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Nonmodal Solution of Spherical Shells 
With Cutouts Excited by High-frequency 
Axisymmetric Forces 
A closed-form solution is obtained for the high-frequency response of a thin spherical 
shell embodying a circular cutout and excited axisymmetrically by a concentrated radial 
force. The solution is constructed by combining the shell response to the radial exciting 
force with its response to radial, tangential, and moment line loads applied along the 
cutout boundary, these line loads being selected to match the boundary conditions. 
Concise expressions for the shell response are obtained by applying the Sommerfeld-
Watson transformation to the slowly converging high-frequency modal series which is 
thereby reduced to only two terms, viz., an exponentially decaying near-field and a stand­
ing or propagating-wave field. These two terms are in the nature of the creeping waves 
commonly used to formulate electromagnetic or acoustic diffracted wave fields in the 
short-wavelength limit. The method is illustrated for the simple case of a circular cutout 
with a clamped boundary, but lends itself to more complicated boundary conditions, viz., 
intersecting shells or wave guides. The natural frequencies and mode shapes are found 
from a single, characteristic equation involving trigonometric functions. 

1 Extension of Watson's Creeping-Wave Formulation to 
Structural Vibrations 

s, IHOKT-WAVELENGTH diffraction problems are com­
monly solved by applying the Sommerfeld-Watson transforma­
tion to the slowly converging wave-harmonic series which is thus 
transformed into a rapidly converging residue or creeping-wave 
series. The method has been applied extensively to electro­
magnetic [1, 2], acoustic [3, 4], and, to a lesser extent, elastic [5] 
waves. The transformation was first derived approximately 50 
years ago by Watson for the sphere, in his study of the trans­
mission loss of radio waves propagating across the Atlantic. 
Watson showed that, for a point source located at 6 = 0, the 
wave-harmonic series for the diffracted surface field can be ex­
pressed in terms of spherical wave harmonics of complex, non-
integer orders s: 

sP s_i( — cos 6) 

C +c- c o s S7r-^(^i s ) 
ds ( la) 
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where (Ci + C\) is a clockwise contour around the positive real 
axis, Fig. 1. O is a dimensionless frequency, specifically, for 
Watson's problem, the circumference of the earth measured in 
electromagnetic wavelengths. The zeros of cos sir at s = n + -̂  
give rise to simple poles. The integral is thus evaluated as a 
residue series which equals precisely the original wave-harmonic 
series. The function Z is restricted in that it must not have real 
roots coinciding with those of cos S7T. For what follows, Z is 
further restricted to even functions in s. 

The contour is now deformed into a counterclockwise contour 
comprising the semicircular arc CR+ and the line integrals (C3 + 
d). The semicircular integral CR+ vanishes as \s\ -»• <*>. The 
integrand in ( la) being odd in s, the line integral C3 above the 
negative real axis equals its mirror image C\. Plence, the counter­
clockwise contour integral {CR+ + C3 + C2) is equivalent to the 
original contour integral (Ci + Ci). The new contour integral 
can be evaluated as (2iri) times the residues at the complex zeros 
Sj of Z($l, s), where Im(sy) > 0: 

E 
sP,^i( —cos 0) 

. cos (sT^jdZlO^sj/ds' 
9 ^ 0 (16) 

I t is found that 0(s3) = 0(Q) and that Sj has comparable imagi­
nary and real components. Watson's residue or creeping-wave 
series is effectively a series in negative powers of frequency or 
more precisely, of the radii of curvature of the diffracting surface 
measured in terms of wavelengths. I t is therefore most efficient 
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P»_ i ( - cos 6) = 

Fig. 1 Contours of integration in Sommerfeld-Watson transformation 

precisely in the high-frequency range where the wave-harmonio 
formulation converges slowly. The creeping-wave solution is, 
like the wave-harmonic formulation, an infinite series. In the 
high-frequency range, the hypergeometric functions in (1) can be 
written asymptotically as 

2'A f TTI 
— - I T , cos „ ( „ . _ „ > ) _ - + 0(8-'/ .) , 

(ITS sin d)n |_ 4 J 

\s\ sin 8 » 1 (2) 

Expressing the cosine in (2) and cos (S7r) in (1) in terms of exponen­
tials, the diffracted field is displayed as traveling waves which are 
exponentially damped as they propagate around the sphere, 
since Im(s:)) > 0. At d = TT, the hypergeometric function in 
( lb) rises to a maximum of unity which embodies the focusing 
of the diffracted waves at the antipode. At 6 = 0, where — cos 6 
= — 1, the hypergeometric functions are singular. Thus a 
drawback of Watson's solution, which did not interfere with his 
original purpose, is that the residue series cannot, by itself, 
represent the field in the vicinity of the source. 

This limitation does not bear on the high-frequency solutions 
of sperical [6], and cylindrical [7] elastic shells, obtained by ex­
tending the Sommerfeld-Watson technique from wave-harmonics 
series to normal-mode series representing the forced vibrations of 
elastic shells. In this case, the denominator Z in ( la) possesses 
a finite number of roots s3- which, for vanishing structural clamp­
ing, are either imaginary or real. Thus, in contrast to the wave-
harmonic series of the diffracted field, the normal-mode series of 
the shell response is transformed into a finite sum of residues 
which, in the absence of structural damping, represent non-
propagating exponentially decaying near-fields and unattenuated 
standing-wave fields. Furthermore the drive-point response is 
expressible asymptotically in closed form. 

The concise display of the solution achieved with Watson's 

"Nomenclature-

a = shell radius 
c = characteristic compres-

sional wave velocity in 
flat plates, = [E/p(l -
yu2)]I/2, or free-space 
electromagnetic or 
sound velocity 

Cf = flexural wave velocity in 
flat plate 

Cj = phase velocity of struc­
tural wave in shell 

E = Young's modulus 
F = concentrated radial drive 

force applied at do = 0 
FR> FT — respectively, resultant ra­

dial and tangential line 
force distributed uni­
formly along circle do 

/ (#) ,{ _ dimensionless influence co-
g(d, do)) efficients defined, re­

spectively, in (8) and 
(18) 

h = shell thickness 
M = resultant moment excita­

tion uniformly dis­
tributed around circle 

n -

Pn(cosd) -

'Vtcosfl) = 

p., p.1 = 

= index number of normal 
mode of complete spheri­
cal shell 

= Legendre function of first 
kind 

= associated Legendre func­
tion of order 1, = 
-dP„(cos6)/d8 

= hypergeometric functions 
corresponding to Pn and 
P ' 

n 

% ( ^ l ) 

WR,WT 

U>M>™R 
iOT, uT 

pa = applied radial stress 
s = modal index number ex­

tended to complex, non-
integer values 

ta = applied tangential stress 
u(d, do)\ _ resultant circumferential 
w(d, do)) and radial velocity com­

ponents, respectively, of 
field point located at 6 
on mean surface of axi-
symmetrically excited, 
partial spherical shell 
with cutout along circle 
6o 

up(d)\ _ circumferential and radial 
wp(6)) velocity components of 

complete spherical shell 
excited by a radial point 
force at 80 = 0 (cor­
respond to ii and w in 
[6]) 

uT(6, 6o) — tangential velocity com­
ponent of shell response 
at field point d to a dis­
tributed tangential force 
FT applied along the 
circle do 

radial velocity component 
of shell response at field 
point d to, respectively, 
distributed moment ex­
citation M, distributed 
radial force FR, and dis­
tributed tangential force 
FT applied along circle 

do 

mechanical admittances, 
defined, respectively, as 

wM/M, wB/FB, wT/Fr, 
UT/FT 

Z, ZT — modal impedance of spher­
ical shells, respectively, 
for radial and tangen­
tial excitation 

Zp = drive-point impedance of 
infinite flat plate = 
Sfipcha 

a = circular frequency of ex­
citation normalized with 
respect to the flexural 
wavelength, = wa/cf = 
(0/ /S) , / ' 

/8 = 7i/2V3a 
77 = loss factor of shell ma­

terial 
d = spherical polar angle de­

fining degree of latitude 
of field point 

do = degree of latitude defining 
cutout boundary or dis­
tributed load 

X = J i (n- l - l ) 
p. = Poisson's ratio 
p = density of shell material 

$(0o),l _ dimensionless generalized 
M6«)\ ~ forces defined in (35) 

0 = dimensionless frequency of 
excitation normalized 
with respect to the com-
pressional wavelength in 
a flat plate, or the elec­
tromagnetic velocity in 
Watson's problem, = 
coa/c 

co = circular frequency of exci­
tation 
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Fig. 2 Spherical shell point-excited at i 
metric constraints at 0o 

Cut-out 

0 and subject to axisym-

formulation yields more immediate insight into the phenomena 
of, respectively, diffraction or high-frequency shell vibrations 
than does a slowly converging wave-harmonic or normal-mode 
series. The drive-point impedance tends to that of the infinite 
plane plate as cw| -+ co. Watson's solution thus provides an 
intellectually satisfying transition from the finite to the infinite 
system. This closed-form nonmodal formulation of structural 
response by means of progressive or standing waves was sys­
tematically applied by Snowdon [8] for beams and by Skudrzyk 
[9] for plates. The present paper extends the creeping-wave 
formulation of the complete spherical shell [6] to a shell provided 
with a circular cutout located coaxially with the drive point, Fig. 
2. The asymptotic approximations and the functional de­
pendence of shell response on shell parameters and frequency are 
generally consistent with Ross' asymptotic analysis of higher-
order resonances of an incomplete spherical shell [10]. 

For the incomplete sphere, the use of a modal expansion at 
high frequencies is even more cumbersome than for the closed 
shell because of the additional task of matching boundary condi­
tions. In the present standing or propagating-wave solution, the 
boundary conditions can be matched by the procedure developed 
for two-dimensional acoustic or electromagnetic scattering and re­
flection phenomena. For a shell with standard cutout boundary 
conditions, whereby all of the incident structure-borne energy is 
reflected by the boundary, a standing-wave formulation in terms 
of trigonometric functions, (2), is convenient. When the cutout 
defines the intersection of two shells, or of a wave guide attached 
to a spherical shell, a traveling-wave representation of the hyper-
geometric function (2) in terms of exponentials permits a simple 
wave-guide-type analysis. The propagating-wave solution of the 
complete spherical shell will first be summarized. Nearly the 
same Nomenclature is used here and in [6]. 

The radial velocity distribution of a spherical shell excited by a 
concentrated force applied at 6 = 0 is conveniently expressed in 
terms of the impedances Z(Q, X) of the normal modes: 

wJ6) 
F 

2wa2 
(n + 

n = 0 Z(Q, X) 
(3) 

where 

Z(Q, X) 
il V3j3pc 

(/32X2 - ft2) + 0(O-2) + 0(/3») (4) 

The corresponding tangential velocity is, with the same high-
frequency, thin-shell approximations 

V0) - E ^V-V"" * w (oos d) (5) 

where W„ is a modal velocity amplitude in the normal-mode series 
(3). 

This normal-mode series lends itself to the Sommerfeld-
Watson transformation. The two roots of the modal imped­
ances (4), Xj = ± 0 / / 3 = ± a 2 each give rise to two roots s,-

+ 0 ( l / 8 a ) (6) 

The roots Si and s3 which fall within the contour (C2 + CR+ + C3), 
give rise to two residues. When the hypergeometric functions 
are replaced by their asymptotic expressions (2) and dropping 
higher-order terms in a~2, one finally obtains a concise solution 

wp(d) = •iff (9) 
Zp(jra sin 6) >A> 

9i 0 , 7T (7) 

where 

f(0) = 2'/4 
a(ir 0)-

- « / 4 , ia(ir — 6) (8) 

cosh air J 

= (1 + tan air) cos ad — (1 — tan air) sin a6 

- 21/*e-ae + 0(e-wa) 

The exponential term represents a nonpropagating near-field 
beyond which the standing or propagating-wave nature of the 
residue associated with si can be displayed by expressing the 
trigonometric functions in terms of complex exponentials. The 
corresponding phase velocity obtained by retaining a higher-
order term in (6) is 

ci = coa/si 

i1 - i)+ °H (9) 

This velocity displays the "creeping-wave" characteristics of the 
diffracted-wave solution. Similarly, for a tangential excitation, 
the phase velocity in the shell is somewhat less than the com-
pressional velocity in a flat plate. At the drive point a slightly 
modified version of the Watson transformation, not applicable 
to diffraction problems, yields 

wP(0) = —i(F/Zp) tan air (10) 

To evaluate the order of magnitude of the associated tangential 
response the ratio multiplying W„ in (5) is evaluated for the singu­
lar values of X,- = ± a 2 : 

En. 1 + M 

± a 2 + om ( I D 

where Un is the modal velocity amplitude multiplying Pn1 in (5). 
The asymptotic expression of this function is obtained by differ­
entiating (2). Setting n = s — -J-, 

jKcos 6) = -dPs-i/d6 

(2s)" ' 

(IT sin W'ski(se~t)> s s i n 0 » l (12) 
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This function exceeds the original hypergeometric function, (2), 
by a factor s = a. Combining (11) and (12) it is seen that the 
tangential displacements compare to the radial displacements as 
a - 1 compares to unity, and can therefore be neglected, provided 
the excitation is purely radial. 

Having reviewed the results obtained in [6] for the point-
excited spherical shell the response to circular line loads will be 
derived. 

2 Shell Response to Distributed Forces and Moments 
Distributed Radial Load. A radial force of resultant amplitude of 

FB is applied uniformly around the circle of latitude do- The in­
tensity of the line load in units of force per unit length is FB/2ira 
sin do. The corresponding applied pressure is in the form of a 
Dirao delta function which is readily expanded in Legendre func­
tions 

Paid,) = 
FRS(8 - fl„) 

2ira2 sin do 

27T02 J2 in + i )P„(cos 6o) (13) 
n = 0 

The modal formulation of the radial velocity distribution thus 
excited is 

wR{6, do) 
FR ^ (n + j)P„(cos ft))P„(cos 6) 

Z(&, X) 
71 = 0 

(14) 

To generate the Watson residue series, we note that, according 
to ( la) the normal-mode series equals the contour integral 
(Ci + C\) 

£ = 
Ci + C. 

F(s, T - 9, do)sds 

Z(tt, X) 
(15a) 

where 

F(s, ir - d, 60) = P s _ i ( c o s 6> 0 )P s - i ( -cos 0)/cos sir 

This integrand, like Watson's integrand (la) is odd in s, so that 
the clockwise integral (Ci + Ci) equals the line integral (Cs + CO 
from - c o to co. Unlike Watson's diffraction analysis or the 
point-excited spherical shell solution [6], for which d > do = 0, 
the present analysis must include the situation 8 < do- I t will 
shortly become apparent that this requires an alternative integral 
representation based on the fact that, since the integrand in (15a) 
is odd in s, the line integral C2 from 0 to co equals its mirror image 
Ct from 0 to — oo. Hence, the clockwise integral (Ci + CO 
equals alternatively the line integral (Cs + Ci) from — co to °J 
above the real axis or the line integral (Ci + C4) from co to — co 
below the real axis. The latter must be closed along the semi­
circular circle CR_ to exclude the poles on the real axis. 

To determine where these alternative integral representations 
are applicable, one studies the behavior of the integrand on the 
two semicircular contours as js| —*- co : 

„ ^ SF(S,TT - 8,6o) f l m ( s , ) > 0 , 8>8o „ _ „ 

r ,±ij ^/ds, ' \ i m ( s . ) < 0 , 8<0o 

At 8 = do, either representation can be used, because the ex­
ponential terms equal unity, and F converges with increasing s 
as s/Z, i.e., as s~3. Whatever the sign of (8 — do), the response 
is in the form of one of the two pairs of residues associated with 
the four singularities in (6), the residues being multiplied by the 
value of Ps-i(cos do) evaluated at s = s,- and sh: 

wR(d, do) 

where 

-iP* [F(Sj, TV - d, do) - F(sh, TT - d, do)} (16) 

Sj = g! RS a and st = s3 = ia for 0 < do < 8 < w 

Sj = s2 «s —a and sh = st ~ —ia for TT > do > d > 0. 

The former of the foregoing solutions applies to the response 
at d = T , where the hypergeometric functions of argument — cos 0 
are unity, but neither solution yields the response at 8 = 0. It is 
not necessary, as it was in the case of the concentrated force, to 
introduce a modified Watson transformation specialized to this 
field point. Rather, it is sufficient to note that an integral 
representation in the upper half of the s-plane can be retained if, 
instead of the integrand used in (15a) one introduces the function 
F(s, 8, IT — do)- This approach is based upon the fact that the 
response at d = 0 to a ring load applied at do equals the response 
at 8 = TT to a ring load applied at TT — do- Setting cos (TV — 8o) 
= — cos do, the drive-point response becomes 

wR{0, do) = 
-iFR fPs-ji-cos do) Ps-|(cos do) 

(17) 

To obtain a readily evaluable form of the foregoing solutions, 
the same high-frequency approximations are introduced as for 
the point-excited shell. Furthermore, because the functions in 
(16) and (17) are even in s, the residues arising from sa and st are, 
respectively, the same as for si and s3, provided one uses the abso­
lute value of the difference \90 — d\. The shell response to the 
ring load, expressed in the form of a transfer admittance can thus 
be stated as 

wR(d, d0)=wB(d, do)/FR = -ig(d, d0)/TZpa(sin d sin 0O)'/2, 

8 9± 0, IT (IS) 

where 

(J(d, do) = cos a{8o + 8) - sin a\do - d\ 

+ tan a7r[cos a\do — d\ + sin a(d0 + 8)] 

- exp \-a\8o - 8\] + 0(e-«»°) 

The solution at the origin 8 = 0 (17) takes a simple form expressi­
ble in terms of the function f(8) defined in (8): 

w*:(0, 8o) = -if{8o)/Zp{Trct sin <?„)' A (19) 

where terms of order exp ( — ado) were neglected compared to 

M). 
Distributed Moment Load. The shell response to a moment is.ob­

tained by superimposing the response to a positive, outward, 
radial force FR applied at d0 and the response to a negative inward 
radial force of the same amplitude applied at (do + 8do)- The 
two forces thus form a positive moment 

M = FBadd0 

The residue series representing the shell response to this moment 
can be constructed from (16) and (17) by replacing the hyper­
geometric functions of argument cos do with 

P s _ j (cos do) - P s - j [ c o s (do + Sdo)] = ~(dPs-i/ddo)Sd0 

Setting 8d0 = M/FRa, one constructs the desired solution of the 
shell response to a distributed moment b3r differentiating (16): 

wM(d, do) = -(M/a)dwR(d, do)/ddo, d * 0 (20a) 

The response at 8 = 0 is similarly constructed from (17) but be­
cause the argument of the hypergeometric function is cos (TT — 
do), rather than cos do, the moment is represented by —FRaSdo-

WM(0, &o) = (M/a)dwR(0, Qo)/bdo (206) 

Ignoring terms of order a~l compared to unity in performing the 
differentiation, the asymptotic expression for the shell response is 
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WM(9, ft) 

M 

idgjd, ft)/dft 

TaaZp(sm 8 sin, ft)1' 
^ 0, TV 

(21a) 

wM{0, < 

where 

adft 

+ tan COT [sin |ft — 9\ + cos a(f t + ft] — exp ( - a | f t — ft1) 

At the drive point, the response is constructed from (20&) 

-idf/ddo 

= cos a | f t — 6\ — sin a(d + do) 

wM(0, ft) (216) 
aZp(ira sin ft)1/2 

where, from (8) 

df/ddo = —a[( l + tan air) sin af t + (1 — tan cnr) cos aft] 

Distributed Tangential Force. Finally, the response of the shell to a 
distributed tangential load is required for certain boundary con­
ditions. The resultant force is defined as FT. The correspond­
ing applied shear stress can be expanded in a series of associated 
Legendre function 

t M = FTHO ~ ft)/27ra2 sin ft 
771 CO 

2TO2 J^. 
*L^-A P„'(cos ft) 

The tangential component of the shell response is 

uT(8, ft) = 
2 T O ! E 

(w + j-)P„'(cos ft)P„'(cos ft 

\ZT&, X) 

(22) 

(23) 

The subscript T indicates tha t the tangential displacement is 
associated with a tangential excitation rather than with coupling 
to the radial response. Making the usual high-frequency ap­
proximations the modal impedance takes the form 

i2\/3j3pc(\ - 02)/ft (24) 

The radial response coupled to the tangential response excited by 
a tangential load will be similarly identified by a subscript T 

wr(0, ft) = E 
X(l + A 0 

'l(3
2X2 + 2(1 + /*) - 0 ! UnPn(cos 9) (25) 

where ?7„ is the modal velocity amplitude in (23). Applying the 
Sommerfeld-Watson transformation to the normal-mode series, 

V " \ r t X cos STr(dZ3,/dX)(dX/ds) 
(26) 

where ZT(Q, X,-) = 0, X5- = («.,. — ^-)(sy + -g-). The impedance has 
two, rather than four roots, both of them real 

±(£22 + I)1'* « ± 0 + 0(t2-2) (27) 

Introducing a structural loss factor it is seen that the positive root 
si = £2(1 -f- T^iri) lies in the upper half plane, while the negative 
root lies in the lower half plane. A single residue is thus obtained 
whose denominator is 

dZT/bs\s = Sj = i±^/zf3p&lSj (28) 

An explicit expression for the shell response to a tangential load 
can now be constructed by combining (26) and (28). Introducing 
the plate impedance Zp and the parameter (3, 

uT{6, ft) 

-i2/3FT Phj-i(cos ft)P%._4(-cos 9) 

ZJ2 COS Sj-K 
V-
h-

= 1, 

= 2, 

6> ft 
0< ft 

(29) 

This solution differs from the one obtained for the radial excita­
tion in that it does not embody a nonpropagating near-field. 
Introducing (12), the asymptotic expression for the response of 
the sphere can be written in terms of |ft — ft1, and (ft + 8) 

UT(d, ft) E= uT(6, 9„)/FT 

— 2iQ 

TZP COS i«r(sin 8 sm ft) '-

+ tan £2ir[sin 0(ft + 8) - cos fi|ft - 6\]} (30) 

This function is smaller than iBR(6) by one order of magnitude, 
specifically by 0(a//3) = Offih/P'h). This difference in magni­
tude reflects the inherently higher impedance of the shell to tan­
gential forces giving rise primarily to membrane stresses. The 
tangential response at 9 = 0 is zero. 

The radial response coupled to this tangential velocity dis­
tribution is obtained by evaluating the ratio in (25) at the singu­
lar value X_,-, where this ratio reduces to (1 + n). Differentiating 
(25) with respect to 9 the relation between the two displacement 
components becomes 

dwT/dd = (1 + ix)uT (31) 

For jx = 0, this relation reduces to the condition for a pure mem­
brane-type stress distribution, just as the high-frequency response 
to radial excitation was found, from (11) and (12), to be asymp­
totically, purely flexural. The fact that first-order flexural 
stresses are predicted from (31) for fj. > 0 suggests that the ju-term 
may be the result of an inconsistency in discarding higher-order 
terms in the equations of motion of the shell. Whether or not 
this jU-term is retained, one concludes that, unlike the coupling 
between a radial excitation and a tangential velocity displace­
ment, which was found to be negligible, a tangential excitation 
makes a contribution to the radial shell response which is com­
parable to the directly excited tangential shell response. Substi­
tuting (29) into (31), and integrating with respect to ft the coupled 
radial displacement is finally obtained. 

wT{8, ft) = 
- 2 ^ ( 1 + M) 

•KZ„ ; Qir 
l(cos ft)Psy_i(-cos i 

3 Construction of Shell Response From Boundary 
Condition 

The procedure will be illustrated for a cutout with clamped 
boundary conditions 

w(ft, ft), w(9„, ft), 
dw(9, ft) 

d0 
= 0 (32) 

The tangential component is expressed in terms of an unknown 
tangential reaction along the boundary and a higher-order com­
ponent coupled to the radial displacement 

u(9, ft) = uT(9, 6<,)FT + 0(wR/ce) (33a) 

The radial response is the sum of four terms, three of which are 
proportional to the unknown reactions along the boundary 

w(d, ft) = wp(9, ft) + wR(9, 9,)FR 

+ wT{6, 9„)FT + wM(fi, 9oW (33b) 

The slope bw/d9 of the radial velocity is made up of these same 
components. In the large a-limit the coupling term in (33a) is 
negligible. Consequently, the first of the boundary equations 
(32) yields FT = 0. When this is substituted in the latter two 
boundary conditions one obtains two linear equations in the 
unknown radial and moment reaction along the boundary. 
These two simultaneous equations yield formal solutions ex­
pressible in terms of the results obtained in section 2 

Journal of Applied Mechanics DECEMBER 1 9 7 0 / 981 
Downloaded From: https://appliedmechanics.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Fig. 3 Radial response of spherical shell in vicinity of cutout for same 
parameters as in Table 1 

FR = 

M 

wp wM - wpwM 

WRWM' - WMWR' 

wpwR' - wp'wR 

wRwM' - ioMwB' 

where wp = wp(6o, do) 

wp' = bwp/bd\e=e 

wR = wn{do, 6o) 

etc. 

(34) 

The solutions of the two simultaneous equations can 
pressed in terms of (8), (18), and (21a) 

FR = (TU sin doY^ido), 

where 

fg" - g'f 
$(6o): 

M = -Fa{ira sin doY^W (35) 

of - fg' •AW = 
(g'Y -(g'f - gg" 

f = f(do); f = df(6o)/d0o; 

g = g(do, do) = cos 2ad0 + tan cnr(l + sin 2ado) 1 

g' 
MO, do) 

dd<, 

i>g(6, Oo) 
dd 

a ( t an aw cos 2ado 

— s in 2<xdo) 

?')2 

• {0 = 0o = <*2[1 — cos 2ado 

+ tan a7r(l — sin 2ado)\ 

" — 2a 2 ( l — cos 2ado — tan CCT sin 2ado) 

Finally, the response of the shell is constructed by substituting 
these results in (336) where the velocity components have been 
expressed explicitly in terms of (8), (18), (19), and (21) 

w(d, do) = 
-iF 

Zp(air sin d) •A|_-f(d) 

+ t(do) 

Wo)g(d, do) 

dg(d, do)' 

ddo 

w(0, do) = 
-iF 

tan OT + $(0o)/(0o) - t(do) 

d ?±0 (36a) 

df(6of 

ddo 
(366) 

Because of the uniqueness of the solution, the result thus obtained 
describes the response of a point-excited shell subject to the pre­
scribed boundary conditions, as well as the response of a complete 
shell driven by the point-force F and the distributed excitations 
FB and M. Had the higher-order term in (33a) been retained, a 
nonvanishing value for FT would have resulted, requiring the use 
of third instead of the second-order determinants in the evalua­
tion of the reactions along the boundary. 

The solution in (36) is used to compute the response of a shell 
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Fig. 4 Resonance peaks of spherical shells with cutouts at 8„ = 160 
deg and 170 deg and for a complete spherical shell excited by a point 
force applied at 0 = 0, (h/a — 10~2 ,7) = 0.01) 

Table 1 Radial velocity of shell with cutout at do = 160 deg and of 
complete shell [6] excited by a radial force F applied at 6 = 0 (h/a = 
1 0 _ 2 , f i = 13.8, a: = 69.1,7) = 0.04) 

100\w(8)\Zp/F 

$ (deg) 
0 
2 
5 

10 
20 
50 
90 

130 
150 
160 
180 

Cutout 
99 
54, 
30. 
20. 
13. 

5, 
3. 
2. 
3 

5 
7 
1 
4 
1 
46 
58 
63 
73 

0(10~7) 

No cutout 
97.9 
54.8 
30.5 
20.5 
12.9 
5.76 
3.16 
2.90 
2.38 
1.20 

22.6 

Phase with respect to 
driving force (deg) 
Cutout 
- 4 . 3 
92.5 

299.5 
285.3 
258.1 
172.0 

' 64.8 
279.2 
260.5 

No cutout 
0 .1 

92.4 
299.3 . 
285.1 
256.6 
165.7 
56.7 
287.3 
260.6 
247.0 
101.2 

for a cutout subtending an angle of 40 deg (i.e., for do = 160 deg), 
and for the driving frequency and shell parameters used in the 
illustration of the wave-guide analysis of the complete spherical 
shell [6], viz., fi = 13.8, -q = 0.04, h/a = lO"2, a = 69.1. The 
radial response of the shell is illustrated in Table 1. The shell 
response in the immediate vicinity of the cutout is shown in Fig. 3 
to verify that the clamped boundary conditions are indeed 
satisfied. 

The results obtained for the complete shell [6] are also repro­
duced in Table 1. The response of the two shells is mildly simi­
lar, except for marked differences at the drive point and in the 
vicinity of the cutout. The large divergence at the drive point 
may be attributed to a mild focusing of the wave components 
contributed by the reactions a t the cutout boundaries. 

The effect of resonant conditions on the drive-point response is 
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illustrated in Fig- 4 for more lightly damped shells. The drive-
point response oscillates around that of the infinite flat plate. 
The resonant amplification is more pronounced for shells with 
larger cutouts. To explore the cause of this trend, it is noted that 
the resonant and antiresonant amplitudes of the complete shell 
are, respectively, 

w(0)Zp/F = coth (T<XT)/4:) at resonance 

= tanh (Tari/i) at antiresonance 

Thus the enhancement at resonance and cancellation at anti-
resonance are determined by the length of the structure-borne 
path measured in flexural wavelengths, 27ra, multiplied by ij/8. 
For shells with cutouts, the effective length of the wave-guide 
path is 2a6o modified by the boundary conditions. An increase 
in do from, e.g., 160-170 deg produces a change in the function 
doa^/4: which is equivalent to an increase in a from, e.g., 69-73. 
These results are consistent with the reduction in resonant re­
sponse with increasing da at constant a, and alternatively increas­
ing a at constant da shown in Fig. 4. As da -*• ir, the response of 
shells with clamped cutouts does not converge precisely to the re­
sponse of the complete free shell, but to that of the complete shell 
supported at d = ir. 

The maxima of the response of shells with cutouts coincide with 
those of the complete shell which occur at the singularity of tan 
aw, corresponding to the dimensionless natural frequencies, <xm = 
(m + I?). These frequencies are also maxima of the two #o-de-
pendent components of the drive-point response (366). The de­
nominators of the coefficients $(0O) and 4>{6a) of these two com­
ponents display zeros when tan ada = tan aw, i.e., when am = 
?jnr/(ir — 0o). These roots are, however, also zeros of the 
numerators of the two functions and therefore do not give rise to 
resonance peaks. If terms of order exp (— ado) are not negligible, 
i.e., for lower frequencies a or for partial shells which are curved 
plates subtending an angle da < w/2 rather than shells with small 
cutouts, (Vdependent resonances would have been encountered. 

For standard boundary conditions, the components of either 
the velocity or the load along the boundary are zero, i.e., the 
boundary presents infinite or vanishing admittance to transverse, 
tangential, and rotational motions. For a spherical shell in­
tersecting another elastic shell along the circle da, the boundary 
conditions are defined by the requirement that the velocity com­
ponents and reactions in the two shells along the boundary be 
compatible. When the attached structure is a semi-infinite wave 
guide, the input impedance of the receiving structure embodies a 
resistive component, thus making the boundary into an energy 
sink. In this situation it is advantageous to display the incident 
structureborne wave field wp in terms of complex exponentials, 
i.e., of traveling waves, even for 7) = 0. The structure-borne 
waves reflected by the boundary are similarly displayed in terms 
of complex exponentials, exp [ia\d0 ± d\] and exp [i£2|0o ± d\], 

and real exponentials exp [ — a\8a ± d\], which are multiplied by 
undetermined complex coefficients. The wave field transmitted 
to the attached wave guide is similarly expressed. The unknown 
coefficients in terms of which the reflected and transmitted fields 
are formulated can be computed from the boundary conditions. 
The compatibility of boundary velocities and reactions in the two 
shells is conveniently stated in terms of the input impedances of 
the two coupled structures, viz., for the spherical shell, the re­
ciprocals of the input admittances wR, wM, and uT. This im­
pedance matching technique is familiar from the analysis of 
structure-borne noise transmission between discontinuous struc­
tures of elementary geometry, e.g., beams coupled to discrete 
elements and to other beams [8] or an infinite plate coupled to a 
parallel infinite plate by means of an elastic column or "sound 
bridge" [11]. The illustration of this procedure transcends the 
scope of the present paper. 
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