedral set. In order to maintain a polyhedral
description for all the sets, we under-approximate the δ-
contraction by the inward δ-offset. Informally, the inward
δ-offset of a polyhedral set is the inward δ-displacement
of its facets along the corresponding normal directions.
Since the δ-offset is an under-approximation of the δ-
contraction, Theorem 16 still holds.

The following theorem is the connecting link between
the specifications satisfied by the abstraction Σ′ and the
concrete system Σ. Informally, it states that given δ > 0

if a trajectory z of Σ′ satisfies the δ-robust interpretation
of the input specification φ′ and the trajectories z and x
always remain δ-close, then x will satisfy the same non-
robust specification φ′.

Theorem 16 Consider a formula φ′ ∈ Φ+
ΞΠ

, a map
[[·]]ε : ΞΠ → P(X) and a number δ ∈ R>0, then for all
trajectories x of Σ and z of Σ′ such that ‖z(t)−x(t)‖ < δ
for all t ≥ 0, we have (z, [[·]]δ) |= φ′ =⇒ (x, [[·]]ε) |= φ′.

PROOF. By induction on the structure of φ′.

Case φ′ = ξ ∈ ΞΠ: We have (z, [[·]]δ) |= ξ iff z(0) ∈
[[ξ]]δ = Cδ([[ξ]]ε). The later implies that Bδ(z(0)) ⊆ [[ξ]]ε.
Since ‖z(0)−x(0)‖ < δ, we immediately get that x(0) ∈
[[ξ]]ε. Thus, (x, [[·]]ε) |= ξ.

Case φ′ = φ′1 Uφ′2: We have (z, [[·]]δ) |= φ′1 Uφ′2 iff by
definition there exists t ≥ 0 such that (z|t, [[·]]δ) |= φ′2
and for all t′ ∈ [0, t) we have (z|t′ , [[·]]δ) |= φ′1. Since
‖z(t′′) − x(t′′)‖ < δ for all t′′ ≥ 0, by the induction
hypothesis, we get that (x|t, [[·]]ε) |= φ′2 and that for all
t′ ∈ [0, t), (x|t′ , [[·]]ε) |= φ′1. Therefore, (x, [[·]]ε) |= φ′1 Uφ′2.

The other cases (see [9]) are either similar (release) or
straightforward (conjunction and disjunction). 2

6 Temporal Logic Motion Planning

Having presented the connection between the dynamics
model Σ and the kinematics model Σ′, we proceed to
solve the temporal logic motion planning problem for Σ′.
Formally, we solve the following more general problem.

Problem 17 Given the system Σ′, a set of atomic propo-
sitions ΞΠ, an RTL formula φ′ ∈ Φ+

ΞΠ
and a map [[·]]δ :

ΞΠ → P(Z), construct a hybrid controller H ′φ′ such that
([Σ′, H ′φ′], [[·]]δ) |= φ′.

Our solution consists of the following three steps: (1)
reduction of the continuous environment Z into a dis-
crete graph, (2) temporal logic planning over the dis-
crete graph, and (3) continuous implementation of the
final discrete plan.

6.1 Discrete Abstraction of Robot Motion

In order to use discrete logics to reason about continu-
ous systems, we need to construct a finite partition of
the continuous state space Z with respect to the map
[[·]]δ. For that purpose, we can use many efficient cell de-
composition methods for polygonal environments [4,24].
Note that by employing any workspace decomposition
method we can actually construct a topological graph (or

6

roadmap as it is sometimes referred to [24]). A topolog-
ical graph describes which cells are topologically adja-
cent, i.e., each node in the graph represents a cell and
each edge in the graph implies topological adjacency
of the cells. No matter what decomposition algorithm
is employed, the workspace’s decomposition must be
proposition preserving with respect to the mapping [[·]]δ.
In other words, we require that all the points which be-
long in the same cell must be labeled by the same set of
propositions.

On a more formal note, we can partition the workspace
Z with respect to the map [[·]]δ and the set of initial con-
ditions Z0 into a number of equivalence classes, that is,
into a number of sets of points which satisfy the same
property (in this case the same set of propositions). Note
that mathematically the set of equivalence classes con-
sists of the interior of the cells, the edges and the ver-
tices. In the following, we define Q = {q1, . . . , qn} to
be the set of all equivalence classes. Let us introduce
the map T : Z → Q which sends each state z ∈ Z
to one equivalence class in Q. Then, we can formally
state the proposition preserving property as follows :
∀zi, zj ∈ Z . T (zi) = T (zj) implies hδ(zi) = hδ(zj). Re-
call that hδ(z) = {ξ ∈ ΞΠ | z ∈ [[ξ]]δ}. Moreover, we de-
fine the “inverse” map T−1 : Q → P(Z) of T such that
T−1(q) maps to all states z ∈ Z which are contained in
the equivalence class q.

In the following paragraphs, we present how the topo-
logical graph resulting from the decomposition of Z with
respect to [[·]]δ can be converted into a Finite Transition
System (FTS) that serves as an abstract model of the
robot motion. Posing the topological graph as an FTS
allows us to use standard automata theoretic techniques
[5] in order to solve the high level planning problem.

Definition 18 (FTS) A Finite Transition System is a
tuple D = (Q,Q0,→D, hD,ΞΠ) where:

• Q is a set of states. Here, Q ⊆ Q is the set of equiva-
lence classes that represent the interior of the cells.

• Q0 ⊆ Q is the set of possible initial cells. Here, Q0

satisfies ∪q0∈Q0cl(T
−1(q0)) = Z0.

• →D⊆ Q × Q captures the topological relationship be-
tween the cells. There is a transition from cell qi to
cell qj written as qi →D qj if the cells labelled by qi, qj
are adjacent, i.e., cl(T−1(qi)) and cl(T−1(qj)) share a
common edge. Finally, for all q ∈ Q we add a self-loop,
i.e., q →D q.

• hD : Q → P(ΞΠ) is a map defined as hD(q) = {ξ ∈
ΞΠ | T−1(q) ⊆ [[ξ]]δ}.

We define a path on the FTS to be a sequence of states
(cells) and a trace to be the corresponding sequence of
sets of propositions. Formally, a path is a function p :
N→ Q such that for each i ∈ N we have p(i)→D p(i+1)
and the corresponding trace is the function composition
p̄ = hD ◦ p : N→ P(ΞΠ).

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

z
1

z 2

1

2

3

4

5
6

7

8

9

10 11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26 27
28 29

30

31

32

3334

35

36

37

38

39 40

41

42
43

44

Fig. 3. A convex cell decomposition of the modified
workspace of Example 14 for δ = 1 + ε (with ε sufficiently
small).

Example 19 Let us consider the convex decomposition
of the workspace of Example 14 which appears in Fig. 3.
The topological graph contains 40 nodes and 73 edges. For
the following examples, we let D1 denote the FTS which
corresponds to the aforementioned topological graph.

6.2 Linear Temporal Logic Planning

The transition system D, which was constructed in the
previous section, will serve as an abstract model of the
robot’s motion. We must now lift our problem formula-
tion from the continuous to the discrete domain. For that
purpose we introduce and use Linear Temporal Logic
(LTL) [30] which has exactly the same syntax as RTL,
but its semantics is interpreted over discrete paths gen-
erated by a finite transition system. In the following, we
let p̄ |≡ φ to denote the satisfiability of an LTL formula
φ over a trace p̄.

Definition 20 (Discrete LTL Semantics) The se-
mantics of any LTL formula φ′ ∈ Φ+

ΞΠ
is defined as:

p̄ |≡ >, p̄ 6|≡ ⊥, p̄ |≡ ξ iff ξ ∈ p̄(0)
p̄ |≡ φ′1 ∧ φ′2 if p̄ |≡ φ′1 and p̄ |≡ φ′2
p̄ |≡ φ′1 ∨ φ′2 if p̄ |≡ φ′1 or p̄ |≡ φ′2
p̄ |≡ φ′1 Uφ′2 if there exists i ≥ 0 such that p̄|i |≡ φ′2

and for all j with 0 ≤ j < i we have p̄|j |≡ φ′1
p̄ |≡ φ′1Rφ′2 if for all i ≥ 0 we have p̄|i |≡ φ′2

or there exists j ∈ [0, i) such that p̄|j |≡ φ′1

where i, j ∈ N.

In this work, we are interested in the construction of au-
tomata that only accept the traces of D which satisfy
the LTL formula φ′. Such automata (which are referred
to as Büchi automata [5, §9.1]) differ from the classic fi-
nite automata in that they accept infinite strings (traces
of D in our case).

7

Definition 21 (Automaton) A Büchi automaton is a
tuple B = (SB, s0B,Ω, λB, FB) where:

• SB is a finite set of states and s0B is the initial state.
• Ω is an input alphabet.
• λB : SB × Ω→ P(SB) is a transition relation.
• FB ⊆ SB is a set of accepting states.

In order to define what it means for a Büchi automaton
to accept a trace, we must first introduce some termi-
nology. A run r of B is a sequence of states r : N → SB
that occurs under an input trace p̄, that is for i = 0 we
have r(0) = s0B and for all i ≥ 0 we have r(i + 1) ∈
λB(r(i), p̄(i)). Let lim(·) be the function that returns
the set of states that are encountered infinitely often
in the run r of B. Then, a run r of a Büchi automa-
ton B over an infinite trace p̄ is accepting if and only if
lim(r) ∩ FB 6= ∅. Informally, a run r is accepting when
some accepting state s ∈ FB appears in r infinitely of-
ten. Finally, we define the language L(B) of B to be the
set of all traces p̄ that have a run that is accepted by B.
For each LTL formula φ′, we can construct a Büchi au-
tomaton Bφ′ = (SBφ′ , s0Bφ′ ,P(ΞΠ), λBφ′ , FBφ′) that ac-
cepts the infinite traces which satisfy the specification
φ′, i.e., p̄ ∈ L(Bφ′) iff p̄ |≡ φ′. The translation from an
LTL formula φ′ to a Büchi automaton B′φ is a well stud-
ied problem and, thus, we refer the reader to [5, §9.4] and
the references therein for the theoretical details behind
this translation.

We can now use the abstract representation of robot’s
motion, that is the FTS, in order to reason about the
desired motion of the robot. First, we convert the FTS
D into a Büchi automaton D′. The translation from D
to D′ enables us to use standard tools and techniques
from automata theory [5, §9] alleviating, thus, the need
for developing new theories. Translating an FTS into an
automaton is a standard procedure which can be found
in any formal verification textbook (see [5, §9.2]).

Definition 22 (FTS to Automaton) The Büchi au-
tomaton D′ which corresponds to the FTS D is the au-
tomaton D′ = (Q′, qd,P(ΞΠ), λD′ , FD′) where:

• Q′ = Q ∪ {qd} for qd 6∈ Q.
• λD′ : Q′ × P(ΞΠ) → P(Q′) is the transition relation

defined as: qj ∈ λD′(qi, l) iff qi →D qj and l = hD(qj)
and q0 ∈ λD′(qd, l) iff q0 ∈ Q0 and l = hD(q0).

• FD′ = Q′ is the set of accepting states.

Now that all the related terminology is defined, we can
give an overview of the basic steps involved in the tem-
poral logic planning [15]. Our goal in this section is to
generate paths on D that satisfy the specification φ′. In
automata theoretic terms, we want to find the subset of
the language L(D′) which also belongs to the language
L(Bφ′). This subset is simply the intersection of the two
languages L(D′) ∩ L(Bφ′) and it can be constructed by

taking the product D′ × Bφ′ of the Büchi automaton
D′ and the Büchi automaton Bφ′ . Informally, the Büchi
automaton Bφ′ restricts the behaviour of the system D′
by permitting only certain acceptable transitions. Then,
given an initial state in the FTS D, which is an abstrac-
tion of the actual initial position of the robot, we can
choose a particular trace from L(D)∩L(Bφ′) according
to a preferred criterion. In the following, we present the
details of this construction.

Definition 23 The product automaton A = D′×Bφ′ is
the automaton A = (SA, s0A,P(ΞΠ), λA, FA) where:

• SA = Q′ × SBφ′ and s0A = {(qd, s0Bφ′)}.
• λA : SA × P(ΞΠ) → P(SA) such that (qj , sj) ∈
λA((qi, si), l) iff qj ∈ λD′(qi, l) and sj ∈ λBφ′ (si, l).

• FA = Q′ × F is the set of accepting states.

By construction, the following lemma is satisfied (recall
that p̄ is a trace of D if and only if p̄ is accepted by D′).

Lemma 24 (Adapted from [15]) A trace p̄ of D that
satisfies the specification φ′ exists iff the language of A
is non-empty, i.e., L(A) = L(D′) ∩ L(Bφ′) 6= ∅.

Checking the emptiness of language L(A) is an easy al-
gorithmic problem [5, §9.3]. First, we convert automaton
A to a directed graph and, then, we find the strongly
connected components (SCC) [8, §22.5] in that graph.
If at least one SCC that contains an accepting state
is reachable from s0A, then the language L(A) is not
empty. However, we are not just interested in figuring
out whether L(A) = ∅. We need to construct an accept-
ing run of A and from that derive a discretized path
for the robot on D. The good news is that if L(A) is
nonempty, then there exist accepting (infinite) runs on
A that have a finite representation. Each such run con-
sists of two parts. The first part is a finite sequence of
states r(0)r(1) . . . r(mf) which corresponds to the se-
quence of states starting from r(0) = s0A and reaching
a state r(mf) ∈ FA. The second part is a periodic se-
quence of states r(mf)r(mf+1) . . . r(mf+ml) such that
r(mf+ml) = r(mf) which corresponds to the part of the
run that traverses some part of the strongly connected
component. Here, mf ,ml ≥ 0 is less than or equal to the
number of states in D, i.e., mf ,ml ≤ |Q|.

Since in this paper we are concerned with a path plan-
ning application, it is desirable to choose an accepting
run that traverses as few different states on D as pos-
sible. The high level description of the algorithm is as
follows. First, we find all the shortest sequences of states
from s0A to all the accepting states in FA using Breadth
First Search (BFS) [8, §22.2]. Then, from each reachable
accepting state qa ∈ FA we initiate a new BFS in order
to find the shortest sequence of states that leads back to
qa. Note that if no accepting state is reachable from s0A
or no infinite loop can be found, then the language L(A)

8

is empty and, hence, the temporal logic planning prob-
lem does not have a solution. Moreover, if L(A) 6= ∅,
then this algorithm can potentially return a set R of ac-
cepting runs r each leading to a different accepting state
in FA with a different periodic part. From the set of runs
R, we can easily derive a corresponding set of paths P on
D such that for all p ∈ P we have that the trace p̄ satis-
fies φ′. The following is immediate from the definitions.

Proposition 25 Let pr : SA → Q be a projection func-
tion such that pr(q, s) = q. If r is an accepting run of A,
then p = (pr ◦ r)|1 is a path on D such that p̄ |≡ φ′.

Any path p ∈ P can be characterized by a pair of se-
quences of states (pf , pl). Here, pf = pf1p

f
2 . . . p

f
nf

de-
notes the finite part of the path and pl = pl1p

l
2 . . . p

l
nl

the
periodic part (infinite loop) such that pfnf = pl1. The re-
lation between the pair (pf , pl) and the path p is given
by p(i) = pfi+1 for 0 ≤ i ≤ nf − 2 and p(i) = plj with
j = ((i− nf + 1) mod nl) + 1 for i ≥ nf − 1.

Example 26 The Büchi automaton Bψ′
1

that accepts the
paths that satisfy ψ′1 has 5 states (one accepting) and 13
transitions. For the conversion from LTL to Büchi au-
tomata, we use the python toolbox LTL2NBA by Fritz and
Teegen, which is based on [14]. The product automaton
A1 = D′1 × Bψ′

1
has 205 states. The shortest path on the

topological graph starting from cell 5 is: (pf , pl) = ({5,
41, 1, 25, 24, 8, 10, 6, 37, 35, 14, 16, 15, 34, 18, 21, 19,
36, 38, 23, 4, 44, 5}, {5}). Using Fig. 3, the reader can
verify that this sequence satisfies ψ′1 under the map [[·]]δ.

6.3 Continuous Implementation of Discrete Trajectory

Our next task is to utilize each discrete path p ∈ P in
order to construct a hybrid control input v(t) for t ≥ 0
which will drive Σ′ so that its trajectories z(t) satisfy
the RTL formula φ′. We achieve this desired goal by sim-
ulating (or implementing) at the continuous level each
discrete transition of p. This means that if the discrete
system D makes a transition qi →D qj , then the contin-
uous system Σ′ must match this discrete step by moving
from any position in the cell cl(T−1(qi)) to a position in
the cell cl(T−1(qj)). Moreover, if the periodic part in the
path p consists of just a single state ql, then we have to
guarantee that the position of the robot always remains
in the invariant set T−1(ql). These basic control specifi-
cations imply that we need at least two types of continu-
ous feedback control laws. We refer to these control laws
as reachability and cell invariant controllers. Informally,
a reachability controller drives each state inside a cell q
to a predefined region on the cell’s boundary, while the
cell invariant controller guarantees that all the trajecto-
ries that start inside a cell q always remain in that cell.

Let us assume that we are given or that we can construct
a finite collection of continuous feedback control laws

(a) (b)

Fig. 4. (a) Reachability and (b) Cell invariant controller.

{gκ}κ∈K indexed by a control alphabet K such that for
any κ ∈ K we have gκ : Zκ → V with Zκ ⊆ Z. In our
setting, we make the following additional assumptions.
First, we define the operational range of each controller
to be one of the cells in the workspace of the robot, i.e.,
for any κ ∈ K there exists some q ∈ Q such that Zκ =
cl(T−1(q)). Second, if gκ is a reachability controller, then
we require that all the trajectories which start in Zκ
must converge on the same subset of the boundary of
Zκ within finite time while never exiting Zκ before that
time. Finally, if gκ is a cell invariant controller, then we
require the all the trajectories which initiate from a point
in Zκ converge on the barycenter bκ of Zκ. Examples
of such feedback control laws for Σ′ appear in Fig. 4.
A formal presentation of these types of controllers is
beyond the scope of this paper and the interested reader
can find further details in [3,7,25].

The way we can compose such controllers given the pair
(pf , pl), which characterizes a path p ∈ P , is as follows.
First note that it is possible to get a finite repetition of
states in the path p, for example there can exist some
i ≥ 0 such that p(i) = p(i + 1) but p(i + 1) 6= p(i + 2).
This situation might occur because we have introduced
self-loops in the automaton D′ in conjunction with pos-
sibility that the Büchi automaton Bφ′ might not be
optimal (in the sense of number of states and transi-
tions). Therefore, we first remove finite repetitions of
states from p. Removing such repeated states from p
does not change the fact that p̄ |≡ φ′. This is possi-
ble because LTL formulas without the next time op-
erator are stutter invariant [5, §10]. Next, we define
the control alphabet to be K = Kf ∪ Kl ⊆ Q × Q

where Kf = ∪nf−1
i=1 {(pfi , pfi+1)} ∪ {(pfnf , pl1)} and Kl =

∪nl−1
i=1 {(pli, pli+1)} ∪ {(plnl , pl1)} when nl > 1 or Kl = ∅

otherwise. For any κ = (qi, qj) ∈ K\{(pfnf , pl1)}, we de-
sign gκ to be a reachability controller that drives all
initial states in Zκ = cl(T−1(qi)) to the common edge
cl(T−1(qi)) ∩ cl(T−1(qj)). Finally for κ = (pfnf , p

l
1), we

let gκ be a cell invariant controller for the cell pl1.

It is easy to see now how we can use each pair (pf , pl) in
order to construct a hybrid controller H ′φ′ . Starting any-
where in the cell cl(T−1(pf1)), we apply the control law
g(pf1 ,p

f
2) until the robot crosses the edge cl(T−1(pf1)) ∩

cl(T−1(pf2)). At that point, we switch the control law to
g(pf2 ,p

f
3). The above procedure is repeated until the last

9

cell of the finite path pf at which point we apply the cell
invariant controller g(pfnf ,p

l
1). If the periodic part pl of the

path has only one state, i.e., nl = 1, then this completes
the construction of the hybrid controller H ′φ′ . If on the
other hand nl > 1, then we check whether the trajectory
z(t) has entered an ε-neighborhood of the barycenter of
the cell invariant controller. If so, we apply ad infinitum
the sequential composition of the controllers that cor-
respond to the periodic part of the path pl followed by
the cell invariant controller g(pfnf ,p

l
1). The cell invariant

controller is necessary in order to avoid Zeno behavior
[26]. Since there can only exist at most one Zeno cycle in
the final hybrid automaton and this cycle is guaranteed
to not generate Zeno behaviors due to the existence of
the cell invariant controller, the following proposition is
immediate.

Proposition 27 The trajectories z of the system
[Σ′, H ′φ′] satisfy the finite variability property.

Assuming now that Σ′ is controlled by the hybrid con-
troller H ′φ′ which is constructed as described above, we
can prove the following theorem.

Theorem 28 Let φ′ ∈ Φ+
ΞΠ

, P be a set of paths on D
such that ∀p ∈ P we have p̄ |≡ φ′ and H ′φ′ be the corre-
sponding hybrid controller, then ([Σ′, H ′φ′], [[·]]δ) |= φ′.

PROOF. For any p ∈ P we prove that if p̄ |≡ φ′, then
(z, [[·]]δ) |= φ′ for any trajectory z of the system [Σ′, H ′φ′]
starting at any z(0) ∈ cl(T−1(p(0))). The proof uses
induction on the structure of φ′. Here, we only present
two cases. The other cases are similar (see [9]).

Case p̄ |≡ ξ: Since z(0) ∈ cl(T−1(p(0))) we get that
z(0) ∈ [[ξ]]δ (by def. [[ξ]]δ = cl([[ξ]]δ)). Hence, (z, [[·]]δ) |= ξ.

Case p̄ |≡ φ′1 Uφ′2: Then there exists some i ≥ 0 such
that p̄|i |≡ φ′2 and for all j ∈ [0, i) we get that p̄|j |≡ φ′1.
Consider now the trajectory z that is generated by Σ′
using the controller H ′φ′ that corresponds to the path p.
The initial condition for the trajectory z is any point in
the initial cell, i.e., z(0) ∈ cl(T−1(p(0))). By construc-
tion, there exists a sequence of times 0 = τ0 ≤ τ1 ≤
· · · ≤ τi, where τj for j ∈ (0, i] is the time that the trajec-
tory z crosses the edge cl(T−1(p(j−1)))∩cl(T−1(p(j))).
Consider any time instant t′ ∈ [τj , τj+1] for any j ∈
[0, i). Then, we know that z|t′(0) ∈ cl(T−1(p|j(0))).
Now the induction hypothesis applies and we get that
(z|t′ , [[·]]δ) |= φ′1. Therefore, for all t′ ∈ [0, τi], we have
(z|t′ , [[·]]δ) |= φ′1. Now, note that z(τi) ∈ cl(T−1(p(i −
1))) ∩ cl(T−1(p(i))), hence by the induction hypothesis
we get that (z|τi , [[·]]δ) |= φ′2. Thus, if we set t′ = τi, then
we are done and (z, [[·]]δ) |= φ′1 Uφ′2. Note that if p̄ |≡ φ′2,
then we are immediately done since the induction hy-
pothesis applies directly. 2

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

z
1

z 2

Fig. 5. A trajectory of system Σ′ for the path of Example 26
using the potential field controllers of [7].

Theorem 28 concludes our proposed solution to Prob-
lem 17. The following example illustrates the theoretical
results presented in Section 6.

Example 29 For the construction of the hybrid con-
troller H ′φ′ based on the path of Example 26, we deploy
the potential field controllers of Conner et. al. [7] on
the cellular decomposition of Fig. 3. The resulting tra-
jectory with initial position (35, 20) and velocity bound
vmax = 0.5 appears in Fig. 5.

7 Putting Everything Together

At this point, we have presented all the pieces that com-
prise our proposed solution to Problem 2. Now we are
in position to put all the parts together according to
the hierarchy proposed in Fig. 2. The following theorem
which is immediate from Proposition 11, Lemma 12 and
Theorems 16 and 28 states the main result of the paper.

Theorem 30 LetW be an approximate simulation rela-
tion of precision 2vmax between Σ′ and Σ and uW be the
associated interface. Let φ ∈ ΦΠ and define φ′ = pos(φ).
Let H ′φ′ be a controller for Σ′ and Hφ be the associ-
ated controller for Σ obtained by the interconnection of
the elements as shown in Fig. 2. Then, for δ > 2vmax,
([Σ′, H ′φ′], [[·]]δ) |= φ′ implies ([Σ, Hφ], [[·]]) |= φ.

Even though our framework regards as input the bound
on acceleration umax and then derives the velocity bound
vmax, in the following examples we give as input the
bound vmax. We believe that this makes the presentation
of the examples clearer.

Example 31 The trajectory of system Σ which corre-
sponds to the trajectory of Example 29 of system Σ′ ap-
pears in Fig. 6. The parameters for this problem are
vmax = 0.5 and α = 100 which implies that umax should
at least be 0.5475. Notice that the two trajectories are al-
most identical since the velocity of Σ′ is so low.

The next example considers larger velocity bounds than
Example 31 and a non-terminating specification.

10

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

x
1

x 2

Fig. 6. The trajectory of system Σ which corresponds to the
trajectory of system Σ′ presented in Fig. 5.

0 10 20 30 40 50 60 70 80 90 100 110
0

10

20

30

40

50

60

x
1

x 2

π
0

π
1

π
2

Fig. 7. The initial environment of Example 32 and the re-
sulting trajectory x(t) of the dynamic robot Σ.

Example 32 Consider the environment in Fig. 7 and
the RTL formula φ = 2(π0 ∧ 3(π1 ∧ 3π2)). This spec-
ification requires that the robot first visits [[π1]] and then
[[π2]] repeatedly while always remaining in [[π0]]. For this
example, we use the controllers developed in [3] and for
the triangulation of the environment we use the C library
[28]. We consider vmax = 3 and a = 100. The resulting
trajectory appears in Fig. 7. The black region in the cen-
ter of the workspace represents a static obstacle in the
environment which is modeled as a hole in [[π0]].

8 Related Research and Discussion

There exist several related approaches to motion plan-
ning using hybrid or symbolic methods. For example, the
maneuver automata in [13] generate trajectories for he-
licopters by composing simple dynamic maneuvers. The
control quanta [29] solve the navigation problem for non-
holonomic vehicles using quantized control. The motion
description language [19] and the framework in [22] uti-
lize regular languages in order to guide the construction
of hybrid systems. In [27], the authors synthesize robust
hybrid automata starting from specifications expressed
in a modal logic. In [20], the author presents a frame-
work for the synthesis of distributed hybrid controllers
for an assembly factory given basic controllers and de-
scriptions of the tasks. One of the first explicit applica-
tions of temporal logics to robotics appears in [1]. This
paper deals with the controller synthesis problem for lo-
comotion. The design of discrete time controllers for lin-
ear systems that satisfy LTL specifications is addressed

in [32]. Finally in [12], controller specifications are de-
rived from flat RTL formulas.

The work that is the closest related to ours appears in
[21]. The authors in [21] extend the framework presented
in [11] in order to design hybrid automata with affine dy-
namics with drift using the controllers presented in [18].
The framework in [21] can also solve Problem 2, but we
advocate that our approach has several clear advantages
when one explicitly considers the motion planning prob-
lem. First, the hierarchical approach enables the design
of control laws for a 2D system instead of a four dimen-
sional one. Second, our approach avoids the state explo-
sion problem introduced by (i) the fine partitioning of
the state space with respect to the predicates, and (ii)
the consequent tessellation of the 4D space. Finally, the
freedom to choose a δ greater than 2vmax enables the de-
sign of hybrid controllers for non-point robots that can
also tolerate bounded inaccuracies in the system (see
[9]). For these reasons, we strongly believe that a hierar-
chical approach can provide a viable solution to a large
class of control problems.

9 Conclusions and Future Work

We have presented an automatic framework for the so-
lution of the temporal logic motion planning problem
for dynamic mobile robots. Our framework is based on
hierarchical control, the notion of approximate bisimu-
lation relations and a new definition of robustness for
temporal logic formulas. In the process of building this
new framework we have also derived two intermediate
results. First, we presented an automatic framework for
the solution of the temporal logic motion planning prob-
lem for kinematic models. Second, we showed how to
construct a more robust solution to the above problem,
which can account for bounded errors in the trajectories
of the system. To the best of our knowledge, this paper
presents the first computationally tractable approach to
all the above problems.

Future research will concentrate on several directions.
First, we are considering employing controllers for non-
holonomic systems [6] at the low hierarchical level. Com-
plementary to the first direction, we are investigating
new interfaces that can take into account nonholonomic
constraints. Another important direction is the exten-
sion of this framework to 3D motion planning. Finally,
we are currently working on converting our single-robot
motion planning framework into a reactive multi-robot
motion planning system.

Acknowledgements

The authors would like to thank Rajeev Alur for the use-
ful discussions, David Conner for providing them with
his implementation of the potential field controllers and
the reviewers for many useful comments.

11

References

[1] Marco Antoniotti and Bud Mishra. Discrete event models +
temporal logic = supervisory controller: Automatic synthesis
of locomotion controllers. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages
1441–1446, May 1995.

[2] Howard Barringer, Ruurd Kuiper, and Amir Pnueli. A
really abstract concurrent model and its temporal logic. In
POPL ’86: Proceedings of the 13th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, pages
173–183, New York, NY, USA, 1986. ACM Press.

[3] Calin Belta, Volkan Isler, and George J. Pappas. Discrete
abstractions for robot motion planning and control. IEEE
Transactions on Robotics, 21(5):864– 874, October 2005.

[4] Howie Choset, Kevin M. Lynch, Seth Hutchinson, George
Kantor, Wolfram Burgard, Lydia E. Kavraki, and Sebastian
Thrun. Principles of Robot Motion: Theory, Algorithms and
Implementations. MIT Press, March 2005.

[5] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled.
Model Checking. MIT Press, Cambridge, Massachusetts,
1999.

[6] David C Conner, Howie Choset, and Alfred Rizzi. Integrated
planning and control for convex-bodied nonholonomic
systems using local feedback control policies. In Proceedings
of Robotics: Science and Systems II, Cambridge, USA, June
2006.

[7] David C Conner, Alfred Rizzi, and Howie Choset.
Composition of local potential functions for global robot
control and navigation. In Proceedings of 2003 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
pages 3546–3551, 2003.

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Cliff Stein. Introduction to Algorithms. MIT
Press/McGraw-Hill, second edition, September 2001.

[9] Georgios E. Fainekos. Robustness of Temporal Logic
Specifications. PhD thesis, Department of Computer and
Information Science, University of Pennsylvania, 2008.

[10] Georgios E. Fainekos, Antoine Girard, and George J. Pappas.
Hierarchical synthesis of hybrid controllers from temporal
logic specifications. In Hybrid Systems: Computation and
Control, number 4416 in LNCS, pages 203–216. Springer,
2007.

[11] Georgios E. Fainekos, Hadas Kress-Gazit, and George J.
Pappas. Hybrid controllers for path planning: A temporal
logic approach. In Proceedings of the 44th IEEE Conference
on Decision and Control, pages 4885 – 4890, December 2005.

[12] Georgios E. Fainekos, Savvas G. Loizou, and George J.
Pappas. Translating temporal logic to controller
specifications. In Proceedings of the 45th IEEE Conference
on Decision and Control, pages 899–904, December 2006.

[13] Emilio Frazzoli. Robust hybrid control for autonomous vehicle
motion planning. PhD thesis, Massachusetts Institute of
Technology, May 2001.

[14] Carsten Fritz. Constructing Büchi automata from LTL
using simulation relations for alternating Büchi automata.
In the 8th International Conference on Implementation and
Application of Automata, volume 2759 of LNCS, pages 35–
48, 2003.

[15] Giuseppe De Giacomo and Moshe Y. Vardi. Automata-
theoretic approach to planning for temporally extended goals.
In European Conference on Planning, volume 1809 of LNCS,
pages 226–238. Springer, 1999.

[16] Antoine Girard and George J. Pappas. Hierarchical control
using approximate simulation relations. In Proceedings of the
45th IEEE Conference on Decision and Control, 2006.

[17] Antoine Girard and George J. Pappas. Approximation
metrics for discrete and continuous systems. IEEE
Transactions on Automatic Control, 52(5):782–798, 2007.

[18] Luc C.G.J.M. Habets and J. H. van Schuppen. A control
problem for affine dynamical systems on a full-dimensional
polytope. Automatica, 40:21–35, 2004.

[19] D. Hristu-Varsakelis, M. Egerstedt, and P. S. Krishnaprasad.
On the complexity of the motion description language MDLe.
In Proceedings of the 42nd IEEE Conference on Decision and
Control, pages 3360–3365, December 2003.

[20] Eric Klavins. Automatic compilation of concurrent hybrid
factories from product assembly specifications. In Hybrid
Systems: Computation and Control, volume 1790 of LNCS,
pages 174–187. Springer, 2000.

[21] Marius Kloetzer and Calin Belta. A fully automated
framework for control of linear systems from LTL
specifications. In Proceedings of Hybrid Systems:
Computation and Control, volume 3927 of LNCS, pages 333–
347. Springer, 2006.

[22] X. D. Koutsoukos, P. J. Antsaklis, J. A. Stiver, and M. D.
Lemmon. Supervisory control of hybrid systems. Proceedings
of the IEEE, 88(7):1026 – 1049, July 2000.

[23] Hadas Kress-Gazit, Georgios E. Fainekos, and George J.
Pappas. From structured english to robot motion. In
Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 2717–2722, October
2007.

[24] Steven M. LaValle. Planning Algorithms. Cambridge
University Press, 2006.

[25] Stephen R. Lindemann and Steven M. LaValle. Smoothly
blending vector fields for global robot navigation. In
Proceedings of the 44th IEEE Conference on Decision and
Control, pages 3553–3559, December 2005.

[26] J. Lygeros, K. H. Johansson, S. N. Simic, J. Zhang, and
S. Sastry. Dynamical properties of hybrid automata. IEEE
Transactions on Automatic Control, 48:2–17, 2003.

[27] T. Moor and J. M. Davoren. Robust controller synthesis for
hybrid systems using modal logic. In Proceedings of Hybrid
Systems: Computation and Control, volume 2034 of LNCS,
pages 433–446. Springer, 2001.

[28] Atul Narkhede and Dinesh Manocha. Fast polygon
triangulation based on seidel’s algorithm. In Alan W. Paeth,
editor, Graphics Gems V, chapter VII.5, pages 394–397.
Academic Press, 1995.

[29] S. Pancanti, L. Pallottino, D. Salvadorini, and A. Bicchi.
Motion planning through symbols and lattices. In Proceedings
of the International Conference on Robotics and Automation,
pages 3914–3919, New Orleasn, LA, April 2004.

[30] Amir Pnueli. The temporal logic of programs. In Proceedings
of the 18th IEEE Symposium Foundations of Computer
Science, pages 46–57, 1977.

[31] Mark Reynolds. Continuous temporal models. In the
14th Australian Joint Conference on Artificial Intelligence,
volume 2256 of LNCS, pages 414–425. Springer, December
2001.

[32] Paulo Tabuada and George J. Pappas. Linear time logic
control of discrete-time linear systems. IEEE Transactions
on Automatic Control, 51(12):1862–1877, 2006.

12

