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Abstract: 

Networks offer a powerful tool for understanding and visualizing inter-species 

ecological and evolutionary interactions. Previously considered examples, such as trophic 

networks, are just representations of experimentally observed direct interactions. 

However, species interactions are so rich and complex it is not feasible to directly observe 

more than a small fraction. In this paper, using data mining techniques, we show how 

potential interactions can be inferred from geographic data, rather than by direct 

observation. An important application area for this methodology is that of emerging 

diseases, where, often, little is known about inter-species interactions, such as between 

vectors and reservoirs. Here, we show how using geographic data, biotic interaction 

networks that model statistical dependencies between species distributions can be used 

to infer and understand inter-species interactions. Furthermore, we show how such 

networks can be used to build prediction models. For example, for predicting the most 

important reservoirs of a disease, or the degree of disease risk associated with a 

geographical area.  We illustrate the general methodology by considering an important 

emerging disease - Leishmaniasis. This data mining methodology allows for the use of 

geographic data to construct inferential biotic interaction networks which can then be 

used to build prediction models with a wide range of applications in ecology, 

biodiversity and emerging diseases. 

 

 

Introduction  
 

A fundamental underlying goal of biology is to model the distribution of biota and identify their 

interactions, thus permitting both an understanding of current distributions and the possibility of 

predicting future ones [1]. Such models have important applications, such as in biodiversity [2] and 

emerging diseases.  Networks offer an important tool for understanding and visualizing biotic 

interactions and have been used in a variety of contexts [4, 5, 6]. They are constructed by linking 

nodes of the network, usually species that have a known interaction, such as in trophic webs. 

However, as it is not feasible to exhaustively track the large numbers of ecological interactions, 

the question arises: can biotic interaction networks be constructed other than by direct 

observation, using other available data?  

There is evidence that the evolutionary dynamics of inter-species interactions create rich 

geographic mosaics [7].  Moreover, phylogenetic research has shown that species are conservative 

when it comes to the taxa with which they interact, both spatially and temporally. As an example 
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relevant to this paper, blood sucking insects have evolved phenotypic traits to optimize host-

seeking and feeding [8]. Co-distributions of host and parasite will then reflect the strong biotic 

relation that exists between them. Similarly, as a reflection of the potential confrontation of species, 

co-occurrence could also engender an interaction in the absence of a pre-existing one [9]. We are 

thus led to consider distributional data for constructing inter-species interaction networks. 

 

Collection data offer an important proxy for modeling distributions. Here, we show how such 

data can be used to infer potential inter-species interactions, construct an associated network and, 

further, show how that network can be used to construct prediction models. Collection data are 

already widely used in biodiversity informatics [10, 11], and have been principally used for 

constructing species distributions from abiotic niche variables only. The data are taxonomic in nature 

and georeferenced, the set of point collections of a species in a geographical region giving a sampling 

for the distribution of the species in that region. Of course, there is an important question of sample 

bias in the data [12, 14] (see also the Materials and Methods section), though its extensive use and 

utility, even in areas where data are scarce [13], is testament to the fact that it can yield 

important information if treated carefully. Additionally, in the case of urgent problems of great 

social impact, such as that of emerging diseases, it is important to try to leverage the data that 

actually exist, at least until better, more bespoke, data become available. 

 

 

Results  

Dividing up a geographic region into spatial cells, xα, we take as our underlying variable of 

interest, Bi(xα), a measure of the distribution of the ith taxon in the spatial cell xα. The specific 

form of Bi is determined by the available data - relative or absolute abundance, 

presence/absence or presence only. A fundamental object of interest is P(Bi(xα)|I(xα)), the 

probability that the distribution measure Bi(xα) takes a certain value in the spatial cell xα  

conditioned on, I(xα), which is composed of, in principle, all biotic and abiotic variables that affect 

species distributions, and which constitute the biotic and abiotic profiles of the corresponding 

niche [10]. An example of interest would be that Bi(xα) represents presence of the ith species in 

the spatial cell xα.  

 As we have no underlying theory with which to construct P(Bi(xα)|I(xα)) we will use a data 

mining approach to estimate it, using point collection data as a proxy for the actual distribution of 

taxa. Point collection data here represent the set of georeferenced localities (latitude, longitude 

and date) of museum voucher specimens. It is important to remember that the distribution of 

taxa is a direct result of the past and present interactions of all relevant causative factors - 

climactic, phylogenetic, co-evolutionary, ecological etc. Hence, part of the task of any analysis is to 
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determine, out of the myriad of factors that contribute to I, which ones are the most predictive in 

determining a particular distribution. An immediate problem is that, as every spatial cell is unique, 

for each xα one has a statistical sample of size one and hence P(Bi(xα)|I(xα)) = 0 or 1.  

To overcome this, one first constructs the relationship between Bi and I, such as P(Bi| I), via 

a sampling of all spatial cells in order to obtain the relationship between a given distribution 

measure and the associated niche variables. With this in hand, a “profile” of any given spatial cell 

xα can be constructed in terms of the biotic and abiotic niche variables and the relationship 

between Bi and I used to determine P(Bi(xα)|I(xα)) (see Materials and Methods section).    

 

As P(Bi| I) involves counting the number of spatial cells where there is a co-occurrence of 

the ith species with a particular configuration of the niche variables I, if I  is of high dimension 

then the number of cells where there are co-occurrences will be small or zero.  We thus restrict 

attention for the moment to the case where I is a single variable, Ij, so 

that
jji IIBji NNIBP /)|( &= , where 

ji IBN &  is the number of cells with a co-occurrence of 

the distribution variable Bi and the niche variable Ij, and 
jIN  is the number of cells with niche 

variable Ij . In the case where Ij is also a taxon distribution, and we consider presence, then P (Bi 

|Bj ) measures the probability of presence of taxon Bi  given the presence of taxon Bj  and is thus 

a measure of the statistical association between Bi and Bj . As P (Bi |Bj) does not take into 

account statistical confidence however, we consider rather  
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which also measures the degree of confidence one can have in the statistical association 

between Bi and Bj  relative to the null hypothesis, P(Bi ), that the distribution of Bi is independent 

of Bj and distributed with this probability over the region of interest. Essentially, this is a one-

sided binomial test where the null hypothesis is that the distribution of Bi is random over the 

sample space; in this case the cells of the region of interest. It can, of course, be useful to 

consider other null hypotheses. For instance, one could use as null hypothesis P(Bi| A) 

where A represents a set of abiotic factors, or the result of a niche-model such as GARP or 

MaxEnt [15, 16]. Values of |ε(Bi |Bj )| greater than a certain threshold (see Materials and 

Methods section) measure the degree to which the data is consistent with the null hypothesis. In 

the case where the binomial distribution associated with P(Bi) can be approximated by a normal 

distribution then values of |ε(Bi |Bj )| > 2 would indicate an inconsistency between the data and 

the null hypothesis to the 95% confidence level.    
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For any pair of taxa, Bi and Bj, taken as nodes of a network, a link between them, whose 

“strength” is given by ε(Bi |Bj ), or P (Bi |Bj ), can be graphed. The resulting interaction network 

then offers a visualization of the inferred statistical dependencies between different taxa. Note 

that, contrary to networks that are common in the literature, that represent known interactions, such 

as between predator and prey in a trophic web [15], this network represents statistical associations 

from which inferences about real causal interactions can be made and then tested. Higher order 

statistical associations, such as P (Bi |Bj Bk ), can also be examined. Such an interaction could be 

represented by three nodes, with links from Bj and Bk to Bi, and would represent the degree of 

statistical dependence of taxon Bi on the co-occurrence of the taxa Bj and Bk. From the network, 

for a given node Bi, a ranked list of values of ε(Bi |Bj ), or P (Bi |Bj ), can be taken as a model for 

predicting the most important potential biotic interactions of the species Bi. To determine P (Bi |I′ ) 
when I′ is high dimensional, a statistical model must be used to approximate it. A very useful and 

transparent one, that can be deduced using only the properties of the network, is the naive Bayes 

approximation [22] (see the Materials and Methods section), wherein a score function, S (Bi | I´ ), that 

is a monotonic function of P (Bi | I ′ ), can be constructed. The score consists of a sum of contributions 

from each niche variable, both biotic and abiotic, from which it is possible to observe which are the 

most important niche variables.  

 

As an example of the general methodology we consider an important emerging disease - 

Leishmaniasis - a vector borne disease widely distributed in tropical regions that is estimated to 

affect 12 million people in 88 countries. Since Leishmaniasis is a zoonotic tropical disease, sylvan 

reservoirs are crucial to the maintenance of the parasite in ecological communities and, further, are 

intimately associated with human transmission [18]. Reservoirs of Leishmania can be classified as 

primary and incidental, according to their importance in the long-term transmission of the parasite, 

being considered incidental if they are dead ends that do not transmit to vectors [19]. Although 

direct experiment could determine to which type a given reservoir belongs, when there are many 

potential reservoirs other alternatives, such as that presented here, are more feasible.  

 

We used collection data points for 427 terrestrial mammal species occurring in Mexico as 

potential or confirmed reservoirs and 11 species of Lutzomyia as confirmed or potential vectors for 

Leishmania. The description of the data set can be found in the Materials and Methods section. 

Lutzomyia is a genus of “sand flies” that in the New World is responsible for the transmission of the 

Leishmania parasite. Only females suck blood for egg production. In Mexico there is little 

information about which vectors are involved in transmission of the parasite in different 

geographic regions. The only confirmed vector is Lutzomyia olmeca olmeca [20]. However, 

several species have been found with the parasite - Lutzomyia olmeca olmeca, Lutzomyia 

cruciata and Lutzomyia ovallesi [21]. With respect to transmission of the visceral form of the 

disease the principle vector Lutzomyia longipalpis has been collected in Mexico but has not been 
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reported with the parasite. For the secondary vector Lutzomyia evansi, there exists only one 

collection in the state of Chiapas which was without infection [22]. In Mexico, there are only eight 

mammal species found infected with Leishmania mexicana parasites, responsible for the 

cutaneous form of the disease, identified in the state of Campeche in southern Mexico [23, 24, 25]; 

a very small number when compared to the total number of potential reservoirs. It is important, 

therefore, to be able to predict which currently unidentified mammals are most likely to be 

important as actual or potential reservoirs for the disease. As a measure of statistical association 

we consider P(vi |mj ) and ε(vi |mj ), where vi represents the ith vector and mj the jth potential 

reservoir. There are 4697 potential vector-reservoir pairs. In Figure 1 we show the 241 most 

important positive associations (highest values of ε) between Lutzomyia as vectors and mammals 

as suspected and confirmed reservoirs for Leishmania. The vector species are marked as red nodes, 

while the confirmed reservoirs are marked as green. The darker the link, the stronger is the associated 

statistical dependence between the associated Lutzomyia and mammal.  

 

The connectivity of the network is related to the geographical distribution of the different species 

and has consequences for the way in which a parasite could propagate across the network from one 

geographical region to another. The separated subnetwork corresponds to L. anthophora, a 

species indigenous only to the north of Mexico and the United States. For Lutzomyia nodes, the 

vertex degree dictates with how many mammals a given vector shares important positive 

statistical associations, while, for mammal nodes, the vertex degree tells us how many vectors 

are potentially exploiting the mammal. A high vertex degree for a given vector shows that it could 

potentially exploit many different mammals. Moreover, if there are many connections to mammals 

that are not connected to other vectors, then all else being equal, it would be evolutionarily 

suboptimal for the vector not to exploit them. L. cruciata and L. longipalpis, in particular are 

associated with large numbers of mammals that have no statistical relation with other vectors. 

On the other hand, L. olmeca, L. ovalesi, Lutzomyia shannoni and Lutzomyia panamanensis are all 

within a highly connected part of the network that corresponds geographically to the peninsula of 

Yucatan, where many mammals are associated with several different vectors. In such 

circumstances, a vector may adopt a strategy of specializing to a smaller group of species in order 

to avoid competition. Interestingly, four of the eight infected rodent reservoirs - Peromyscus 

yucatanicus, Ototylomys phyllotis, Reithrodontomys gracilis and Heteromys gaumeri, all restricted to 

the peninsula of Yucatan, have very high vertex degrees, a fact that associates them with higher 

risk, as potentially many different vector species can exchange parasites with them.  

 

Besides offering substantial insight into the ecological interactions between potential vectors 

and reservoirs of a disease, the interaction network can also be used to obtain predictive models. 

Here we consider two such models - one for directly predicting the most important potential disease 

reservoirs and another for predicting a measure of disease risk for a given geographic area. 

Turning first to the prediction of potential reservoirs: with ε(vi |mj ) in hand, for a given vector vi, 
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we can construct a ranked list, from maximum to minimum value, of ε(vi |mj), over all pairs (vi,mj), 

i.e., a ranking of the links of a given node according to their strength. Those mammals with the 

highest values of ε are predicted to correspond to the most important potential reservoirs for that 

vector. In Table 1 we show the results for the highest 150 values of ε(v|mj ), where to obtain the 

list we have grouped together the different Lutzomyia species into one group v to form a list of 427 

values of ε(v|mj) as a function of j. The highest ranked mammals have the highest degree of 

statistical correlation with Lutzomyia, with the implication that these mammals are the most 

important potential reservoirs for Leishmania. By grouping together the different Lutzomyia species 

we are considering association between a given mammal species and the different species of the 

Lutzomyia genus present in Mexico, rather than with individual species, thus increasing the sample 

size and allowing for more robust statistics. A secondary logic for this is also that the biomass of 

parasite that can pass from vector to mammal in a given spatial cell depends on the number of 

different vector species that are present in that cell. Thus, a mammal with a high probability of co-

occurrence with more than one Lutzomyia will, all else being equal, present a higher degree of risk of 

having the Leishmania parasite transmitted to them than one that has a high degree of occurrence 

with only one species. 

 

Such a ranked list provides a general model for predicting the most important likely reservoirs for 

any given disease. Note that, of the eight infected reservoirs of Leishmania in Mexico, six of them, 

including the four confirmed, appear in the top 7% of ranked predictions of most important 

potential reservoirs. If we take as null hypothesis that the confirmed reservoirs are distributed 

randomly in the ranked list, then the probability that they appear with their actual rankings is less 

than 10−8, thus showing that the model’s results are statistically significant and that the model 

predicts very well, especially given the relative lack of information on which it is based, in that at no 

point was information on confirmed reservoirs used to “train” the model. Of course, one could 

argue that, all else being equal, there should be a higher degree of co-occurrence between 

Lutzomyia species and those mammals that are most widespread, as these will have had a 

higher probability of having being tested as potential reservoirs. Of course, if this were true, it 

would greatly reduce the predictive power of the model. We tested this hypothesis on a subset of 

360 mammal species where distribution data was readily available. The positions of the 

confirmed reservoir species ranked according to their area of distribution were: 25, 152, 154, 200, 

224, 230, 249, 255 and 257; while when ranked according to our prediction model the positions 

were 4, 6, 8, 22, 27, 28, 40, 88 and 130. As a simple statistical comparison one can compare the 

mean rank from both methods using an independent two sample t-test. The test statistic value is 

5.4 corresponding to a p value of less than 0.001 clearly indicating that the predictive power of 

our model cannot be explained by assuming that those species with larger distributions are more 

likely to be confirmed reservoirs.  
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The third step we will take is to construct a predictive model to quantify disease “risk” in any 

given geographic cell. Here we take as risk measure the probability that disease vectors are present, 

while the prediction itself is based only on biotic factors, i.e., the presence of potential mammal 

reservoirs. Explicitly, a score function, S (Bi | B ), for predicting class membership is constructed, 

where Bi is associated with the ith vector species and B represents the presence of mammal 

species, B1, …, BN, and related to the posterior classifier probabilities, P (Bi| B ), using the naive 

Bayes approximation, ∏
=

=
N

j
iji BBPBBP

1

)|()|( , the factors P(Bj |Bi ) being associated with 

directed links from vector to reservoir in the network. The advantage of this approximation is that 

the contribution of each biotic niche variable, Bi, is independent of the rest, so that, in the case 

where abiotic variables are also explicitly included, the relative importance of both biotic and abiotic 

factors can be studied. As one would expect in the present case, biotic variables play a more 

important role than abiotic ones, due to the direct dependence of a vector on its associated 

reservoirs. With S(B) in hand, the biotic niche profile of any geographical area can be determined 

using a ranked list of niche characteristics and allows one to see at a glance which species are 

playing an important role. 

 

In Figure 2 we see the results for the grid partition of Mexico we used earlier. The 

redder/whiter the area the higher/lower the predicted probability for finding Lutzomyia based only on co-

occurrence with mammal species, the mid-range being associated with the probability P(Bi) 

associated with the null hypothesis. Also shown is the georeferenced set of point collections 

of Lutzomyia. As can be seen, the agreement is good, though there are one or two outliers. 

Finally, on the map we also see those geographical regions where cases of Leishmaniasis have been 

reported. The shaded regions correspond to “municipios” (municipalities) where Leishmaniasis 

cases have been reported in the last 40 years. Note that the area of different municipios can vary 

greatly. In regions where there is no cross-hatching there are no cases that have been reported to the 

Secretaria de Salúd Pública (Governmental Public Health Agency) in Mexico. This does not 

necessarily imply that there are none, as there is no obligatory reporting of cases of Leishmaniasis in 

Mexico. In this sense reported cases are the equivalent of presence data, while no reported cases 

does not imply “absence”. A noteworthy feature of the map is that there are no areas with reported 

cases where the model does not predict a higher than random probability for presence of Lutzomyia.  

In interpreting the apparent overprediction several comments are in order: First of all, as mentioned, 

the quality of reporting data of cases of Leishmaniasis varies significantly from state to state in 

Mexico. Secondly, the map is of degree of risk due to biotic factors only; the output being a score 

that measures the probability of Lutzomyia being present in a given spatial cell. In that sense, it is a 

map associated with only one type risk factor, all be it an important and necessary one for the 

presence of the disease in the human population which, obviously, depends on many other factors. 
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By including such factors, for example, abiotic or socio-demographic variables, more complex risk 

models can be simply created using our methodology.  

 

Discussion  

The main contribution of this paper is to show how biotic interaction networks may be 

constructed inferentially using a data mining approach applied, in this case, to point collection 

data, rather than by direct observation, and to show that these networks can be used, not only to 

understand and visualize potential inter-species interactions, but also to formulate prediction 

models. The important area of emerging diseases was used as a test bed to show the utility of 

the approach. The main logic of this methodology is that current distributions of biota, as proxied 

by point collection data for the example given here, adequately reflect all causal influences, both 

biotic and abiotic. The task, for a given set of input variables, is to discriminate which ones are of 

greater influence for a particular distribution. In this paper we used only biotic variables. A 

statistical dependence between two species infers, but does not prove, a direct biotic causal 

relationship. Thus, for a pair of nodes the strength of the link between them measures the degree 

to which two species tend to co-occur. If they co-occur in a statistically significant way we are 

prompted to identify as a plausible explanation a vector-reservoir interaction.  

 

In the case of Lutzomyia and mammals this understanding comes from the natural potential 

direct causal relationship there: that the Lutzomyia feed on the corresponding mammal. The 

properties of the corresponding biotic network show to what extent a given vector is exploiting its 

potential food sources, evolutionary dynamics giving a logic as to why this usage should be 

optimal. From the network, the corresponding list of predicted reservoirs for a given Lutzomyia 

is not based on the physiological possibility that a given mammal is a reservoir but, rather, on 

the fact that a mammal with a high fraction of co-occurrences is more likely to be an important 

food resource for Lutzomyia than one with a small fraction and, therefore, that there is greater 

transmission of the parasite from one to the other. Moreover, as ε(vi |mj ) increases as the range 

of the mammal mj grows, then this measure also predicts the degree of importance of the reservoir, 

a reservoir of small range being of less potential impact, all else being equal, than one of ample 

range. As mentioned, the utility of the model is clearly in evidence, given that all known reservoirs 

in Mexico are highly ranked in the complete list of 427 possible candidates. 

  

To create spatial prediction models we used a model that utilized only information that came 

from the biotic interaction network. The associated score is a measure of the probability that 

Lutzomyia are present, which we can take as a proxy for the probability that the disease is 
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present. To relate this to the number of cases in a more sophisticated model would require the 

inclusion of socio-economic and socio-demographic variables among others.  

 

The results of this paper clearly lead us in the direction of making corresponding hypotheses 

that can be verified by further empirical research. Our ranked list of potential reservoirs is, as 

emphasized, based on the relative importance of the potential reservoir in terms of what biomass of 

parasite can potentially be harbored in a given spatial cell rather than what mammals are 

physiologically capable of being reservoirs. To test this, the following scenario may be envisaged: 

consider the known distribution of a given mammal from the list; select spatial cells at random from 

this distribution; in each cell capture the chosen mammal species and test for the presence of 

Leishmania. The appropriate metric is the proportion of spatial cells in which specimens were found 

with the parasite or, alternatively, if sufficient statistics may be obtained, ε(cells with specimens with 

parasite | total cells with specimens). This would be repeated for different mammal species. The 

hypothesis is that a highly ranked species will yield higher values for these two metrics than a low 

ranked one. To facilitate testing the hypothesis, the most appropriate species would be those 

chosen from different points in the ranked list that are common in a given geographical region and 

easy to capture. Of course, many mammals simply do not have any geographical overlap with the 

vectors. Strictly speaking one should consider these mammals too and test for presence of the 

parasite. Common sense would dictate that for those species far away from the known distribution 

of the vectors there is effectively zero probability of finding the parasite thus obviating the need to 

explicitly check these areas. Work is currently being planned to undertake these tests.    

 

 

 

Materials and Methods  

 
The data set consisted of point collection data associated with one Class, Mammalia, and one 

genus - Lutzomyia. The mammal data set consisted of 37,297 point collections from georeferenced 

localities for 427 terrestrial mammals occurring in Mexico. The data were obtained from museum 

voucher specimens  from  national  and  international  museum  collections, public electronic 

databases (MaNIS; www.manis.gob.mx, and CONABIO; www.conabio.gob.mx) and published 

records [27, 28]. For Lutzomyia, there were 270 point collections, taken from published literature and 

from national entomological collections (Instituto de Diagnóstico y Referencia Epidemiológica 

(InDRE, Mexico City), the Colección Entomológica Regional Universidad Autónoma de Yucatán 

(UADY, Mérida) and the Laboratorio de Medicina Tropical at the Universidad Nacional Autónoma 

de México (UNAM, Mexico City), associated with 11 species.  For both data sets, each locality 

was georeferenced to the nearest 0.01 degrees of latitude and longitude using 1:250,000 
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topographic maps (INEGI; www.inegi.gob.mx, Instituto de Geografía, Universidad Nacional 

Autónoma de México; www.igeograf.unam.mx).  Point collection data was, of course, not 

collected in order to provide an unbiased sampling of underlying species abundance and therefore 

must be considered carefully to understand potential statistical biases that might be present. The 

utility and limitations of point collection data have been amply discussed in [12, 14]. 

 

With respect to the data set for Mexican mammals, this data has been collected over a period of 

more than 100 years with a consequently large number of collectors [24, 25]. Hence, although the 

data has not been collected systematically, it has probably led to an adequate sampling. 

Additionally, mammals are the best known and collected group in Mexico. In the case of Lutzomyia 

the coverage is less but still represents the best available. With the registered cases of 

Leishmaniasis, unfortunately, there is no compulsory reporting of these in Mexico. So one can infer 

where the disease is present but not where it is absent. In problems of great social impact, such as 

that of emerging diseases, it is important to try to leverage the data that actually exists, at least 

until better more bespoke data becomes available. Parasite detection studies in potential reservoirs 

have been carried out principally in the state of Campeche. Van Wynsberghe et al [21] analyzed 

the evolution of the infection using parasitological methods in 29 naturally infected rodents. The 

mammals belonged to four species: Sigmodon hispidus (2), Oryzomys melanotis (12), 

Ototylomys phyllotis (9) and Peromyscus yucatanicus (6). In a second study [22], infection by 

Leishmania mexicana was detected in eight mammal species using two methods – in culture and 

PCR.  The Leishmania parasite was confirmed by both methods in six species: O. phyllotis, 

Heteromys gaumeri, O. melanotis, P. yucatanicus, S. hispidus, and Heteromys desmarestianus. 

In the other two species it was confirmed using only via one of the methods: in culture for 

Marmosa mexicana and by PCR for Reithrodontomys gracilis.  

 

As collection data is fundamentally tied to a taxonomic classification, it is natural to 

describe the biota in terms of taxa and consider the spatio-temporal distribution of a species for 

example. For a data set that covers a spatial area A and time interval T one may divide the space 

and interval into spatio-temporal cells, (xα , tβ) which form a mesh that partitions both the 

geographic region and time interval. The labels xα and tβ simply indicate the particular spatio-

temporal cell we are considering. A point collection associated with this cell is such that it 

corresponds to a latitude and longitude within the spatial cell xα and to a collection date in the 

temporal cell tβ.  We can consider the distribution of the set of species, B(xα , tβ) = (B1(xα , tβ), . .. 

BNB(xα , tβ)), where Bi(xα , tβ) is a measure of the distribution of the ith taxon in a spatial cell xα, in the 

time interval tβ. A natural realization of Bi (xα, tβ) would be the abundance of the taxon i in the 

spatial cell xα, in the time interval tβ as measured by its frequency or relative frequency. A less 

discriminating realization for Bi (xα, tβ) would be a function that indicates only presence or 

presence/absence in the geographic region xα in the time interval tβ.  As Bi (xα, tβ) is a stochastic 

variable, the distribution of any taxon Bi(xα, tβ) is described by a probability distribution, P(Bi(xα, 
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tβ)), whose evolution, in principle, depends on both biotic factors, Bj(xρ, tσ), associated with other 

species, and abiotic factors, A(xρ, tσ) = (A1(xρ, tσ), . . . , ANA(xρ, tσ)), such as temperature, 

precipitation etc., where we consider cells xρ, tσ that may be different to a given cell xα, tβ  to indicate 

that, in principle at least, there may be statistical associations between a given spatio-temporal cell 

and others. The full ecological niche at xα and tβ can be described by a vector I(xα, tβ) = (A1 (xα, tβ),…, 

ANA (xα, tβ); B1(xα, tβ),…, BNB (xα, tβ)).  

 

A full model would consist of determining P (Bi(xα, tβ)) = F (I (xρ, tσ)), relating the distribution of 

a subset of biota at one place and time to all biotic and abiotic factors considered at different 

places and times. Of course, there are no underlying fundamental principles on which to build the 

function F. We therefore adopt a non-parametric “data mining” approach, modeling the distribution 

directly using available data, rather than constructing an a priori parametric model. An 

advantage of this approach is that the observed distribution is a direct result of the past and 

present interactions of all relevant causative factors - climactic, phylogenetic, co-evolutionary, 

ecological etc. Nothing is omitted. However, an observation of P (Bi(xα, tβ)) in itself does not 

provide a predictive model. To create such a model we consider the problem as a classification task, 

relating a class, such as the class of cells with presence of a given species, to a feature vector I using 

the conditional probabilities P (Bi| I). Converting the problem to one of classification is very natural 

from the point of view of presence or presence/absence. In the case of abundance a coarse graining 

of the abundance data in a given spatial-temporal cell is required. This can be achieved in many 

ways, depending on how many classes are posited and the criterion by which a given abundance fits 

in a given category. For example, one might classify abundance into three categories – Low, Normal 

and High – where Low is any abundance at least one standard deviation below the average and High 

is any abundance at least one standard deviation above the average. One can then naturally consider 

the conditional probability that a High abundance of species Bi is found given a High abundance of 

species Bj. Of course, in order to do this, one requires abundance data in the first place. As this is less 

common than presence or presence/absence data, and simply not available in the context of 

emerging diseases such as Leishmaniasis, we will here focus on the latter. For the same reason, in 

the following, we will also restrict attention to the spatial dependence of the distributions and ignore 

the temporal aspect, as the data simply is not capable of reliably describing temporal changes.  

 

The class, we will take to be a taxon distribution, Bi, while the feature vector set is taken to be a 

subset of niche variables II ⊆' . In this case, I ‘, represents a niche profile with both biotic and abiotic 

components which constitute the biotic and abiotic profiles of the niche. For a given taxon, BB ⊆' , 

and niche variables, II ⊆' , our chief object of study is the probability P(Bi | I’′) = NBiAND  I′ /NI′ , 

where NBiAND  I′  is the number of spatial cells where there is a co-occurrence of the taxon Bi and 

the niche variables I′, and NI′  is the number of cells where the niche variables take their stated 
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values. The niche profile I′(xα) associated with a spatial cell xα then determines the probability of 

the distribution variable, Bi(xα), in that cell, and one now has a predictive model.  Note that, 

although we concentrate on biotic variables in the present paper, in the current approach, all niche 

variables can be treated on a democratic footing. The problem of calculating P (Bi | I’) directly is 

that both NBi AND  I′  and NI′ are likely to be zero when the number of taxa or niche variables 

considered simultaneously is large, as there will tend to be no co-occurrences of so many 

variables. This can be ameliorated by considering a reduced number of both class and feature 

variables. For instance, P (Bi | Ik ) is determined by the number of co-occurrences of the taxon Bi 

and the niche variable Ik and, in principle, allows us to find the most important statistical 

associations between the niche variables and the taxa distributions. However, P(Bi | Ik) being a 

probability does not account for sample size.  For example, if P(Bi | Ik ) = 1 this may be as a result 

of there being a coincidence of Bi and Ik in one spatial cell or 1,000. Obviously, the latter is more 

statistically significant. To remedy this we consider the following test statistic 
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which measures the statistical dependence of Bi  on Ik  relative to the null hypothesis that the 

distribution of Bi is independent of Ik and randomly distributed over the grid, i.e., 

NNBP
iBi /)( = , where  

jiBN  is the number of grid cells with point collections of species Bi 

and N is the total number of cells in the grid.  The sampling distribution of the null hypothesis is a 

binomial distribution where, in this case, every cell is given a probability P(Bi) of having a point 

collection of Bi. The numerator of equation (1) then, is the difference between the actual number 

of co-occurrences of Bi and Ik relative to the expected number if the distribution of point 

collections were obtained from a binomial with sampling probability P(Bi). As we are talking about 

a stochastic sampling the numerator must be measured in appropriate “units”. As the underlying 

null hypothesis is that of a binomial distribution, it is natural to measure the numerator in standard 

deviations of this distribution and that forms the denominator of equation (1). In general, the null 

hypothesis will always be associated with a binomial distribution as in each cell we are carrying 

out a Bernoulli trial (“coin flip”). However, the sampling probability can certainly change. For 

instance, one could take as null hypothesis a binomial distribution with sampling probability 

P(Bi|M=1)=NBj/NM=1, where M here is a binary variable associated with the fact that a niche-

variable model, such as GARP or MaxEnt, says whether the species Bi is present or absent. NM 

is then the number of cells where the niche model says there is presence. Taking P(Bi|Bk,M) 

relative to the null hypothesis P(Bi|M)  tells us how the presence of species Bj is associated with 

the presence of Bk in the context of cells where a niche model has indicated the 
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presence/absence of Bk. In other words, how Bk affects the distribution of Bi in those places where 

the niche model says Bk is present/absent. 

 

The quantitative values of ε(Bi |Bk ) can be interpreted in the standard sense of hypothesis 

testing by considering the associated p-value as the probability that |ε(Bi |Bk )| is at least as large 

as the observed one and then comparing this p-value with a required significance level. In the 

case where 105 −≥
jBN then a normal approximation for the binomial distribution should be a 

decent approximation and in this case ε(Bi |Bk ) = 2 would represent the standard 95% confidence 

interval.  In the case where a normal approximation is not accurate then other approximations to 

the cumulative probability distribution of the binomial must be used.  

 

In the case where Ik = Bk, another taxon, then P(Bi |Bk ) and ε(Bi |Bk ) are measures of the 

statistical association between the two taxa, ε(Bi |Bk ) having the added advantage of having built 

into it the degree of statistical confidence that one may have about the association.  Note that 

such a statistical association does not necessarily prove that there is a direct “causal” interaction 

between the two taxa. Rather, it allows for a statistical inference that may be validated 

subsequently.  

 

From either P(Bi |Bk ) or ε(Bi |Bk ), an inferential interaction network between taxa can be 

constructed where the nodes are the taxa and the links represent the degree of statistical dependence 

of one on the other. The links must represent the degree of interaction as otherwise one has a 

uniform fully connected network. This can be done, for instance, by only showing the principle 

interactions above a certain threshold of ε or P, or by having the link width or size depend on their 

values. Note that such an interaction network, being based on point collection data, is inferential 

with respect to real biotic interactions between the taxa. This is distinct to other networks where 

network links are determined observationally. P (Bi |Bk ) and ε(Bi |Bk ) are measures of pair-wise 

dependencies between taxa. They can be generalized to take into account higher order 

interactions. For instance, ε(Bi |Bk Bm ) measures the statistical interaction between the joint 

presence of taxa Bm  and Bk  and that of taxon Bi.  

 

Probabilities P (Bi |I′ ), where I′  is of high dimension, can be constructed using different 

classification models, such as neural networks, discriminant analysis etc. A particularly transparent, 

simple and effective approximation is the Naive Bayes approximation [26] with 
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where, in the first equality, Bayes rule has been used, and in the second it has been assumed that the niche 

variables Ik are independent. The product here is over the N niche variables under consideration as conditioning 

factors for Bi. In the case of the relationship between Lutzomyia and mammals, N represents the number of 

mammal species. A score function that can be used as a proxy for P (Bi |I′ ) is 
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where iB   is the complement of the set Bi . For example, if Bi is the set of cells with presence of taxon Bi then 

iB represents the set of cells without presence. S(Bi | I′) is a measure of the probability to find the distribution 

variable Bi when the niche profile is I′. It can be applied to a spatial cell xα by determining the niche profile of 

the cell, I′(xα). As an example, for two biotic niche variables, B2 and B3, that take values 1 (corresponding to 

the fact that there is a point collection associated with that cell) and 0 (there is no point collection associated 

with the cell), the four possible biotic niche profiles of any cell are (B2, B3) = (0,0); (0,1), (1,0) and (1,1). The 

score contributions of each biotic variable are S(Bi|B2) and S(Bi|B3), calculated using the above formula. 

Hence, S(Bi | I′) = S(Bi | B2, B3) = S(Bi|B2) + S(Bi|B3). Thus, for any given spatial cell xα one can assign a niche 

profile, i.e. values of B2 and B3, from whence it is possible to assign a corresponding score. If there is no 

statistical association between Bi and B2 or B3 then the corresponding score contributions are zero. An overall 

zero score then signifies that the probability to find Bi js the same as would be found if Bi were distributed 

randomly. If the score is positive then there is a higher than random probability to find Bi present and on the 

contrary if the score is negative.  

  

The geographical region of interest for the data of the present study is Mexico. Within this specified region 

there is an important question of how to choose an appropriate mesh size.  The right degree of coarse graining 

is essentially governed by the size of the data set available relative to the data necessary to construct a given 

probability function. For instance, to calculate P(Bi, Bk), where Bi represents presence of species i in grid 

cell xα : If the mesh size is too small then the probability of a co-occurrence of species i and k is very small. On 

the other hand, if the mesh size is too big then, as well as a lack of statistical significance, discrimination will 

also be lost. A reasonable estimate of the appropriate cell size can be determined by assuming that the N 

collections are distributed randomly in an area A. An appropriate cell size is then A1/2/N, which corresponds to 

having, on average, one collection per cell. Given that we are emphasizing here pairwise associations 

between species, the appropriate value of N is the average number of collections for any species. A more 

sophisticated methodology is to consider the number of co-occurrences as a function of cell size and look for 

the maximum of this function. This can be done for a particular pair of species, or one may consider an 

average over different pairs. For our study we used 3,337 square cells of linear size 25km which corresponds 

to an average number of point collections of about 20.  
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Checks were made with other cell sizes of 5km, 10km, 50km and 100km to assure the robustness of our 

conclusions. In Table 2, for the ranked list of potential reservoirs we see how the average position in the 

ranked list changes as a function of cell size. This shows that the relative ranking is quite insensitive to the cell 

size, as the z-scores of the average rank of six of the known reservoirs relative to the expected average rank if 

the distribution were random are highly statistically significant. In other words, the predictions as to which 

species are most likely to be reservoirs are robust to large changes in the cell size. In general, the absolute 

values of epsilon will change as a function of cell size, principally due to the effect of reducing the number of 

co-occurrences as one passes to large cell sizes or to very small cell sizes. However, relative values of epsilon 

will remain quite stable. 
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Figure Legends 

Figure 1: Interaction network between potential and confirmed vectors and reservoirs for Leishmania in 

Mexico. Mammal species confirmed as reservoirs for Leishmania mexicana, responsible for the 

cutaneous form of the disease are marked with a double circle. One species, Didelphis marsupialis 

is the known sylvatic reservoir for the visceral form. 

Figure 2: Biotic risk map for Leishmania using the mapped score function. 

Table 1: Ranked list of potential mammal reservoirs for Leishmania in Mexico. 

Table 2: Relative rank by score of known reservoirs for Leishmania in Mexico as a function of grid size. 
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Table 1
 

  Mammals Epsilon Conf.    Mammals Epsilon Conf.   Mammals Epsilon Conf. 

1 Eira barbara 10.1683    51 Molossus sinaloae 5.8518   101 Balantiopteryx plicata 3.8590   

2 Rhogeessa aeneus 9.3649    52 Artibeus lituratus 5.8422   102 Peromyscus leucopus 3.7994   

3 Artibeus intermedius 9.1628    53 Mormoops megalophylla 5.8374   103 Sturnina ludovici 3.7888   

4 Reithrodontomys gracilis 8.8921 Yes  54 Habromys lepturus 5.7848   104 Enchisthenes hartii 3.6929   

5 Carollia sowelli 8.8303    55 Myotis keaysi 5.6148   105 Vampyrodes caraccioli 3.6929   

6 Heteromys gaumeri 8.8000 Yes  56 Chiroderma villosum 5.5562   106 Eptesicus furinalis 3.6453   

7 Peromyscus mexicanus 8.7859    57 Tamandua mexicana 5.4845   107 Liomys pictus 3.6107   

8 Heteromys desmarestianus 8.7164 Yes  58 Tylomys nudicaudus 5.4510   108 Glossophaga commissarisi 3.4861   

9 Molossus rufus 8.6277    59 Saccopteryx bilineata 5.2984   109 Lonchorhina aurita 3.4781   

10 Glossophaga soricina 8.5713    60 Macrotus mexicanus 5.2472   110 Phyllostomus discolor 3.4781   

11 Carollia perspicillata 8.5030    61 Sciurus aureogaster 5.2267   111 Peromyscus gymnotis 3.4516   

12 Orthogeomys hispidus 8.3468    62 Baiomys musculus 5.2092   112 Anoura geoffroyi 3.4201   

13 Pteronotus parnellii 8.1632    63 Rhogeessa tumida 5.1950   113 Platyrrhinus helleri 3.3586   

14 Desmodus rotundus 8.1519    64 Sciurus deppei 5.1414   114 Eumops bonariensis 3.3398   

15 Dasyprocta mexicana 8.1128    65 Dermanura watsoni 5.1338   115 Sciurus variegatoides 3.3398   

16 Sturnira lilium 8.0290    66 Otonyctomys hatti 5.1338   116 Uroderma bilobatum 3.3373   

17 Dermanura phaeotis 8.0055    67 Orthogeomys grandis 5.0556   117 Lasiurus intermedius 3.2197   

18 Dasyprocta punctata 7.9678    68 Alouatta palliata 5.0457   118 Lasiurus ega 3.1739   

19 Oryzomys couesi 7.7253    69 Choeroniscus godmani 5.0457   119 Peromyscus megalops 3.1410   

20 Potos flavus 7.7246    70 Peropteryx macrotis 5.0457   120 Eumops glaucinus 3.0564   

21 Conepatus semistriatus 7.6879    71 Pteronotus personatus 5.0266   121 Urocyon cinereoargenteus 2.9697   

22 Ototylomys phyllotis 7.5587 Yes  72 Lontra longicaudis 4.9330   122 Procyon lotor 2.9502   

23 Ateles geoffroyi 7.4787    73 Reithrodontomys mexicanus 4.9120   123 Hylonycteris underwoodi 2.9343   

24 Cryptotis magna 7.4207    74 Oryzomys rostratus 4.8681   124 Rhynchonycteris naso 2.8580   

25 Cuniculus paca 7.3220    75 Mimon cozumelae 4.8327   125 Eptesicus brasiliensis 2.8106   

26 Lampronycteris brachyotis 7.2852    76 Pteronotus davyi 4.7943   126 Myotis albescens 2.8106   

27 Sigmodon hispidus 7.2805 Yes  77 Herpailurus yagouaroundi 4.7100   127 Lophostoma evotis 2.8106   

28 Peromyscus yucatanicus 7.2486 Yes  78 Glossophaga leachii 4.6849   128 Tapirus bairdii 2.8106   

29 Oryzomys chapmani 7.1242    79 Rhogeessa gracilis 4.6317   129 Vampyrum spectrum 2.8106   

30 Didelphis virginiana 7.1150    80 Sylvilagus brasiliensis 4.6317   130 Marmosa mexicana 2.7731 Yes 

31 Peromyscus melanocarpus 7.0260    81 Hodomys alleni 4.5155   131 Peromyscus furvus 2.7731   

32 Microtus umbrosus 6.9630    82 Leopardus wiedii 4.4420   132 Myotis velifera 2.5757   

33 Thyroptera tricolor 6.9630    83 Peromyscus simulatus 4.4195   133 Spilogale putorius 2.5411   

34 Nasua narica 6.8953    84 Sigmodon alleni 4.3707   134 Microtus mexicanus 2.5268   

35 Megadontomys cryophilus 6.6830    85 Bassariscus sumichrasti 4.3110   135 Dasypus novemcinctus 2.4725   

36 Oryzomys alfaroi 6.6816    86 Oryzomys fulvescens 4.3110   136 Myotis nigricans 2.4704   

37 Sorex veraepacis 6.6797    87 Diphylla ecaudata 4.3013   137 Lophostoma brasiliense 2.4407   

38 Carollia subrufa 6.6316    88 Oryzomys melanotis 4.2907 Yes 138 Diclidurus albus 2.4407   

39 Peromyscus aztecus 6.6173    89 Micronycteris microtis 4.2338   139 Sciurus niger 2.4407   

40 Didelphis marsupialis 6.4390 Yes  90 Mazama americana 4.2274   140 Leptonycteris curasoae 2.4268   

41 Sciurus yucatanensis 6.3865    91 Microtus oaxacensis 4.2061   141 Nyctomys sumichrasti 2.4026   

42 Philander opossum 6.2546    92 Rheomys thomasi 4.2061   142 Sigmodon mascotensis 2.3815   

43 Habromys ixtlani 6.1120    93 Oryzomys saturatior 4.2061   143 Alouatta pigra 2.3374   

44 Microtus waterhousii 6.1120    94 Myotis elegans 4.2024   144 Peromyscus melanophrys 2.2204   

45 Pteronotus rubiginosus 6.1120    95 Oligoryzomys fulvescens 4.1984   145 Dermanura tolteca 2.1920   

46 Reithrodontomys microdon 6.0967    96 Natalus stramineus 4.0626   146 Trachops cirrhosus 2.1663   

47 Coendou mexicanus 6.0268    97 Balantiopteryx io 4.0522   147 Bauerus dubiaquercus 2.1612   

48 Centurio senex 6.0076    98 Nyctinomops laticaudatus 4.0522   148 Spilogale pygmaea 2.1612   

49 Artibeus jamaicensis 5.9786    99 Tlacuatzin canescens 4.0119   149 Leptonycteris nivalis 2.1402   

50 Glossophaga morenoi 5.8847    100 Odocoileus virginianus 3.9265   150 Sylvilagus floridanus 2.1002   
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Species 5km 10km 25km 50km 100km 
Didelphis marsupialis 52 31 40 17 22 
Heteromys gaumeri 1 13 6 47 38 
Sigmodon hispidus 17 19 27 50 90 
Ototylomys phyllotis 2 5 22 60 40 
Oryzomys melanotis 90 54 88 72 51 

Peromyscus yucatanicus 3 10 28 84 62 

Average Rank 27.50 22.00 35.17 55.00 50.50 

z-score -12.54 -25.93 -15.48 -16.69 -16.91 
 

Table 2 
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