
Most Balanced Minimum Cuts and Partially Ordered Knapsack

Paul Bonsma∗

Institut für Mathematik, Sekr. MA 6-1, Technische Universität Berlin,

Straße des 17. Juni 136, 10623 Berlin, Germany

bonsma@math.tu-berlin.de

November 12, 2007

Abstract

We consider the problem of finding most balanced cuts among minimum st-edge cuts
and minimum st-vertex cuts, for given vertices s and t, according to different balance
criteria. For edge cuts [S, S] we seek to maximize min{|S|, |S|}. For vertex cuts C of
G we consider the objectives of (i) maximizing min{|S|, |T |}, where {S, T} is a partition
of V (G)\C with s ∈ S, t ∈ T and [S, T] = ∅, (ii) minimizing the order of the largest
component of G−C, and (iii) maximizing the order of the smallest component of G−C.

All of these problems are shown to be NP-hard. We give a PTAS for the edge cut
variant and for (i). We give a 2-approximation for (ii), and show that no non-trivial
approximation exists for (iii) unless P=NP.

To prove these results we show that we can partition the vertices of G, and define a
partial order on the subsets of the partition, such that ideals of the partial order correspond
bijectively to minimum st-cuts of G. This shows that the problems are closely related to
Uniform Partially Ordered Knapsack (UPOK), a variant of POK where element utilities
are equal to element weights. Our PTAS is also a PTAS for special types of UPOK
instances.

1 Introduction

We study the problem of finding most balanced cuts among certain sets of edge cuts and
vertex cuts, for various types of balance criteria. This problem differs from the balanced cut
problems that are usually studied (see e.g. [12]): in most previous research the objective is
to find a cut with minimum number of edges or vertices among all cuts that satisfy a certain
balance requirement, for instance the requirement that none of the resulting components
should contain more than two-thirds of all vertices (this is called a 2/3-balanced cut). Instead,
we are looking for a cut that optimizes a balance function, for instance one that minimizes the
number of vertices in the largest component, among a set of edge or vertex cuts that contain
at most k edges resp. vertices. In particular, we are looking for cuts that are minimum st-cuts
for some vertex pair s and t: these are cuts that separate s from t, with minimum number of
edges resp. vertices among all such cuts.

We now define the problems more formally. For further definitions, see Section 2. We
assume that the input graphs for the various problems are simple and connected. For a graph

∗Supported by the Graduate School “Methods for Discrete Structures” in Berlin, DFG grant GRK 1408.

Part of this research was carried out when the author was working at the University of Twente.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357403721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

G = (V, E) and two non-empty, disjoint sets S ⊂ V and T ⊂ V , [S, T] denotes the set of
edges of G with one end vertex in S and one end vertex in T . A set M ⊆ E is an edge
cut if M = [S, S] for some non-empty S ⊂ V . The cut [S, S] is a minimum st-edge cut if
s ∈ S and t ∈ S, and |[S, S]| is minimum among all such cuts. For edge cuts, most reason-
able balance requirements are equivalent; we choose the objective of maximizing min{|S|, |S|}.

Most Balanced Minimum st-Edge Cut: (MBMEC)
INSTANCE: A graph G, two distinct vertices s, t ∈ V (G).
SOLUTION: A minimum st-edge cut [S, S].
OBJECTIVE: Maximize min{|S|, |S|}.

For vertex cuts the problem is defined as follows. A vertex cut of a connected graph G = (V, E)
is a set C ⊂ V such that G − C is disconnected. It is a minimum st-vertex cut for s, t ∈ V if
s and t are in different components of G−C, and |C| is minimum among all such cuts. Since
a minimum vertex cut can result in multiple components, there are different ways in which
vertex cuts can be considered well-balanced. The three most natural ways are expressed by
the following three variants of Most Balanced Minimum st-Vertex Cut (MBMVC). The order
of a graph is its number of vertices.

MBMVC - Largest Component (LC)
INSTANCE: A graph G, two vertices s, t ∈ V (G).
SOLUTION: A minimum st-vertex cut C.
OBJECTIVE: Minimize the order of the largest component of G − C.

MBMVC - Smallest Component (SC)
INSTANCE: A graph G, two vertices s, t ∈ V (G).
SOLUTION: A minimum st-vertex cut C.
OBJECTIVE: Maximize the order of the smallest component of G − C.

MBMVC - 2-Partition (2P)
INSTANCE: A graph G, two vertices s, t ∈ V (G).
SOLUTION: A minimum st-vertex cut C and partition {S, T} of V (G)\C with s ∈ S, t ∈ T ,
[S, T] = ∅.
OBJECTIVE: Maximize min{|S|, |T |}.

In the first of these variants, a solution with multiple smaller components is preferred. This
is the variant that is most useful when used in the context of divide-and-conquer algorithms.
The second variant on the other hand prefers solutions with few components. For the third
variant, the number of components is not important, it is only important how well the compo-
nents can be divided into two parts. This variant will turn out to be most similar to MBMEC.
One may consider other objective functions, such as for instance minimizing the ratio between
the order of the largest component and the order of the smallest component, but for many
such objectives the approximability status of the resulting problem is easily deduced from our
results on these three problems.

Most balanced cut problems were previously studied by Feige and Mahdian [5], who
studied MBMEC and a variant closely related to MBMVC-LC (their goal was to minimize the
maximum of the order of the component that contains s, and the order of the component that

2

contains t). They proved NP-hardness, and gave a fixed parameter tractable (FPT) algorithm
where the parameter is the number of edges resp. vertices in the cut. They studied this
problem since it occurred as a subproblem in their method for finding small α-balanced cuts.
This is one motivation for studying most balanced minimum cut problems; these problems are
similar to hard cut problems such as minimum α-balanced cut or sparsest cut (see [10] or [12]),
and thus may be useful in finding methods for solving (special cases of) these problems, since
we will show that they are much easier to approximate. (Recent results indicating that
sparsest cut is hard to approximate appear in [1, 3].)

As a second motivation for this problem, Chimani, Gutwenger and Mutzel [2] give an
integer program for calculating the crossing number of a graph G, and show that edge cuts
[S, S] can be used in a preprocessing step to split the instance in two. This step is correct
whenever [S, S] is a minimum st-cut for some pair s and t, and the gain is larger when the
cut is more balanced.

We show that most balanced minimum cut problems are closely related to the NP-hard
problem partially ordered knapsack (POK): Both for edge cuts and vertex cuts we define a
partition of the vertices of a most balanced minimum cut instance, and a partial order on
the sets of this partition, such that ideals of the resulting partial order correspond bijectively
to minimum st-cuts. For vertex cuts this includes the partition of the resulting components
into S and T as in MBMVC-2P. Partial orders are denoted as (P, A), where P is a set of
elements and A is a partial order relation on P (transitive and irreflexive). A set I ⊆ P
is an ideal of (P, A) if for all (x, y) ∈ A and y ∈ I, it holds that x ∈ I. If we have a func-
tion w : P → R assigning weights to a set P , then for any I ⊆ P , w(I) will denote

∑
x∈I w(x).

Uniform Partially-Ordered Knapsack (UPOK)
INSTANCE: A partial order (P, A), weights w : P → R

+, and an integer WU .
SOLUTION: An ideal I of (P, A) with w(I) ≤ WU .
OBJECTIVE: Maximize w(I).

This is the uniform version of POK, which can also be seen as a partially-ordered version
of subset sum. General POK instances have both a utility function on P which should be
maximized, and a cost function on P which should be bounded by WU in a solution. For
MBMEC instances G, s, t, we will show how a partial order (P, A) can be constructed such
that G has a minimum st-edge cut [S, S] with s ∈ S and |S| = x if and only if (P, A) has an
ideal I with w(I) = x. A similar construction is given for MBMVC-2P instances, and in the
other direction, we also show how to construct instances of all four problems for every UPOK
instance. From these relations a new, simple NP-hardness proof follows for the four prob-
lems. In addition we present a polynomial time approximation scheme (PTAS) for the special
case of UPOK where w(P) ≤ cWU for some constant c. This yields a PTAS for MBMEC
and MBMVC-2P. For MBMVC-LC we present a 2-approximation, and for MBMVC-SC we
show that there is no polynomial time approximation algorithm that is better than the trivial
2/n-approximation (unless P=NP), where n = |V (G)|. We also study a version of MBMEC
where the choice of the vertices s and t is not part of the instance, but may be chosen as part
of the solution:

General Most Balanced Minimum st-Edge Cut (GMBMEC):
INSTANCE: A graph G.

3

SOLUTION: A minimum st-cut [S, S] for some vertex pair s, t ∈ V (G).
OBJECTIVE: Maximize min{|S|, |S|}.

This is the version of the problem that is most relevant for the application in [2]. Clearly
the PTAS for MBMEC gives a PTAS for GMBMEC, by trying every combination of s and
t. It is however not obvious that NP-hardness of GMBMEC follows from the NP-hardness of
MBMEC; we give a proof of this statement in this paper.

Our results do not only contribute to the knowledge of most balanced minimum cut
problems, but also to the knowledge of approximating special cases of POK. Little is known
about the approximability of POK in general; positive results are known for many special
cases of the problem, but not for the general case, and the current strongest negative result is
that no FPTAS can exist (unless P=NP). See [9] for more information. Finally, the exhibited
partial order structure of minimum st-cuts is interesting by itself, providing new insight into
a fundamental concept from graph theory. The partial order structure of minimum st-edge
cuts is relatively straightforward (in contrast to the structure for minimum st-vertex cuts),
but to our knowledge not described in the literature.

The paper is structured as follows. We start by giving definitions, notations and useful
theorems from the literature in section 2. Since the transformation from most balanced st-cut
problems to POK is more straightforward in the case of edge cuts, we first state our results
for edge cuts. In Section 3 we give this transformation. In Section 4 we give a PTAS for the
above mentioned special case of POK, which in combination with the transformation from
Section 3 gives a PTAS for MBMEC. In Section 4 we also mention two cases of underlying
partial orders for which MBMEC can be solved in polynomial time. In Section 5 we prove
NP-hardness of all problems mentioned above. In Section 6 we switch to vertex cuts, and
construct a partial order corresponding to the minimum st-vertex cuts of a graph. Combined
with the PTAS from Section 4, this gives the PTAS for MBMVC-2P, and identifies again two
polynomial time solvable cases. In Section 7 we will look at the constructed partial order in
more detail, and identify the elements that may cause more than two components to exist in
a minimum st-vertex cut. This will yield the 2-approximation for MBMVC-LC. In Section 8
we prove that, unless P=NP, MBMVC-SC does not admit any non-trivial approximation
algorithm. We end in Section 9 with a summary and open questions.

In sections where there is no confusion possible, we will simply talk about cuts instead of
vertex cuts or edge cuts. An extended abstract of this paper appeared in the proceedings of
CTW 2007.

2 Preliminaries

For graph theoretic definitions not treated here, see [4]. For definitions related to algorithms
and complexity, see [7]. A polynomial time algorithm for a maximization (minimization)
problem is called an α-approximation algorithm if for every instance the objective value of
the returned solution is at least (at most) α times the objective value of an optimal solu-
tion to the problem. A polynomial time approximation scheme (PTAS) for a maximization
(minimization) problem is a method for designing (1− ǫ)-approximation algorithms ((1 + ǫ)-
approximation algorithms) for every ǫ > 0. For a given choice of parameter k, an algorithm is
said to be fixed parameter tractable (FPT) if its time complexity is g(n)f(k) for some polyno-
mial g, where n is the input size of the problem, and f(k) may be an arbitrary (computable)

4

function.
We distinguish between ⊆ and ⊂, which will denote subset resp. proper subset. For a

set S, we will use the notations S + x and S − x to denote S ∪ {x} resp. S\{x}. A set S is
minimal for a property φ if it satisfies φ, but contains no proper subset that satisfies φ. A
set S ⊆ X is minimum for φ if there is no set T ⊆ X with |T | < |S| that satisfies φ. This is
defined similarly for maximal and maximum.

A walk between two vertices may contain edges and vertices multiple times. A walk is
closed if it begins and ends in the same vertex. A path is a walk that contains no vertex twice.
A path with end vertices u and v is also called a (u, v)-path. A cycle is a closed walk that
contains no vertex twice other than the begin and end vertex.

We will assume that the graphs given as input to the problems are simple, but we will
allow graph operations to introduce loops and parallel edges. We will consider directed graphs
and mixed graphs, in which both undirected and directed edges are present. An undirected
edge with end vertices u and v is denoted as uv (or vu). A directed edge from u to v is
denoted as (u, v), and u called its tail and v its head. Directed edges are also called arcs.
For an undirected or mixed graph G, E(G) denotes the set of edges of G, and for a directed
graph G, A(G) denotes the set of arcs of G. A walk (path, cycle) in a mixed or directed
graph is directed if all arcs in the walk occur in the same direction. An arc that is a loop is
also considered a directed cycle.

A directed graph (V, A) is transitive if for all (u, v) ∈ A and (v, w) ∈ A, (u, w) ∈ A
holds. Note that for a transitive graph (V, A), (u, v) ∈ A and (v, u) ∈ E imply that there
are loops incident with u and v. A partial order is a transitive directed graph (V, A) without
directed cycles. For a partial order (V, A), v ∈ V is called a minimum (maximum) if it has
in-degree (out-degree) zero. Vertices u, v ∈ V are called incomparable if neither (u, v) ∈ A
nor (v, u) ∈ A. A subset S ⊆ V is called an anti-chain if the elements of S are pairwise
incomparable. The width of a partial order is the maximum size of an anti-chain, which can
be determined in polynomial time [6, 11].

The next notion comes from partial order theory, but can be defined as well for arbitrary
directed graphs: for a directed graph (V, A), I ⊆ V is an ideal if v ∈ I and (u, v) ∈ A imply
u ∈ I.

In the remainder we will need to use flows with a single source and sink, but only on
undirected graphs with unit capacities on the edges, so we may define flows as follows. Let
(V, E) be an undirected graph with a source vertex s ∈ V and sink vertex t ∈ V . An st-flow
is a function f : V × V → R

+, such that

f(u, v) ≤ 1 if uv ∈ E
f(u, v) = 0 if uv 6∈ E
f(u, v) · f(v, u) = 0 ∀u, v ∈ V × V,

and in addition for every vertex v 6∈ {s, t} the following holds:
∑

w∈V

(f(v, w) − f(w, v)) = 0.

These last constraints are called the flow conservation constraints. We will use the notation
f(uv) = max{f(u, v), f(v, u)}. The value v(f) of an st-flow f is

v(f) =
∑

w∈V

(f(s, w) − f(w, s)).

5

A flow f that maximizes v(f) among all possible st-flows is called a maximum flow. For these
types of flows, the well-known theorems by Ford and Fulkerson [6] may be stated as follows:

Theorem 1 (MinCut-MaxFlow) Let f be a maximum st-flow, and [S, S] a minimum st-cut.
Then v(f) = |[S, S]|.

Theorem 2 A maximum st-flow can be found in polynomial time.

Finally, the integrality theorem [6] gives the following statement for unit capacities.

Theorem 3 Let [S, S] be a minimum st-cut with k edges. Then a set of k pairwise edge-
disjoint (s, t)-paths exists.

3 The partial order structure of minimum st-edge cuts

Throughout this section, G, s, t denotes a MBMEC instance, and when ‘cuts’ is written, edge
cuts are meant. By k we denote the number of edges of a minimum st-cut of G. In this
section we will give a polynomial transformation from G, s, t to a partial order (P, A) with
weights w on the vertices such that G has a minimum st-cut [S, S] with s ∈ S and |S| = x
if and only if (P, A) has an ideal I with w(I) = x. This reduces MBMEC to the following
problem.

MOST BALANCED IDEAL (MBI):
INSTANCE: A partial order (P, A), weights w : P → N.
SOLUTION: An ideal I of (P, A).
OBJECTIVE: Maximize min{w(I), w(P\I)}.

The idea behind this transformation from G, s, t to (P, A) is as follows: first we identify
the set of edges M that can be part of a minimum st-cut of G. The elements P of the partial
order will be the components of G−M . We will then construct an arc set A such that ideals
of (P, A) correspond bijectively to minimum st-cuts of G.

First we will consider this edge set M . A critical edge is an edge of G that is part of at
least one minimum st-cut.

Claim 4 The critical edges of G, s, t can be found in polynomial time.

Proof: If edge e is part of minimum st-cut, then deleting e yields a graph having an st-cut
with k − 1 edges, so a maximum st-flow has value k − 1 (Theorem 1). On the other hand,
after deleting a non-critical edge the graph still admits an st-flow with value k. So at most
|E(G)| + 1 flow problems need to be solved in order to find all critical edges, which can be
done in polynomial time (Theorem 2). �

Similarly it follows that critical edges can alternatively be characterized as follows.

Claim 5 An edge uv is critical if and only if either for every maximum st-flow f , f(u, v) = 1
holds, or for every maximum st-flow f , f(v, u) = 1 holds.

6

s t

(a) MBMEC instance G, s, t.

1
3 3

4

1 4

(b) Critical edges and their direction.

s t

: non-critical

: critical

(c) The partial order (P, A) (without transitive arcs).

Numbers indicate |V (C)|.

Figure 1: The partial order structure of an MBMEC instance.

We now give the construction of the MBI instance. This construction is illustrated in Figure 1.
First direct the critical edges of G in the direction of a maximum flow, giving a mixed graph
(Claim 5 shows this direction is well-defined). Let M be the set of critical edges of G, s, t.
Let P be the set of components of G − M . We define a partial order G′ = (P, A) as follows,
using the direction assigned to the critical edges. If C1 and C2 are components of G − M ,
and there is a critical edge (u, v) with u ∈ V (C1) and v ∈ V (C2), then add (C1, C2) to A. In
addition, add all transitive edges. Assign weights w(C) = |V (C)| for every C ∈ P .

We first show that the constructed graph is a partial order, and then that its ideals
correspond bijectively to minimum st-cuts of G.

Lemma 6 The graph G′ = (P, A) as defined above is a partial order.

Proof: Obviously G′ is transitive. Now assume G′ contains a directed cycle (this may be a
loop). Then G′ contains a directed cycle C ′ that contains no transitive edges. Such a cycle
corresponds to a cycle C in G that contains at least one critical edge, in which all critical
edges are included in the same direction along C. We will associate this direction also with
C.

For every non-critical edge e, there is a maximum st-flow f of G that has f(e) < 1
(Claim 5). For every non-critical edge e we may consider such a flow, and choose f to be the
average of all of these flows. Note that this is again a maximum st-flow, with the additional
property that there is some ǫ > 0 such that for every non-critical edge e, f(e) ≤ 1 − ǫ.

Using f we construct a new flow f ′ by changing the flow along the cycle C as follows. For
every critical edge (u, v) ∈ E(C), we decrease the flow by ǫ, yielding f ′(u, v) = f(u, v) − ǫ =
1 − ǫ (Claim 5). For every non-critical edge uv ∈ E(C) we decrease the flow by ǫ if the flow
is in the direction of C (if this yields f ′(u, v) = x < 0, then instead we set f ′(v, u) = −x and
f ′(u, v) = 0), and increase the flow by ǫ otherwise. For all other edges e, we set f ′(e) = f(e).
The function f ′ again satisfies the flow conservation constraints, since all critical edges are in
the same direction along C. Since all non-critical edges started out with a flow of at most
1 − ǫ, there is no e with f ′(e) > 1. So f ′ is again an st-flow, with same value as f , and
therefore a maximum st-flow.

But now there is at least one critical edge e with f ′(e) = 1 − ǫ, a contradiction with
Claim 5. We conclude that G′ contains no directed cycles, and thus is a partial order. �

7

From Lemma 6 we obtain the following characterization of the minimum st-cuts of G,
using the defined partial order G′ = (P, A).

Theorem 7 Let (P, A) be the partial order corresponding to G, s, t, as constructed above.
[S, S] with s ∈ S, t ∈ S is a minimum st-cut of G if and only if:

• For all C ∈ P : V (C) ⊆ S, or V (C) ⊆ S, and

• if (C1, C2) ∈ A and V (C2) ⊆ S, then V (C1) ⊆ S.

Proof: Let [S, S] be a minimum st-cut of G. If there is a component C of G − M such
that V (C) is neither a subset of S nor of S, then [S, S] contains one of its edges, which is a
non-critical edge, a contradiction. Now suppose (C1, C2) ∈ A, V (C2) ⊆ S and V (C1) ⊆ S. In
G′, a directed path from C1 to C2 exists that uses only non-transitive edges. On this path,
there are adjacent vertices C ′

1 and C ′
2 such that (C ′

1, C
′
2) ∈ A, V (C ′

2) ⊆ S and V (C ′
1) ⊆ S.

Since (C ′
1, C

′
2) is a non-transitive edge, this means that there is a critical edge (u, v) in G

with u ∈ S and v ∈ S, a contradiction with the direction assigned to the critical edges and
Claim 5.

Now we prove the other direction. Suppose S ⊆ V (G) satisfies the two properties. We
prove that [S, S] is a minimum st-cut with s ∈ S. Consider a non-critical edge uv. Then u
and v are both part of V (C) for some C ∈ P , and thus by the first property, uv 6∈ [S, S], so
[S, S] contains only critical edges.

Consider a set of k edge-disjoint (s, t)-paths (which exists by Theorem 3), and a corre-
sponding maximum st-flow f along these paths. Let v0, . . . , vl be the sequence of vertices
along one of these paths (s = v0, t = vl), so f(vi, vi+1) = 1 for all i. Suppose an i exists
such that vi ∈ S, vi+1 ∈ S. Since this edge is in the cut, it is critical. The direction assigned
is (vi, vi+1). Let vi ∈ V (C1) and vi+1 ∈ V (C2), for C1, C2 ∈ P . Then we have V (C2) ⊆ S,
V (C1) ⊆ S and (C1, C2) ∈ A, a contradiction with the second property. Hence every one of
the chosen (s, t)-paths starts with a sequence v0, . . . , vm of vertices in S, and then contains a
sequence of vertices vm+1, . . . , vl that are all in S. Thus it contains at most one edge in [S, S].

From this it follows that [S, S] contains only k edges: Consider e ∈ [S, S]. Recall that
[S, S] contains only critical edges. So f(e) = 1 (Claim 5), and thus e is part of the path set.
Combining this with the fact that every path contains only one edge from [S, S], it follows
that [S, S] is a minimum st-cut. �

Theorem 7 shows that minimum st-cuts of G correspond bijectively to those ideals of
the partial order (P, A) that are non-empty and not equal to P . Using the assigned weights
w(C) = |V (C)| we conclude that the MBI instance (P, A), w is equivalent to the MBMEC
instance G, s, t:

Corollary 8 Let (P, A) be the partial order corresponding to G, s, t, as constructed above. G
has a minimum st-cut [S, S] with s ∈ S, |S| = x if and only if (P, A) has a nonempty ideal
I ⊂ P with weight w(I) = x.

Note that when we remove the unique minimum and maximum of (P, A), there is a bijective
correspondence between minimum st-cuts of G and all ideals of the resulting partial order.

The following observation bounds the width of (P, A).

Claim 9 Let l be the minimum number of edges in any edge cut of G, and let k be the number
of edges in a minimum st-edge cut of G. The width of the constructed partial order (P, A) is
at most 2k/l.

8

Proof: Let w be the width of (P, A) and let X be an anti-chain of (P, A) with |X| =
w. Consider a minimal ideal I of (P, A) containing X, and let [S, S] be the corresponding
minimum st-cut of G. Since X is an anti-chain, every element of X is a maximum of I. Then
for every C ∈ X, any critical edge of G with tail in C is part of [S, S] (Theorem 7), so there
are at most k such edges. Since |X| = w this means that there is some C ∈ X such that there
are at most k/w critical edges with tail in V (C). It can be seen that the number of critical
edges of G with head in C is the same as the number of critical edges of G with tail in C, so
|[V (C), V (C)]| ≤ 2k/w. Using the fact that the number of edges in this cut is at least l, we
obtain w ≤ 2k/l. �

4 Algorithms for finding most balanced ideals

In the last section we transformed MBMEC to MBI. MBI is closely related to UPOK, and is
also strongly NP-hard (see Section 5). The main result in this section is a PTAS for MBI,
which after some minor changes is also a PTAS for UPOK instances that satisfy w(P) ≤ cWU

for some constant c. We end this section by mentioning some partial order types for which
MBI can be solved in (pseudo-) polynomial time. The PTAS for MBI is given in Algorithm 1.

Algorithm 1 A PTAS for MBI

INPUT: A weighted partial order (P, A), w. (The desired approximation guarantee is (1 − ǫ).)

Let L be the set of elements x ∈ P with w(x) > w(P)ǫ.
For every L′ ⊆ L do

If an ideal I exists with L′ ⊆ I and L\L′ ⊆ I then

Let I be a minimal ideal with L′ ⊆ I.
While x ∈ (P\I)\L exists such that I + x is an ideal do:

I := I + x.
endwhile

endif

endfor

Return the best solution considered throughout the algorithm.

Theorem 10 Algorithm 1 is an (1−ǫ)-approximation algorithm for MBI with time complexity
f(|P |)21/ǫ, where f is a polynomial.

Proof: It is easy to see that every step of the algorithm within the for-loop and outside
of the for-loop has an implementation that is polynomial time in |P |. (Here we assume a
computation model that is able to do e.g. additions in constant time, regardless of the size
of the numbers, but in any case the time complexity is polynomial in the input size.) The
number of sets L′ considered is at most 2|L| < 21/ǫ, so the total complexity of this algorithm
is f(|P |)21/ǫ for some polynomial f . Thus for fixed ǫ, the algorithm runs in polynomial time.

Now we will prove that the approximation guarantee of the algorithm is 1 − ǫ. Define
W = w(P), WL = (1− ǫ)W/2 and WU = (1+ ǫ)W/2, so WU −WL = Wǫ. We will argue that

9

the algorithm will find an optimal solution, or a solution between WL and WU . In the second
case, the objective value of the returned solution is at least (1 − ǫ)W/2, while no solution
with value higher than W/2 can exist, which proves the approximation ratio. Call elements
in L large, and all other elements of P small.

Let IO be an optimal ideal, and let LO be the set of large elements in IO. In one of the
iterations of the for-loop, LO will be considered. Let Imin be the (unique) minimal ideal of
(P, A) that contains LO, and let Imax be the maximal ideal that contains LO, but does not
contain any element from L\LO.

If w(Imax) ≤ WL, then Imax is the ideal with the best objective value among all ideals
containing exactly LO as large elements, so Imax = IO. The ideal Imax is considered in
the algorithm, since in the iteration where L′ = LO is considered, the while loop ends with a
maximal ideal that does not contain any element from L\LO, which by uniqueness is Imax. So
in this case, the algorithm finds the optimum solution. Similarly, if w(Imin) ≥ WU , then Imin

must be the optimum solution, which is considered in the algorithm. Finally, suppose that
w(Imin) ≤ WU and w(Imax) ≥ WL. In this case, the algorithm will consider a solution with
value between WL and WU . This is because the while loop starts with Imin, ends with Imax,
and in between these solutions only adds small elements, such that the weight is incremented
with small steps, which are smaller than Wǫ = WU − WL. This concludes the proof. �

Thus we have a (1− ǫ)-approximation algorithm for MBI for every ǫ > 0. Combining this
with the polynomial transformation from MBMEC to MBI of the previous section, a PTAS
is found for MBMEC.

Corollary 11 A PTAS exists for MBMEC.

With minor changes Algorithm 1 is also a PTAS for special instances of UPOK: the set
of large elements L needs to be defined as the elements x with w(x) > WU ǫ. In order for |L|
to be bounded by a constant for fixed ǫ, it is necessary that w(P) ≤ cWU for some constant
c. When this condition is fulfilled, the modified algorithm is a PTAS for UPOK. Note that in
the last line, the notion of ‘best solution’ should be slightly different in the case of UPOK, and
that no ideals I have to be considered with w(I) > WU , but these changes are not necessary
for the algorithm to be a correct PTAS.

Theorem 12 A PTAS exists for UPOK instances (P, A), w, WU with w(P) ≤ cWU for some
constant c.

We now consider types of partial orders for which MBI can be solved in (pseudo-) poly-
nomial time. Considering the transformation from MBMEC to MBI, it follows that also
pseudopolynomial time algorithms for special cases of MBI yield polynomial time algorithms
for the corresponding MBMEC instances.

In [9], a pseudopolynomial time algorithm for POK is given for the case when the partial
order is 2-dimensional. A partial order is 2-dimensional if it is the intersection of two linear
orders. Such partial orders can be recognized in polynomial time. The algorithm from [9] is
based on dynamic programming. This also gives a pseudopolynomial time algorithm for MBI
on such instances, and a polynomial time algorithm for MBMEC for corresponding instances.

We now give a simple polynomial time algorithm to solve POK and MBI when the partial
order has bounded width.

10

Claim 13 For partial orders (P, A) with width at most w, POK and MBI can be solved in
time O(|P |w+O(1)).

Proof: The algorithm is as follows. When the width of (P, A) is w, then consider all subsets
S ⊆ P with |S| ≤ w. For every such set, in polynomial time one can construct a minimal
ideal I that contains S. Return the ideal with the best objective value, among all ideals that
are considered. The number of sets S considered is O(|P |w), hence for bounded w this is a
polynomial time algorithm.

This algorithm finds an optimal solution: Let IO be the ideal of (P, A) that maximizes
the objective value. The maxima of IO are pairwise incomparable, hence IO contains at most
w maxima. When choosing S to be the set of these maxima, then the minimal ideal that
contains S is exactly IO, hence IO is considered in the algorithm. �

Together with Claim 9, it follows that if the ratio between the number of edges in a
minimum st-cut and the minimum number of edges over all cuts of G is bounded by a
constant, MBMEC can be solved in polynomial time. In particular, if minimum st-cuts are
also minimum edge cuts of G, the problem can be solved in polynomial time. This statement
is stronger than the statement in [5] that MBMEC can be solved in polynomial time whenever
the number of edges in a minimum st-cut is bounded. However we do not know if there is
also an FPT algorithm for POK or MBI when the width is chosen as the parameter, that is,
we do not know if w can be removed from the exponent of the time complexity, even if we
allow an otherwise pseudopolynomial time algorithm.

5 NP-hardness proofs for most balanced cut problems

In this section we prove the NP-completeness of the decision variant of MBMEC, which has
an additional parameter l and asks whether the instance G, s, t has a minimum st-edge cut
[S, S] with min{|S|, |S|} ≥ l. The transformation is a straightforward transformation from
the decision variant of UPOK, which is nearly the reverse of the transformation in Section 3.
In this section ‘cuts’ will mean edge cuts.

Theorem 14 The decision version of MBMEC is NP-complete.

Proof: An instance of the decision version of UPOK consists of a partial order (P, A) with
weights w, and in addition to the upper bound WU , a lower bound WL. We may take the
weights to be non-zero natural numbers. The question is whether there is an ideal I with
WL ≤ w(I) ≤ WU . This problem is known to be strongly NP-complete [8], that is, even if
the weights are encoded in unary and therefore the instance size is Ω(w(P)), the problem
is NP-complete. As a first step, we scale all weights w and the bounds WL and WU with a
factor |A| + 2, so for all u ∈ P we may now assume w(u) ≥ |A| + 2.

We transform this instance to a MBMEC instance G, s, t, l. Choose weights ws and wt

such that ws − wt = w(P) − WL − WU and min{ws, wt} = |A| + 2. Introduce a complete
graph Cs on ws vertices, and a complete graph Ct on wt vertices. In addition, for every v ∈ P
introduce a complete graph Cv on w(v) vertices. Note that for this step of the transformation
to be polynomial, we need that the weights are encoded in unary. These complete graphs will
be called the blocks of G. Label one of the vertices of Cs as s, and one of the vertices of Ct

as t.
For every arc (u, v) ∈ A we introduce an undirected edge in G between arbitrary vertices

in the blocks Cu and Cv. Since every such block has at least |A| + 2 vertices, this can be

11

3 2 1

4 1

ts

WL = 6, WU = 7

K21 K14 K7

K28 K7

K7 K21

l = 49

(P,A) G′

Figure 2: The transformation from UPOK to MBMEC.

done without introducing parallel edges. In addition, for every u ∈ P , k edges are introduced
between Cs and Cu, where k is the number of arcs in A that have u as tail. l edges are
introduced between Cu and Ct where l is the number of arcs in A that have u as head. This
completes the construction.

Note that G has an st-cut with |A| edges; consider for instance the cut that separates Cu

from the rest of the graph. We can now also construct a set P of |A| edge disjoint (s, t)-paths
in G, such that every path in P contains exactly three edges between different blocks, and
every such edge is included in a path of P. It follows that minimum st-cuts in G contain
exactly |A| edges.

Furthermore the following set of cuts [S, S] shows that every edge e of G with end vertices
in different blocks Cu and Cv is part of some minimum st-cut. Let I be a minimal ideal
I of (P, A) with u ∈ I. Since (P, A) is a partial order and I is minimal, v 6∈ I. Let
S = (∪u∈IV (Cu)) ∪ V (Cs). this cut contains exactly one edge of every path in P, and
contains only edges that are part of the paths in P. It follows that every edge between blocks
is critical. All other edges are easily seen not to be critical, because every block has at least
|A| + 2 vertices.

Now if we construct the partial order corresponding to G, s, t as is done in Section 3, we
obtain exactly the weighted partial order (P, A), w, extended with two elements corresponding
to Cs and Ct. Then Corollary 8 shows that G has a minimum st-cut [S, S] with |S| = ws + x
if and only if (P, A) has an ideal I ⊆ P with w(I) = x.

Consider an ideal I of (P, A) and corresponding st-cut [S, S] of G with s ∈ S. Using the
fact that the total number of vertices of G is w(P) + ws + wt = 2ws + WL + WU , we see that

WL ≤ w(I) ≤ WU ⇔ WL + ws ≤ |S| ≤ WU + ws ⇔

|S| ≥ WL + ws ∧ |S| ≥ 2ws + WL + WU − (WU + ws) ⇔

|S| ≥ WL + ws ∧ |S| ≥ ws + WL.

This shows that if we choose l = ws + WL, the instances are equivalent. This transformation
is polynomial in w(P). Since we assumed that the UPOK instance was encoded in unary,
and had instance size Ω(w(P)), the transformation is therefore polynomial. �

For the three given variants of MBMVC, a construction similar to the one in Theorem 14
proves NP-completeness; only minor changes are needed in the construction to ensure that
there is a bijective correspondence between the ideals of the UPOK instance and the minimum
st-vertex cuts of the constructed graph. In addition, the construction can be made such that

12

s t
.. K6.

..K11

l = 3

n = 6

G′

s t

G

l′ = 14D = 4

Figure 3: The transformation from MBMEC to GMBMEC.

every minimum st-vertex cut will only result in two components, so the chosen objective value
does not matter.

Theorem 15 The decision versions of MBMVC-2P, MBMVC-SC and MBMVC-LC are NP-
complete.

We now consider the problem GMBMEC. The NP-hardness of MBMEC allows us to easily
prove the NP-hardness of GMBMEC.

Theorem 16 The decision version of GMBMEC is NP-complete.

Proof: Let G, s, t, l be an instance for the decision variant of MBMEC, where a minimum
st-cut of G contains k ≥ 1 edges. Let D = max{4, ∆(G)}, and let n = |V (G)|. This instance
will be transformed into an instance G′, l′ of the decision version of GMBMEC, which asks
whether there is a solution with objective value at least l′. The construction is illustrated in
Figure 3. Note that the instance G, s, t, l in this figure is a NO-instance for MBMEC, but G, l
is a YES-instance for GMBMEC, which can be seen by choosing s and t differently, namely
as the two vertices of degree three.

The construction is as follows. Start with G. Introduce two large complete graphs Ks and
Kt on n + D + 1 and n vertices respectively, and join all vertices of Ks to s, and all vertices
of Kt to t. In addition introduce a cycle C on D + 1 vertices. Join all vertices of C to t, and
join all vertices of C except for one with s. This completes the construction of G′.

It can be checked that a minimum st-cut in G′ contains k+D edges, and that any minimum
st-cut [S, S] with s ∈ S has V (C) ⊂ S, V (Ks) ⊂ S and V (Kt) ⊂ S. So such a cut has at
least n + D + 2 vertices on both sides.

Note also that any minimal cut that does not separate s and t has all of its edges incident
with vertices of the same component of G′ − s− t, so the smallest side of such a cut contains
at most n + D + 1 vertices. It follows that a cut that is an optimal GMBMEC solution for
G′ separates s from t. Now let [S, S] be such an optimal GMBMEC solution for G′, which is
a minimum xy-cut.

If x ∈ V (G) − s − t or x ∈ V (C) then d(x) ≤ D, so a minimum xy-cut contains at most
D edges and therefore does not separate s from t, a contradiction. The same holds for y. If
x and y are both part of V (Ks) + s or both part of V (Kt) + t, then the cut also does not
separate s from t. We conclude w.l.o.g. that x ∈ V (Ks) + s and y ∈ V (Kt) + t. Together
with the fact that [S, S] separates s from t, it follows that [S, S] is a minimum st-cut.

13

We have proved that every cut that is an optimal GMBMEC solution for G′ is a minimum
st-cut. From this it follows that G′ has minimum xy-cut for some x and y, with at least
l′ = l + n + D + 1 vertices on both sides, if and only if G has a minimum st-cut with at least
l vertices on both sides. This completes the NP-completeness proof. �

6 The partial order structure of minimum st-vertex cuts

From now on we will consider vertex cuts, and ‘cut’ will be used for vertex cuts. For every
MBMVC variation the instance consists of a graph G with designated vertices s and t. Let
k be the number of vertices in a minimum st-cut of G. In this section we will construct a
partial order such that there is a bijection between ideals and minimum st-cuts of G, similar
to Theorem 7. This construction can be combined with the PTAS from Section 4 to yield a
PTAS for MBMVC-2P. To be precise, we will construct a partial order (P, A) where elements
in P correspond to a subset of the vertices of G, such that together these subsets partition
V (G). An ideal I of (P, A) will then correspond to a vertex set (S ∪ C) ⊂ V (G) with s ∈ S,
such that C is a minimum st-vertex cut, and [S, S ∪ C] = ∅. The definitions and constructions
in this section are illustrated in Figure 4.

Definition 17 Let G be a graph with s, t ∈ V (G). A vertex is a critical vertex of G, s, t if it
is part of some minimal st-vertex cut.

Definition 18 Consider a graph G with s, t ∈ V (G), and a corresponding set of critical
vertices.

Consider the following relation on edges e, f ∈ E(G): e ∼ f if and only if there is a
(possibly closed) walk in G containing e and f that does not have critical vertices among its
internal vertices.

The blocks of G, s, t are the equivalence classes of ‘∼’.

Note that the relation ‘∼’ defined above is indeed an equivalence relation, and that all edges
incident with a non-critical vertex v are part of the same block B.

Let p be the number of critical vertices of G, s, t, and label the critical vertices with p

c1, . . . , cp. We fix a set of k internally vertex disjoint (s, t)-paths Q1, . . . , Qk. If two distinct c1, . . . , cp

Q1, . . . , Qkcritical vertices ci and cj lie on the same path Qi, with ci closer to s, measured along Qi,
then ci will be called a path predecessor of cj , and cj a path successor of ci.

Let q be the number of blocks of the instance G, s, t. It will be convenient to label the q

blocks with the numbers p + 1, . . . , p + q. For i ∈ {p + 1, . . . , p + q}, Let Ei denote the edge Ei

set that constitutes of block i, so {Ep+1, . . . , Ep+q} is a partition of E(G). Let Vi be the set Vi

of non-critical vertices of G that are incident with (at least one edge of) Ei. We may assume
that s ∈ Vp+1 and t ∈ Vp+q. In addition, for i = 1, . . . , p, define Vi = {ci}. So {V1, . . . , Vp+q}
is a partition of V (G).

Determining p and q and constructing the above paths, edge sets and vertex sets can
all be done in polynomial time: finding the critical vertices can be done using a standard
transformation where all vertices are expanded to edges [6], and then using the approach
from Claim 4.

Next we will show how to construct a directed graph G′ which has vertex set V (G′) = G′

{1, . . . , p + q}, and a transitive arc set. This graph G′ will not yet be a partial order since it

14

: critical vertex

: edge of a Qi

ts

s t

(a) The critical vertices of G, and the two paths Q1 and Q2.

(b) A partition of the edges into eight blocks.

: added in step 1

: added in step 2

: added in step 3
1 3 2

0 2

0

0

1

Numbers indicate |Vi|.

(c) The resulting graph G′, most transitive arcs are omitted.

Figure 4: The construction of G′.

contains directed cycles, but contracting all of these will give the desired partial order. The
arcs of G′ are constructed using the following four arc addition steps:

1. For all critical vertices ci incident with a block Ej , add an arc (i, j).

2. For all critical vertices ci and blocks Ej : if Ej is incident with s or with a path prede-
cessor of ci, then add an arc (j, i).

3. For all j ∈ {p + 1, . . . , p + q − 1}, add an arc (j, p + q).

4. Add all transitive arcs.

Figure 4 shows an example of the construction of G′ for an instance G, s, t. Most of the
transitive arcs are omitted in the drawing of G′, for clarity. This example also shows that G′

will have directed cycles. Therefore, in the next claim we will need to use the fact that ideals
are defined for general directed graphs.

Claim 19 Let I ⊆ V (G′) be an ideal of G′. If I 6= ∅, then p + 1 ∈ I. If I 6= V (G′), then
p + q 6∈ I.

Proof: Every block is incident with at least one critical vertex. So if I contains a block, it
contains a critical vertex by the first arc addition step, since I is an ideal. So every non-empty
ideal I contains some critical vertex ci. By the second arc addition step it then follows that
p + 1 ∈ I since Ep+1 is incident with s.

15

For proving the second statement, assume that p + q ∈ I. By the third arc addition step,
for every j ∈ {p + 1, . . . , p + q − 1}, j ∈ I. Then by the first arc addition step, i ∈ I for every
i ∈ {1, . . . , p}. Hence I = V (G′). �

Theorem 20 Let G, s, t be a MBMVC instance and let G′ be the corresponding graph as
constructed above. Let X be subset of V (G) with s ∈ X, t 6∈ X. The graph G′ has an ideal
I ⊂ V (G′) with ∪i∈IVi = X if and only if X can be partitioned into {C, S} such that C is a
minimum st-cut, and [S, X] = ∅.

Proof: Let I ⊆ V (G′) be an ideal of G′ with ∪i∈IVi = X, so I is non-empty and not
equal to V (G′). Let V (I) denote ∪i∈IVi, and let T = V (G)\V (I). We will first show that V (I)

V (I) = S ∪ C, for some minimum st-cut C, and some set S such that [S, T] = ∅.
Let C ⊆ V (I) be the set of critical vertices in V (I) that do not have a path successor in

V (I), and let S = V (I)\C.
First we show that s ∈ S and t ∈ T : I is non-empty, so p + 1 ∈ I (Claim 19). So

s ∈ Vp+1 ⊆ V (I) = S ∪ C, and since s is not a critical vertex, s ∈ S. Since I 6= V (G′),
p + q 6∈ I (Claim 19). Since t ∈ Vp+q, we have t ∈ T .

Next we show that |C| = k. We know that p + 1 ∈ I. Block Ep+1 is incident with critical
vertices from every path from the path set Q1, . . . , Qk, so by the first arc addition step, at
least one critical vertex from every path Qi is in V (I). By the definition of C, at most one
critical vertex from every path is in C, so |C| = k.

Finally we prove that [S, T] = ∅. Suppose there is an edge uv ∈ E(G) with u ∈ S and
v ∈ T . First consider the case that u and v both are critical vertices, so v = cx for some x.
Then Ej = {uv} for some j. Since u ∈ S, we know that a path successor ci of u is in V (I),
so (j, i) ∈ E(G′) by arc addition step 2. Also, (x, j) ∈ E(G′) by step 1. But x 6∈ I and i ∈ I,
which contradicts that I is an ideal. Next, assume that u is a non-critical vertex, so u ∈ Vj

for some j ∈ {p + 1, . . . , p + q}, and that v = ci is a critical vertex. Vertex v is incident with
Ej , so by step 1, (i, j) ∈ E(G′). This is again a contradiction with I being an ideal. Now let
u = ci be a critical vertex and v ∈ Vj for some j ∈ {p + 1, . . . , p + q}. Since u 6∈ C, some path
successor cx of u is in V (I), and (j, x) ∈ E(G′) by step 2, again a contradiction. Finally, if u
and v are both non-critical and therefore in the vertex set of a block, then they must be part
of the same block. So they are both in V (I) or both in T , a contradiction.

This proves that the constructed C is a minimum st-cut separating S from T .

To prove the other direction, let C be a minimum st-cut, and let {S, T} be a partition of
the remaining vertices so that [S, T] = ∅, s ∈ S and t ∈ T . We will show that G′ has an ideal
I with V (I) = C ∪ S.

The set I is constructed according to the following two rules.

1. For x ∈ V (G′) with Vx 6= ∅: add x to I if and only if Vx ⊆ C ∪ S.

2. Now consider x ∈ V (G′) with Vx = ∅. Then Ex = {cicj} for a pair of critical vertices ci

and cj . In this case add x to I if and only if ci ∈ S or cj ∈ S.

First we show that V (I) = S ∪C, by showing that for every j ∈ {p + 1, . . . , p + q}, either
Vj ⊆ S or Vj ⊆ T . The set Vj contains no critical vertices, so every vertex v ∈ Vj is either in
S or in T . For every pair of vertices u, v ∈ Vj , a (u, v)-walk exists in G that only uses vertices
of Vj , by the definition of blocks. So if u ∈ S and v ∈ T , then [S, T] 6= ∅, a contradiction.

16

Next we show that I is an ideal. We consider the arcs added in the first three arc addition
steps. If these do not contradict I being an ideal, then the same holds for the transitive arcs
added in the fourth step.

Consider an arc (j, i) that was added in the second arc addition step, with i ∈ I. We
prove that j ∈ I. Block Ej is incident with a path predecessor cx of ci. Since i ∈ I, we know
that ci ∈ C ∪ S, and thus it follows that cx ∈ S. So if Vj 6= ∅, then Vj ⊆ S, and thus j ∈ I
by the first rule above. If Vj = ∅, then j ∈ I by the second rule.

Now consider an arc (i, j) added in the first arc addition step, and suppose j ∈ I. We
prove that i ∈ I. Block Ej is incident with ci. If Vj 6= ∅, then the first rule above shows that
Vj ⊆ S. So ci ∈ S ∪ C, and thus i ∈ I. If Vj = ∅ then the second rule shows that the unique
edge in Ej is incident with a vertex u ∈ S. Either u = ci holds, or u is adjacent to ci. In both
cases, ci ∈ S ∪ C, and thus i ∈ I.

Since t ∈ T and t ∈ Vp+q, we have p + q 6∈ I, so the arcs added in the third arc addition
step also do not prevent I from being an ideal. This concludes the proof that I is an ideal.�

From Theorem 20 we obtain the following corollary.

Corollary 21 Let G, s, t be a MBMVC-2P instance and let G′ be the corresponding graph
as constructed above. Let k be the number of vertices in a minimum st-vertex cut of G. A
MBMVC-2P solution C, S, T exists for G with min{|S|, |T |} ≥ l if and only if G′ has an ideal
I with l + k ≤ |V (I)| ≤ |V (G)| − l.

This corollary is very similar to Corollary 8, and it seems we can then use the PTAS from
Section 4 to solve the resulting problem on G′. However, G′ contains directed cycles, and thus
is not a partial order. Fortunately this is easily solved by contracting all strong components
C of G′ into a single vertex x. This process is illustrated in Figure 5. For x we then assign
Vx to be the union of all sets Vi with i ∈ V (C). Numbers in Figure 5(b) indicate |Vx|. Some
arcs become transitive, which are drawn as dashed arcs. Doing this for all strong components
yields a partial order (P, A). Since for any ideal I, the vertices of a strong component are (P, A)

either all in I, or all not in I, (P, A) and G′ have the same ideal structure:

Claim 22 Let G′ and (P, A) be as constructed above. G′ has an ideal I with |V (I)| = x if
and only if (P, A) has an ideal I ′ with |V (I ′)| = x.

Assign weights w to vertices i ∈ P as follows: if t 6∈ Vi then w(i) = |Vi|, and if t ∈ Vi

then w(i) = |Vi| + k. This yields a MBI instance (P, A), w that has an ideal I ⊂ P with
min{w(I), w(P\I)} ≥ k + l if and only if G, s, t has a MBMVC-2P solution C, S, T with
min{|S|, |T |} ≥ l. Now the PTAS from Section 4 can be used for the MBI instance. Note
that every construction in this section can be done in polynomial time, so:

Corollary 23 A PTAS exists for MBMVC-2P.

7 Minimum vertex cuts with more than two components

In the last section we identified the partial order structure of minimum st-vertex cuts, and
mapped all cuts plus partitions of the remaining vertices into S and T to ideals of the partial
order. In this section we will study in which situations a minimum st-vertex cut may result
in more than two components, hence the situations in which this partition into S and T is
not unique. For the MBMVC instance G, s, t we will again use the definitions and notations
introduced in Section 6, such as the paths Qi, blocks Ej , graph G′ etc.

17

(a) The strong components of G′.

(c) The vertex partition of G given by P .

: transitive arc

(b) Contracting strong components gives a partial order (P, A).

s t

3
5

1 3

3

1

0 1

0

231

0 2

10

Figure 5: Contracting strong components of G′ gives the partial order (P, A).

Definition 24 Let C be an st-cut of G. The components of G − C that contain s and t
respectively are called the s-component and the t-component. All other components are called
extra components of the cut.

Definition 25 A block Ej of G, s, t is called a separable block if

1. s, t 6∈ Vj , and

2. Ej is not incident with a pair of critical vertices u and v such that u is a path predecessor
of v, and

3. j is not part of a directed cycle of G′.

These definitions are illustrated in Figure 6. This instance has three separable blocks,
A, B and C. In the corresponding partial order, B and C form an antichain, but A is not
part of an antichain together with another separable block. Note that there is for instance a
minimum st-cut that has extra components corresponding to B and C. Note also that there
is no minimum st-cut having the vertex v in an extra component. This explains the directed
cycle condition in the definition of separable blocks.

Lemma 26 Let C be a minimum st-cut of G. If H is an extra component of C, then V (H) =
Vj for some separable block Ej of G, s, t.

18

v : edge of a Qi

: critical vertex
s t

s t

(b) The three separable blocks of G, s, t.

: separable blockB

C

v
A

(a) The critical vertices of G, and the three (s, t)-paths.

Figure 6: An MBMVC instance with three separable blocks.

Proof: Suppose V (H) contains a critical vertex v. Vertex v lies on an (s, t)-path Qi. Since
C is a minimum st-cut, it contains exactly one vertex of Qi. It follows that in G−C, a path
exists from v to s or from v to t, a contradiction with the fact that H is an extra component.
So V (H) contains no critical vertices. Then V (H) cannot contain vertices from different
blocks since H is connected, and we have V (H) ⊆ Vj for some block Ej . The cut C contains
only critical vertices so V (H) = Vj .

Now we prove that Ej is a separable block. Clearly s, t 6∈ Vj . Consider the second property
of separable blocks. If Ej is incident with at least two vertices u and v from the same (s, t)-
path Qi, then one of them is not in C, and thus is part of the component H, a contradiction
with V (H) = Vj .

Finally we prove that the third property of separable blocks holds for Ej . Let Hs be
the s-component of C. Choosing S = V (Hs) and T = (V (G)\C)\S gives [S, T] = ∅, s ∈ S
and t ∈ T , so G′ has an ideal I with V (I) = S ∪ C (Theorem 20). But similarly, choosing
S′ = V (Hs) ∪ Vj and T ′ = V (G)\C\S′ satisfies the conditions of Theorem 20, and thus
corresponds to an ideal I ′ of G′. We have I ′\I = {j}, so j is not part of a directed cycle of
G′.

It follows that Ej is a separable block. �

Lemma 27 Let Eσ1
, . . . , Eσl

be a number of separable blocks of G, s, t. There is a minimum
st-cut C with G[Vσ1

], . . . , G[Vσl
] as extra components if and only if every pair σi and σj is

incomparable in G′.

Proof: Let C be a minimum st-cut where Eσ1
, . . . , Eσl

correspond to the extra components
of C. Consider an arbitrary pair Eσi

and Eσj
, and let Hs be the s-component of G − C.

There are no edges from V (Hs) ∪ Vσi
to the other components of G − C, so by Theorem 20,

V (Hs) ∪ Vσi
∪ C = V (I) for some ideal I of G′, and therefore (σj , σi) 6∈ A(G′). Similarly,

(σi, σj) 6∈ A(G′) follows, so σi and σj are incomparable.
To prove the other direction, suppose σ1, . . . , σl are all pairwise incomparable in G′, and

let I ⊆ V (G′) be the minimum ideal containing all of these elements. By Theorem 20, I
corresponds to a minimum st-cut C of G, and vertex set S ⊂ V (G) with Vσi

⊆ S for all
i ∈ {1, . . . , l}. Since σ1, . . . , σl are pairwise incomparable, and they are not part of a directed

19

cycle of G′, all of these elements are maximal elements of I. So if (σi, j) ∈ A(G′) for a critical
vertex cj, then cj 6∈ I. We have (σi, j) ∈ A(G′) when Eσi

is incident with a path predecessor
of cj . It follows that, for any critical vertex u incident with Eσi

, all path successors of u are
not in S∪C, but u is. Hence all critical vertices incident with Eσi

are in C, and G[Vσi
] indeed

is an extra component of C. �

Algorithm 2 gives an overview of the 2-approximation algorithm for MBMVC-LC. In the
proof of Theorem 28 we give more details on the implementation of the steps of the algorithm.

Algorithm 2 A 2-approximation for MBMVC-LC

INPUT: An MBMVC instance G, s, t.

1. Identify the blocks and separable blocks of G, s, t, and construct graph G′ as in Section 6.

2. Let B ⊂ V (G′) be the set of indices of all separable blocks of G, s, t. Let P = G′[B].

3. For every j ∈ B of G, s, t, assign a weight w(j) = |Vj|.

4. Find a maximum weight anti-chain Q of P , with respect to the weights w.

5. Output a minimum st-cut C that has G[Vi] as extra component for all i ∈ Q.

Theorem 28 Algorithm 2 is a 2-approximation algorithm for MBMVC-LC.

Proof: We first show that the algorithm is well-defined. Separable blocks are by definition
not part of directed cycles of G′, so the subgraph of G′ induced by B contains no directed
cycles. However transitivity is maintained, so P = G′[B] is a partial order. That shows that
in Step 4 we can speak about anti-chains of P . Since Q is an anti-chain of P , Lemma 27 shows
that indeed a cut C exists in G that has extra components corresponding to each i ∈ Q.

Next we show how the algorithm can be implemented in polynomial time. We observed
earlier that in polynomial time, the blocks of G etc. can be identified, and G′ can be con-
structed. Similarly, the separable blocks can be identified, and the weighted partial order
P = G′[B] can be constructed. For Step 4 it is now necessary to find a maximum weight
anti-chain in a partial order. This problem can be solved in polynomial time by translating
it to a minimum flow problem, see [11]. Finally, note that the construction of a cut C in
Lemma 27 can be done in polynomial time.

Finally we show that the returned solution is a 2-approximation. Let a minimum st-cut
CO of G be an optimal solution for MBMVC-LC, and let CA be the minimum st-cut given by
the algorithm. By k we denote again the number of vertices in a minimum st-cut of G. Let
WO respectively WA be the total number of vertices in extra components of CO and CA. Both
WO and WA are equal to the total weight of an antichain of the partial order P (Lemma 26,
Lemma 27), so by choice of WA, WO ≤ WA.

First consider the case that the largest component L of G − CA is the s-component or
t-component. Then |V (L)| < |V (G)| − WA − k ≤ |V (G)| − WO − k. Either the s-component
or the t-component of G−CO has size at least (|V (G)| −WO − k)/2, so in this case we have
proved the 2-approximation.

Now suppose the largest component L of G − CA is an extra component. By Lemma 26,
L = G[Vj] for some separable block Ej . Since CO contains only critical vertices, all vertices

20

x

y

z

a

¬x

¬y

¬a

¬z
s KM : clause vertextKM

Figure 7: An MBMVC-SC instance corresponding to (¬x∨¬y∨¬z)∧ (¬y∨¬a)∧ (x∨ y∨a).

of Vj are part of the same component of G −CO, and thus the optimal cut has a component
that is just as large as L, in which case CA is optimal. �

8 The inapproximability of MBMVC-SC

Any algorithm that returns some minimum st-cut of G trivially is a 2/n-approximation for
MBMVC-SC. The next theorem shows that it is impossible to do any better (unless P=NP).

Theorem 29 No 1/(αn)-approximation algorithm with α < 1/2 exists for MBMVC-MSC
unless P=NP, where n is the number of vertices of the input graph.

Proof: Let α < 1/2. We give a reduction from monotone satisfiability (MSAT). A SAT
instance consist of a set of boolean variables U and a set of clauses C over these variables.
By x and ¬x we denote the positive resp. negative literal corresponding to a variable x ∈ U .
A clause is a set of literals over U . Given such an instance, the question is whether there is
a truth assignment for the variables such that every clause contains at least one true literal.
This decision problem is NP-complete even when restricted to instances where every clause
contains either only positive literals, or only negative literals [7]. Such instances are called
monotone. (The NP-completeness of this problem is easily deduced using a transformation
from SAT: for every clause with both positive and negative literals, introduce a new variable
and introduce two new clauses. For instance, (x ∨ y ∨ ¬z) becomes (c ∨ x ∨ y) ∧ (¬c ∨ ¬z).
This yields an equivalent monotone instance.)

For any MSAT instance U, C, we will show how to construct in polynomial time a MBMVC-
SC instance G, s, t such that if U, C is a NO-instance, every minimum st-cut yields an isolated
vertex, and if U, C is a YES-instance, a minimum st-cut exists that yields two components
that contain more than α|V (G)| vertices. Giving this instance as input to a hypothetical
1/(αn)-approximation algorithm for MBMVC-SC would therefore solve MSAT in polynomial
time, proving the statement.

We now explain the transformation, which is illustrated in Figure 7. Start with two copies
of a large complete graph KM (the exact value of M will be determined later), and call these
graphs Gs and Gt. Choose one vertex in Gs to be s, and one vertex in Gt to be t. For
every variable x ∈ U , do the following: choose a vertex in Gs, and label it x, and choose a
vertex in Gt and label it ¬x. These are the literal vertices for the variable x. Add an edge
between x and ¬x. Do this such that no vertex receives two different labels (M will be chosen
large enough for this). For every clause introduce a clause vertex, and join it to the vertices
corresponding to the negations of the literals in this clause.

21

It is easy to see that a minimum st-cut contains exactly |U | vertices; one of the two
literal vertices for every variable is in a minimum st-cut. It follows that any minimum st-cut
corresponds to a truth assignment of the variables (a variable is made true if and only if its
positive literal is in the cut). In addition, for every possible truth assignment of the variables,
selecting the vertices of G that correspond to true literals gives a minimum st-cut: for this it
is essential that we started with a monotone SAT instance such that no clause vertex has both
a neighbor in Gs and in Gt. A clause vertex forms an isolated vertex in a minimum st-cut if
and only if the corresponding truth assignment makes the clause false. On the other hand, in
an assignment where every clause is true, the corresponding cut has two large components,
both with at least M − |U | vertices. The total number of vertices of G is n = 2M + |C|. Now
if we choose M > (α|C| + |U |)/(1 − 2α), then we have

M(1 − 2α) > α|C| + |U | ⇔ M − |U | > α(2M + |C|) = αn.

This shows that a 1/(αn)-approximation algorithm would be able to distinguish between the
two cases, and hence answer the MSAT problem correctly. Note that since 1−2α is a constant,
this choice of M yields a polynomial transformation. This concludes the proof. �

9 Conclusions

In this paper we gave a number of initial results on most balanced minimum cut problems,
which have received little study until now. We considered edge cuts and three natural vertex
cut variants. All variants turned out to be NP-hard. We identified polynomial time solvable
cases and gave approximation algorithms for all problems, except for MBMVC-SC which was
shown to be inapproximable in a strong sense. Our results are based on the partial order
structure of minimum st-cuts, which is interesting by itself. One of our algorithms is also
a PTAS for a special type of UPOK problems. The following questions indicate possible
directions for future research.

1. We gave a 2-approximation for MBMVC-LC, but the strongest negative result for this
problem is only that it is NP-hard. Can this approximation ratio be improved?

2. For many special cases of POK, good approximation algorithms are known [9]. For
general cases of POK and UPOK, little is known about the approximability. It would
be useful to find better positive or negative results for these problems.

3. We showed that MBMEC and MBMVC-2P can be solved in polynomial time if the cor-
responding partial order has bounded width, however the width appears in the exponent
of the algorithm. Is it possible to give a polynomial time algorithm for these problems
without this property, i.e. an FPT algorithm where the width is the parameter? See [5]
for FPT algorithms for a slightly smaller instance class.

4. MBMEC and MBMVC-2P can be solved in polynomial time when the underlying partial
order is 2-dimensional. For which other instance classes can the problem be solved in
polynomial time?

5. We studied the problem of finding most balanced cuts among the set of all minimum st-
cuts. The problem of finding most balanced cuts among all cuts with bounded number
of edges or vertices is interesting as well.

22

References

[1] S. Chawla, R. Krauthgamer, R. Kumar, Y. Rabani, and D. Sivakumar. On the hardness
of approximating multicut and sparsest-cut. Comput. Complexity, 15(2):94–114, 2006.

[2] M. Chimani, C. Gutwenger, and P. Mutzel. On the minimum cut of planarizations.
Technical Report TR06-1-003, University of Dortmund, Germany, 2005.

[3] J. Chuzhoy and S. Khanna. Hardness of cut problems in directed graphs. In Proceedings
of the 38th STOC, pages 527–536, New York, 2006. ACM.

[4] R. Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer-Verlag,
Berlin, third edition, 2005.

[5] U. Feige and M. Mahdian. Finding small balanced separators. In Proceedings of the 38th
STOC, pages 375–384, New York, 2006. ACM.

[6] L. R. Ford, Jr. and D. R. Fulkerson. Flows in networks. Princeton University Press,
Princeton, N.J., 1962.

[7] M. R. Garey and D. S. Johnson. Computers and intractability. Freeman, San Francisco,
1979.

[8] D. S. Johnson and K. A. Niemi. On knapsacks, partitions, and a new dynamic program-
ming technique for trees. Math. Oper. Res., 8(1):1–14, 1983.

[9] S. G. Kolliopoulos and G. Steiner. Partially ordered knapsack and applications to schedul-
ing. Discrete Appl. Math., 155(8):889–897, 2007.

[10] T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their use in
designing approximation algorithms. J. ACM, 46(6):787–832, 1999.

[11] R. H. Möhring. Algorithmic aspects of comparability graphs and interval graphs. In
Graphs and Order, pages 41–101. Reidel, Dordrecht, 1985.

[12] D. B. Shmoys. Cut problems and their application to divide-and-conquer. In D.S.
Hochbaum, editor, Approximation Algorithms for NP-Hard Problems, pages 192–235.
PWS Publishing Company, Boston, 1997.

23

