
R. Bogacz 

T. Szolc 

Institute of Fundamental Technological 
Research of the Polish Academy of Sciences, 

Warsaw, Poland 

H. Irretier 

Institute of Mechanics 
of the Kassel University, 

Kassel, Germany 

An Application of Torsional Wave 
Analysis to Turbogenerator Rotor 
Shaft Response 
In this paper transient torsional vibrations of a steam turbogenerator rotor shaft 
system due to high speed reclosing of the electric network are investigated. The 
analysis is performed using torsional elastic wave theory applied to a continuous 
model in the form of a stepped shaft. Wave solutions of the equations of motion 
are used in order to determine dynamic torsional elastic moments and vibratory 
angular velocities in cross-sections of the turbine shafts. The results are illustrated 
in the form of graphs. 

Introduction 
Transient torsional vibrations of a steam turbine rotor shaft 

system due to short circuits in generators and ground faults 
in the electric network are a source of severe dynamic loads 
on the turbine shafts and couplings. These loads can lead to 
material fatigue of the elements of the turbine system. Thus, 
for the last few years this important phenomenon, typical for 
modern high power steam turbogenerators, became a subject 
of investigation by many authors (Hizume, 1975; Bernasconi, 
1986; Schwibinger et al., 1986; Schwibinger et al., 1987; Rubio 
et al., 1987). 

At present, much effort is expended to develop sufficiently 
accurate and numerically efficient methods for the investiga­
tion of this problem. An essential factor is the selection of an 
appropriate mechanical model. The majority of authors used 
a discrete model of the turbogenerator rotor shaft system (Hi­
zume, 1975; Schwibinger et al., 1986; Schwibinger et al., 1987; 
Rubio et al., 1987). But the turbogenerator rotor shaft system 
is characterized by large shaft and rotor masses continuously 
distributed along their axis of rotation. Thus, in order to obtain 
sufficiently accurate results, a discrete model with many de­
grees of freedom and appropriate parameter identification is 
applied (Schwibinger et al., 1986; Schwibinger et al., 1987). 

Because of the mentioned continuous distribution of masses 
of the turbogenerator shafts and rotors, discrete-continuous 
models also were introduced (Bernasconi, 1986). But an ap­
plication of methods of forced vibration analysis for discrete-
continuous and continuous models used so far often lead to 
calculation difficulties. Thus, the majority of considerations 
usually were limited to free vibrations (Rao, 1978; Bernasconi, 
1986). 

An application of the one-dimensional elastic wave propa­
gation theory to forced vibration analysis using continuous 
and discrete-continuous models simplifies the mathematical 
procedure and improves its numerical efficiency. For example, 
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the torsional elastic wave propagation theory was applied by 
Szolc (1985) and Nadolski et al. (1986) for dynamic investi­
gations of discrete-continuous models of crank mechanisms 
of the internal combustion engines. 

In comparison with methods of torsional vibration analysis 
of the steam turbogenerator rotor shaft systems used so far, 
an alternative approach to this problem is proposed in the 
present paper. Elastic wave theory is used to analyze the onset 
of transient torsional vibration of a turbogenerator rotor shaft 
system due to high speed reclosing of the electric network. 

Assumptions 

The steam turbogenerator rotor shaft system is a complex 
set of elements with more or less complicated geometrical 
shapes. Turbine shafts usually have the form of stepped shafts; 
however, rotors are characterized by more complicated geo­
metrical shapes (Schwibinger et al., 1987). Geometrical shapes 
of individual segments as well as their material constants, i.e., 
density p and shear modulus G, determine distributions of the 
mass moment of inertia and torsional flexibility of the con­
sidered system along its rotation axis. An important factor in 
dynamic modeling of mechanical systems for torsional vibra­
tion analysis is for the model to accurately approach the real 
distribution of the mass moment of inertia and torsional flex­
ibility along the system rotation axis. 

In the paper, a continuous model of the turbogenerator rotor 
shaft system in the form of a stepped shaft is proposed. In 
this model, turbine shafts and individual segments with more 
complicated geometrical shapes are represented by an appro­
priate number of equivalent torsiorially deformable cylindrical 
elastic elements with continuously distributed parameters. 
These elements are characterized by lengths /,- and cross-sec­
tional polar moments of inertia /,, i = 1, 2, . . ., n, where n 
denotes the total number of the elastic elements in the con­
sidered continuous model (Fig. 1). 

Figure 1 represents a continuous model of the typical tur­
bogenerator rotor shaft system with two low-pressure rotors. 
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The elastic elements (m), (ia) — (;c) and (id) — (if) represent 
the generator and both of the low-pressure rotors, respectively. 
The elastic elements (ig) — (ij) correspond to the medium 
pressure rotor, and the elastic elements (4) — (/„) correspond 
to the high pressure rotor. The remaining elements represent 
turbine shafts and couplings. The x-axis is parallel to the com­
mon symmetry axis of the elastic elements and its origin is to 
the left of elastic element (1). It is assumed that distributions 
of the model mass moment of inertia and torsional flexibility 
along the elastic element symmetry axis accurately represent 
their real distributions along the axis of rotation. 

The excitation torque Tm(t) due to high speed reclosing of 
the electric network is uniformly distributed along the elastic 
element (m) representing the generator rotor. In the case of 
high speed reclosing, the excitation torque function is assumed 
to be a superposition of the so-called "step and slow shake" 
function and attenuating sinusoidal functions at the system's 
rotational frequency Q (Hizume, 1975). As it was mentioned 
by Hizume (1975), the "step and slow shake" function orig­
inates from the fact that an active electromagnetic torque in 
the generator comes about as a result of successive automatic 
openings and reclosings of the powered electric circuits due to 
ground faults. Superimposed on this an oscillation of the gen­
erator rotor angular velocity causes an additional electromag­
netic torque fluctuation, since the mechanical torque 
transmitted from the turbine remains temporarily constant. 
Thus, the "slow shake" component of the excitation electro­
magnetic torque is generated in the form of a harmonic func­
tion of the frequency 0] = 1.1 - 1.3 [Hz]. However, 
attenuating sinusoidal components of the excitation torque 
function Tm(t) originate from operating the generator ar­
mature current, which takes place in order to satisfy continuity 
of the electric current. 

The resultant excitation torque function Tm (t) for successive 
time intervals of the "step and slow shake" function can be 
assumed in the following analytical form: 

LP-2 LP-1 

-co; 
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Fig. 1 Continuous model of the turbogenerator rotor shaft system 

According to Hizume (1975), for high speed reclosing fol­
lowing a 3-phase ground fault in the power transmission line, 
/] and t3 - t2 correspond to 7 cycles each, and t2 - tx cor­
responds to 18 cycles of the normal generator operation with 
the rated angular velocity Q. Moreover, the maximum mag­
nitude of the "step" function is 1.39 times as large as the rated 
torque transmitted to the generator, the maximum magnitude 
of the peak of "slow shake" function is 0.88 times, and the 
maximum amplitude of the attenuating sinusoidal function is 
2.66 times. Figure 2 presents a plot of the assumed excitation 
torque function Tm(t) at the rated torque Mm for fl = 377 
[rd/s] (corresponding to the frequency / = 60 [Hz] of the 
produced electric current). Because a dynamic analysis is per­
formed, constant torques transmitted through the turbine 
shafts, causing only their constant rated angular velocity to 
change, are not considered. 

In the model presented here an equivalent damping of the 
viscous type is introduced in the form of damping moments 
imposed on the extreme cross-sections of the stepped shaft 
elastic elements (Szolc, 1985; Nadolski et al., 1986). 

Formulation of the Problem 
For further consideration it is convenient to introduce the 

following nondimensional quantities 

(. 

Tm(t) = 

c1+a1e"5' sinfif 
c2 + b sinQtU- tt) +a2e-H'~^) sinQ(t-ti) 
c3 + a3e'H'-'2)sinQ(t-t2) 
b cosQi(,t-h) + a4e~5u~'^ sinQ(t-t3) 

for 0 < t < tu 

for h<t< t2, 
for t2< t < t3, 
for t > t3, 

(1) 

where / denotes time, t}—time instants determining successive 
intervals of the "step and slow shake" function, c,—constant 
values of the "step" function (J = 1, 2, 3), a,-—initial am­
plitudes of the attenuating sinusoidal functions (i = 1, 2, 3, 
4), b—amplitude of the "slow shake" function, 5 = $0, and 
!? denotes attenuation constant of the generator. 

- x /,• ct - Qj(x,t) 
x = - , X, = - , r = — , QJ(X,T) = — - — , i=l,2,...,n, (2) 

'.! h h f j 

where Q,(x, t) denotes perturbation of the angular displace­
ment of the rth elastic element cross-section from the shaft 

Nomenclature 

a, = initial amplitudes of the 
attenuating sinusoidal 
functions 

b = amplitude of the "slow 
shake function" 

Cj = constant values of the 
"step function" 

Dk = equivalent damping coeffi­
cients 

/,, gi = functions representing tor­
sional waves propagating 
in the individual elastic 
elements 

G = shear modulus 
H(k) = Heaviside function 

/, = cross-sectional polar mo­
ments of inertia of the in­
dividual elastic elements Tn 

/, = lengths of the model elas­
tic elements 

m = number of the model elas­
tic element representing 
the generator rotor 

M01 = rated torque transmitted 
from the turbine to the 
generator 

n = total number of elastic ele­
ments in the continuous 
model # 

t = time 
tj = time instants determining i, j , k, I 

(t) 
x 
z 
Q 

Q, 

P 

e 

time intervals of the "step 
and slow shake function" 
excitation torque function 
spatial coordinate 
dimensionless argument 
rated angular velocity of 
the rotor shaft system 
frequency of the "slow 
shake function" 
material density 
angular displacement of 
the elastic element cross-
section 
attenuation constant of the 
generator 
subscripts 
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uniform motion with the constant rated angular velocity Q, 
c = VG/p and 
ls [m], Qs [rd] are arbitrary values. 
Equations of motion for cross-sections of the individual ele­
ments are partial differential equations of the wave propa­
gation-type which, upon introducing (2), are obtained in the 
nondimensional form 

EXTERNAL TORQUE TfK I 

d2Qi(x,T) a2e,(x,T) 
3T2 

where 

dx2 = 0, 

i=l,2,...,m-l,m+l,m + 2 n, (3) 

d2e,„(x,r) d2e„,(x,T) 

di* 

q(r) = 

dx2 

T„,(t)l2 

= q(r), 

Equations (3) are solved with homogeneous initial conditions 

d&,{X,T) 
e,(3c,T) = 0, 

dT 
- = 0 for T = 0, /=1,2,. . . ,«, (4) 

and with following boundary conditions 

dQi{x,T) 

dx 
- = 0 f o r / = l , * = 0 and i = n, x=2^^j, 

j=i 

v <fQk{x,T) 3 e t - i ( x , r ) - d9k(x,r) 
Kk———-A/t_i , _ - ^ a _ - < J (.->; 3x """ dx dr 

k-\ 

and Qk-,(x, T) = 6*(x, T) for x = ][] x> ^ 2, 3, 
j=i 

n, 
GJkls where Kk = " , " , Dk = Dk-~- and 7S [kgm^] is an arbitrary 

value. Solutions of Eqs. (3) are sought in the form of wave 
solutions 

e i ( v ) = / | r - i - 2 \ + 2 E ^ 
y = i J '= I 

y = i 

+ g,-(T + JC- 2 \ ) > ' = 1 , 2 , . . . , « - ! , 

J'=I 

em(x,r)=/ffl(T-x+ J] \ ) +gm(T+x- 2 >v) +/7('-)' 
y = l 

e*(^.T)=/t(T-x+2 x,-
y=i 

Fig. 2 Plot of the excitation torque function for fi = 377 [rd/s] 

null for negative arguments, i.e., before arriving the first per­
turbation. 

By substituting the wave solutions (6) into the boundary 
conditions (5), denoting the largest argument in each equation 
by z, and by rearranging these equations in such a way that 
their right hand sides are always known, we obtain the fol­
lowing system of ordinary differential equations of the first 
order with a "shifted argument" for the functions/)- and gj, 
j = 1, 2, . . . , n 

/ i ' ( z ) = g i ( z - 2 X i ) , 

fi'(z)=H(m-2)l-gi'(z-2Xi)+fi'^(z-2Xd + gi'-i(z-2\)], 

i = 2,3 m-1, 

gj (z) = -fj (z-2\j) +fUdz-2\J)+gj\i(z-2\j), 

j - m + l,m + 2,.,,,n- 1, 

gn(z)=f!,(z-2\n), 

gm (Z) = ~fm (Z - 2X,„) +/m+ i (Z - Xm) + g„ + i (Z - Xm) 

-V(z -X m ) , 

fm (z) =si V(z) + rlmg;„{z) + /Wm- I (z), 

fm + i(z)=s2V(z)+r2,m + igm+i(z)+r3,m+lf^(z-'Km), 

gm-l(z)=-fm-\(z) +fm(z) + g„{z) + V(z), 

gf =H(m-2)[r1f,' (z)+r4igi'+i(z)], l = m-2,m-3,...,l, 

fk(z)=r2kgi(z)+r3kf^i(.z), k = m + 2,m + 3,...,n, (7) 

where 

vi \ d T?I \ Km_\+Dm 

V(z)=—F(z), si=-— — , 
dz Km-i+Km + Dm 

S2~-
Km 

+ gk(r + x-J]\j-2H(k-m-l) J] X, 
j=i j=m+l 

K,„ + Km+\ +D„ 

rm = H(m-2) 

ru = H(m-2) 
Ki — Ki+i—Di+i 

2A"/+1 

KJ + KI+I +Dt+\ 

K/ + K/+1 +Dt+l 

, 1=1,2 m-2, 

where F(T) - r 
k=m + l, m + 2, ..., n, (6) 

(T — V) q(y) dv and H(k) is the Heaviside 

r2k--
Kk — Kk_i —Dk 

Kk + Kk_\ +Dk 
ru = 

2A"I._T 

Kk + Kk-i +Dk 

function. 
The functions/} and gj, j = 1,2,. . . ,n, represent torsional 

waves caused by the excitation torque, where the function f 
represents a torsional wave propagating in the y'th elastic ele­
ment along the x-axis positive sense (Fig. 1); however, the 
function gj represents a torsional wave propagating along the 
x-axis negative sense. According to the one-dimensional wave 
propagation theory, it is taken into account in (6) that the first 
perturbation in an arbitrary cross-section of the stepped shaft 
occurs after appropriate finite time instant. Furthermore, it is 
assumed that the functions f and gj are continuous and are 

k-m,m + l,...,n. 

Solving the above system of equations and using (6), we can 
obtain dynamic angular displacements and vibratory velocities 
as well as torsional strains or torsional elastic moments in any 
cross-section of the stepped shaft elastic elements for arbitrary 
time instants. Because the right hand sides of Eqs. (7) are 
always known, it is possible to solve each of them numerically 
in the sequence determined in (7). This fact, in comparison 
with analogous systems of coupled ordinary differential equa­
tions for discrete models, essentially increases the numerical 
efficiency of the presented method. Moreover, when only vi­
bratory angular velocities and torsional strains or torsional 
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SHAFT G-LP, Di=0.8. f-SGtt. GENERATOR ROTOR. Oi=0.025. f=60H» 

(a ) (a) 

25 t .50 

SHAFT G-LP. Dl=0.0. f=6&i, 
GENERATOR ROTOR. Oi=0.050. f-60Hi 

(b) 

Fig. 3 Torsional elastic moment in the shaft connecting the generator 
with the low-pressure rotor for: (a) it = 314 [rdfe] and (b) it = 377 [rd/sj 

GEbERATOR ROTCR. Oi=0.0. f-5eH. 

( a ) 

(b) 

GENERATOR ROTCR. D1=9.1 

( c ) 

Fig. 5 Vibratory angularvelocity of the_generator rotor for ft = 377 [rd/ 
s] and (a) D, = 0.025, (b) D, = 0.05, (c) D, = 0.1 

GENERATOR ROTOR, Di=0.0. f=60Ki 

(b) 

Fig. 4 Vibratory angular velocity of the generator rotor for: (a) U 
[rd/s] and (b) it = 377 [rd/s] 

314 

elastic moments are needed, Eqs. (7) are solved with regard to 
the first derivatives of the functions fj(z) and gj(z), 7 = 1 , 
2, . . . , n. Thus, the problem reduces to solving In algebraic 
equations in the determined sequence simplifying the numerical 
procedure, even further. 

Numerical Results 
Numerical calculations were performed for a system con­

sisting of a 500 MW steam turbogenerator with one low-pres­
sure rotor. It was assumed, that the presented continuous model 
of this turbogenerator rotor shaft system consists of n = 10 
elastic elements and m = 2. 

In the first part of the numerical example, undamped tran­
sient vibrations were considered, where A = 0, / = 2, 3, . . . , 
10, for two values of the shaft rated angular velocity—Q = 
314 [rd/s] and fi = 377 [rd/s]— corresponding to the frequency 
of the produced electric current/ = 50 [Hz] and/ = 60 [Hz], 
respectively. It was assumed, that in both cases rated torques 
transmitted through the individual turbogenerator rotor shafts 
were identical, and remaining parameters of the considered 
system were also the same. Thus, in these two cases of the 
value U, the system was forced to vibrate by different excitation 
torques due to high speed reclosing of the electric network. 
These excitation torques differ in the frequency A and the 
attenuating constant 5 of the sinusoidal functions as well as 
in the time intervals tu h - ti and h - h of the "step and 
slow shake" function. 

Figure 3 presents plots of the torsional elastic moment versus 
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time in the shaft connecting the generator with the low pressure 
rotor at a given rated torque Mm for fl = 314 [rd/s] and for 
Q = 377 [rd/s]. Figure 4 presents plots of vibratory angular 
velocity versus time of the left extreme cross-section of the 
elastic element (2) representing the generator rotor for the same 
values of Q. From the presented plots as well as from analogous 
results of torsional elastic moments in the remaining turbine 
shafts, it follows that essentially greater peak values of tor­
sional elastic moments and vibratory angular velocities were 
obtained for 0 = 314 [rd/s]. 

In the second part of the numerical example, damped tran­
sient torsional vibrations due to high speed reclosing of the 
electric network were investigated. Calculations were per­
formed for four assumed values of the dimensionless equiv­
alent damping coefficients: D, = 0.01, 0.025, 0.05, and 0.1, 
i = 2, 3, . . . , 10, for fi = 377 [rd/s]. Figure 5 presents plots 
of vibratory angular velocity versus time of the left extreme 
cross-section of the elastic element (2), representing the gen­
erator rotor, for Z>, = 0.025, 0.05, and 0.1. In comparison 
with the case of undamped vibrations [£>,• = 0, i = 2, 3, . . . , 
10, Fig. 4(b)], the equivalent damping in the model causes a 
successive reduction of local extreme values as well as an even­
tual extinction of the transient state components. As it follows 
from the plots in Fig. 5, the_influence of damping is more 
evident for greater values of Z>,. 

Final Remarks 
The work presented here constitutes a preliminary study in 

which the torsional elastic wave propagation theory was ap­
plied for dynamic analysis of the steam turbogenerator rotor 
shaft system. 

In the paper a continuous model of the steam turbogenerator 
rotor shaft system was considered. Using this model, transient 
torsional vibrations due to high speed reclosing of the electric 
network were investigated. In contrast to discrete models of 
the discussed system generally applied so far, the continuous 
model in form of stepped shaft as well as the interpretation 
of the investigated dynamic phenomenon in terms of propa­
gating waves lead to better understanding of this problem. 
Moreover, relatively simple and clear mathematical relations 
were obtained. An application of the torsional wave propa­

gation theory allows to solve sequentially the coupled differ­
ential equations with a "shifted argument." For torsional 
elastic moments and vibratory angular velocity calculations, 
the problem reduces to a set of algebraic equations. Thus, a 
great numerical efficiency of the presented procedure is 
achieved, making it particularly advantageous from a practical 
standpoint. 

In the numerical examples, influence of the excitation torque 
parameters and of the equivalent damping coefficients on the 
system dynamic response was presented. It was shown that, 
in case of high speed reclosing, the turbogenerator rotor shaft 
system is more sensitive to torsional vibrations for the rated 
angular velocity Q = 314 [rd/s] than for Q = 377 [rd/s]. 
Nevertheless, the obtained results require experimental veri­
fication. 
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