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DETERMINATIONS OF JACOBSTHAL SUMS

RoNALD J. EVANS

The sign ambiguities are resolved in evaluations of Jacobsthal sums
SP_(m(m* + a)/p) for k=2, 3, 4, 6, 10, and 12, where ( /p)
denotes the Legendre symbol.

1. Introduction. For a positive even integer e = 2n, a prime p = ef

+ 1, and an integer a prime to p, define the Jacobsthal sum of order e by
? n
ola)= 3 (ML),

m=1 p
where ( /p) denotes the Legendre symbol. In [1, §4], the values of
Jacobsthal sums ¢,(a) of orders e = 4, 6, 8, 12, 20, 24 are given up to
some sign ambiguities. The purpose of this paper is to show how the
precise values of ¢,(a) can be found.

In §3, we give congruence conditions (mod p) which determine the
correct choices of = signs. The computational complexity of these de-
terminations for large p is much less than that of computing ¢,(a) directly
from the definition.

In §4, we describe a method for determining the correct choices of =
signs by congruence conditions (mod a), when a is prime. If a is small
compared with p, then the determinations in §4 (mod a) turn out to be
computationally simpler than those in §3 (mod p).

The cases e = 4, 6 and e = 8 have already been treated by Hudson
and Williams in [2] and [3], respectively. We employ different techniques
based on Jacobi sums which work for all values e = 4, 6, 8, 12, 20, 24.
Each of these values of e is considered in §3, but in §4, only the case
e = 12 is treated, for brevity.

It will be convenient to introduce the notation F,(a) for the sum

0 R(o)= § =)

m=1

| = w(-a).

An evaluation of F,(a) immediately yields one for ¢,(a), since [4, (7)]

F(a) = ¢,(—a) = g,(a)(-1)"".

In the sequel, attention will be focused on F,(a).
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2. Notation and Jacobi sums. For a character A (mod p), define the
Jacobi sums

J) = é AN —m),  K(A) = A@)JI().

Write p = ef + 1. For each value of e = 4, 6, 8, 12, 20, 24, fix a
character x = x, (mod p) of order e. Let P be the prime ideal divisor of p
in Z[exp(27i/e)] chosen such that

(2) x(a) =a?™V/¢ =/ (mod P)
for all &« € Z[exp(2i/e)]. It is easily seen that
(3) K(x)=0 (mod P).

In [1, §3] one finds the following evaluations of Jacobi sums K(x) of
orders e = 4, 6, 8, 12, 20, 24 in terms of parameters in quadratic partitions
of p.

(4) K(x,)=a,+ib,, wherep=aj+bl,a,=— (2/p) (mod4);
-1 _
(5) (7)K(X6):K(X§):a3+’b3\/§,
where p = a3 + 3b%,a;, = —1 (mod3);

(6) K(xg) = ag + ibgy2, wherep = a2 + 2b2, a3 = —1 (mod4);

| —ay—ib,, if3]a,,
) K(X‘2)_{a4+ib4, if 3t ay,

where
K(x},) = a, +ib, asin (4);
(8) K(Xa4) = ap + ib24\/g> where p = a3, + 6b3,,
ay = ag(mod3), with K(x3,) = ag + ibg/2  asin (6);
a,, + ibzo\/g, if 5ta,,
(9) K(X20) =9 .
s — bzo‘/_s_a if5]a,,

where

a, (mod5), if5ta,,

= aj, + 5b5, and =
P= 0 20 %20 by (mod5), if5]a,,

with K(x3,) = a, + ib, as in (4).
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3. Congruence conditions (mod p). This section is to be read in
conjunction with [1, §4]. We consider only those values of a for which the
evaluations of F,(a) in [1, §4] have sign ambiguities, and we resolve these
ambiguities with congruence conditions (mod p), for e = 4, 6, 8, 12, 20,
24.

Casel.e =4,(a/p) = — 1.
The proof in [1, Theorem 4.4] shows that
(10) F(a) = 2Re(x(a)K(x)) = —2b4ix(a) = *2b,.

To determine the correct sign, it remains to find F,(a) (mod p). By (3)
and (4), —ib, = a, (mod P). Thus by (10) and (2), F,(a) = 2a,a’ (mod P),
SO

(11) F,(a) =2a,a’ (mod p).

ReMARK. While it takes the computer O( p) operations to compute
F,(a) directly from the definition (1), it requires at most O(,/p ) operations
to compute Fy(a) from (10) and (11), since a’ (mod p) can be computed
in O(log p) steps.

Case 2. e = 6, a is noncubic (mod p).
Write A = x2. Note that A(a) = (—1 =i/3)/2. The proof in [1,
Theorem 4.2] shows that

(12)  Fy(a) = —1+2Re(A(a)K(]))
= —1—a;+2by3 ImA(a) = —1 — a, = 3b,.

It remains to determine Fi(a) (mod p). By (3) and (5), a; = —ib;/3
(mod P), so by (12) and (2),

F(a)=as(a* —a¥) —1—ay;=2a;a*— 1 (mod p).

Case3.e =8, (a/p) = —1.
From the proof in [1, Theorem 4.6],

(13) Fy(a) = —2Re(K(x)(x(a) + x*(a))
= —2ibg2 (x(a) + x*(a)) = =4b;.
Thus,
Fy(a) =2a4(a’ + a*) (mod p).
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Cased.e = 12,(a/p) = —
Subcase 4A. 3| a,, a is cubic (mod p).
By [1, (4.3)],

(14) F,(a) = 6 Re(x(a)(a, + ib,)) = 6x(a)ib, = +6b,.
By (3) and (7), a, = —ib, (mod P), so
F,(a) = —6a,a’ (mod p).

Subcase 4B. 3} a,.
By [1, (4.5)],

(15) Fy(a) = 2b,/Im x(a)
+4p,, if ais noncubic (mod p)

= 4ib4/(x(a) + x5(a)) = {¢2b4, if a is cubic (mod p).

Thus,
Flz(a) = _4a4/(af+ as,‘) (mod P)~

CaseS5.e = 24,(a/p) = — 1.

This case is slightly different than those above in that two congruence
conditions are required to determine F,,(a). From the proof in [1,
Theorem 4.10],

F,(a) = A,, + B,,,
where
Az = =2 Re((ag + b2 ) (x*(a) +x°(2)))
= —2ibg)2 (x*(a) + x°(a)) = =4b,
and
By, = —2Re((ay + iby6 )(x(a) + x*(a) + x'(a) + x''(a)))

= —2ib,y/6 (x(a) + x*(a) + x'(a) + x"'(a))
_ { +12b,,, if ais noncubic (mod p)
0, if a is cubic (mod p).
It remains to determine 4,, and B,, (mod p). Since az = —ibgy2 and
a,, = —ib,,/6 (mod P), we have
Ay =2ag(a¥ + a*) (mod p)
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and

B, =2a,(a’ + a* + a” + a'V) (mod p).

Case 6. e = 20.
This case is similar to Case 5, so we omit some details. From the
proof in [1, Theorem 4.13],

F20(a) = Ay, + By,

where
Ay = 2Re{x*(a)(a, — ib)}

and

r2 Re{(x(a) —x*(a) — x'(a) + x9(a))(—ia20 - bzo\/g)}’

if 5] a,,

By, =

2 Re{(x(a) + x3(a) + x"(a) + x9(a))(a20 - ibzo\/g)}’

\ if 5ta,.

It remains to determine A4,, and B,, in each of the subcases below.

Subcase 6A. 5| a,, (a/p) = 1, a nonquintic (mod p).
Here A,, = *=2a, and B,, = =10b,,, with

(16) A,y =2a,a” (mod p)
- and
(17) B,y =2(a’ —a¥ — a” + a”)a,a,/b, (mod p).

Observe that there is no sign ambiguity in the right member of (17), since
a,,/b, =1 (mod>5), as is noted after (9).

Subcase 6B. 5| a,, (a/p) = — 1.
Here,

+8a,,, if ais quintic (mod p)

Ay = *2b, and B, = {12‘,20, if a is nonquintic (mod p),

with the congruences (16) and (17) again holding.
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Subcase 6C. 54t a,,(a/p) = — 1.
Here

+10b,,, ifai inti d
A, = =2b, and B, = 20 1 a ?s no?ql‘nn ic (mod p)
0, if a is quintic (mod p),
with (16) holding and
B,y =2a,(a’ + a¥ + a” + a) (mod p).
4. Congruence conditions (mod a). Throughout this section, e = 12,

p = 12f+ 1, x is a character (mod p) of order 12, (a/p) = —1, and a is
prime. From (14) and (15),

(18)  Fy(a) = ¢tIm K(x*)/Im x(a) = th,/Im x(a) = =hb,
where
(19) K(X3) =a,tib,
and
h=1t=—6, if3|a,andais cubic(mod p),
h=t=2, if 3} a, and a is cubic (mod p),
h=4,t=2, if3}a,andaisnoncubic (mod p).
If the prime a is odd, then a} b,, otherwise we would have
p=a;+b}=a2 (moda),

which contradicts (a/p) = — 1. Thus we can resolve the ambiguity in (18)
by determining F,,(a) (mod a), if a > 3. (Note a # 3, as (a/p) = —1.)
For a = 2, we will resolve the ambiguity by determining F),(2) modulo an
appropriate power of 2, in (20) and (21) below.

Casel.a=2.
It is classical [4, p. 107] that
b, = —2ix*(2) (mod38).
If 2 is a cubic residue (mod p), then

b, — ib, =2X3(2) —
Imx(2) x(2) x(@

—2 (mod38),

so by (18),
(20) F,(2) = —2t = —4 (mod 16), if 2 is cubic (mod p).
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If 3} a, and 2 is noncubic (mod p), then
2b, 4ib, R ')
Imx(2) x(2)-x2) x(@-x0@)
-8
x"°(2) — x*(2)
Since x%(2) = (—1 = ¥/3)/2 and x'°(2) = (1 = ¥¥/3) /2,
(21)  F,(2) =8 (mod32), if34a,and 2 is noncubic (mod p).

Fiy(2) =

(mod 32).

Case 2. a is a prime > 3.
To determine Fy,(a) (mod a), it suffices, by (18), to determine

S(x) = Im x(a)/b,

modulo a. To do this, we need some formulas for Gauss sums G(¢),
defined for characters y (mod p) by

G(v) = 3 W(n)exp(2mingp).

n=1

From [1, Theorems 2.2 and 3.1},
G(x)"” = pI*(x*)K(x)
so by [1, Theorem 3.19],
(22) G(x)" = pI*(x*)K*(x*)-
From [1, (3.28) and Theorems 2.2 and 3.1],

G*(x)/6(x*) = T (x*)K*(x),
so by [1, Theorem 3.19],
(23) G*(x)/G(x*) =7 (x*)K2(x?)-
Here, as in [1, Theorem 3.4],
(24) 2J(x*) =r, + 3ity)f3, wheredp = r? + 2712, r, = 1 (mod 3).

It is clear from the definition of G(x) that, in the ring of algebraic
integers,

(25) G*(x) =x"(a)G(x*) (moda).
We will complete the proof by determining S(x) (mod a) in (27)—(30)

in terms of the parameters p, r;, and a, unambiguously defined in (4) and
(24).
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Subcase 2A. a = 5 (mod 12).
By (25) and (23),

x'(a) = G (x)G(x)/G(x°) = 6“°(x)*(x*)K*(x*) (mod a).
Thus, by (22),
x'(a) = ple=/12J@D/3(3 ) g @=D/2(x3)  (mod a).
Replacing x by x’, we obtain
(26) X(a) Ep(a—S)/l2J(a+1)/3(X4)K(a—l)/2(>—(3) (mod a).

Each member of (26) is a rational linear combination of 1, i, V3, iy/3 by
(19) and (24). The respective coefficients of i must be congruent (mod a).
Since Im x(a) is rational, it follows that

Im x(a) = —p@ ¥/P2ReJED3(x4) Im K@ P2(x3) (mod a)
sO
(27) S(x) = —p“ /2 Re J@ /3 (x4) Im K@ /(%) (mod a).
For example, when a = 5, (27) yields
S(x) =(—4b,) ' Re(r, + 3it,)3 ) Im(a, + ib,)?
=2a,(r} — 27t2) (mod5).
Subcase 2B. a = 7 (mod 12).
By (25) and (23),
x*(a) = G (x)x(=Dp~'6(x*) /G (x)
=G (x)x(=Dp'/ (FP(x*)K*(x*)) (mod a).
Thus, by (22),
x¥(a) = p= iy~ 1)K D) (mod a).
Replacing x by x°, we obtain
x(a) = ple /1= 1)@ D3 () K@D/ (x*)  (mod a),
SO
(29 S(x) = p /(1) Re gt ()
XIm K@*Y/2(x3) /b, (mod a).
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For example, when a = 7, (28) yields

S(x) =(—1) (4b,) "' Re(r, + 31,3 ) Im(a, + ib,)*

=(—1)a,(r? — 272)(2a2 — p) (mod7).

Subcase 2C. a = 11 (mod 12).
By (25) and (22),

x(a) =p~'x(—1)G**!(x)

Thus,

(29)

Ep(a_“)/]zx(_ I)J(a+l)/3(x4)K(a+1)/2(x3) (mod a).

S(X) Ep(a—n)/lz(__ l)fReJ(a+1)/3(x4)
XIm K@*D/2(x3) /b, (mod a).

For example, when a = 11, (29) yields

S(x) = (= 1)/ (16b,) "' Re(r, + 3it,3 ) Im(a, + ib,)°

=(—1)a,(3b] — 10a2b? + 3a})(r{ — 1627242 + 729t%) /8

= Ta,(— 1) (36§ + a2b? + 3a2)(r} + 3r222 + 312) (mod 11).

Subcase 2D. a = 1 (mod 12).
By (25) and (22),

x(a) = Ga—l(>—<) Ep(a—l)/lZJ(a-—1)/3(>—<4)K(a—1)/2()—<3) (mOd a).

Thus,

(30) S(x) = —p“ P/ 2ReJ "V (x*) Im K“~D/%(x?) /b, (mod a).

For example, when a = 13, (30) yields

S(x)

= —p(16b,) "' Re(r, + 31,3 ) Im(a, + ib,)°
= —pa,(3b} — 10a2b} + 3a})(rf — 1627212 + 729¢) /8
= —2pa,(b + a2b? + al)(r} + 722 + 1) (mod 13).
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Numerical examples.

al 5 5 5 7 17 7 11 11 11 13 13 13

p|13 37 157 61 73 157 61 193 337 37 193 229

Fi,(a) | 12 24 —24 —-24 48 —12 —12 24 —-96 24 —24 12
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