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Abstract: This paper presents a systematic approach to obtain 
the degrees of freedom (DOF) of the platforms of parallel 
manipulators. The paper begins with general Kutzbach 
criterion for mobility. With simple mathematical 
transformations this criterion is modified to incorporate 
number of parallel legs used in the parallel platform-type 
mechanism and the number of joints in the legs. The theory of 
screws is used to study the freedom of the joints in the 
individual legs and the mobility of the platform. It is 
established that the general Kutzbach mobility criterion does 
not cater for situations where the freedom screws (or 
constraint screws) of the joints in a leg become dependent on 
the freedom screws (or constraint screws) of one or more of 
the other legs; thus, altering the mobility of the platform. The 
general modified Kutzbach mobility formula is further 
modified to resolve the problem of redundant constraints. The 
paper then provides a systematic approach towards the number 
synthesis of parallel platform-type mechanims. The paper 
includes three examples of such mechanisms analyzed by this 
approach. Results agree with the existing studies carried out 
on the mechanism used in the examples. A numerical example 
of a three-degree-of-freedom parallel manipulator with three 
legs is used to show the enumeration of all possible parallel 
manipulators. This includes cases with and without redundant 
constraints.  
 
 
Key words: mobility, parallel manipulators, constraints, 
redundant constraints, degrees of freedom  
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1.  Introduction 
Intrinsic to their design parallel manipulators have a higher 

rigidity, better accuracy, and more load carrying capacity than 
serial mechanisms. Thus these mechanism find wide spread 
practical applications; flight simulators, vehicle simulators, and 
entertainment simulators are just a few examples. A large 
number of references can be found in published literature 
[1,2,3]. A general six DOF motion simulator having one 
actuator in each leg possesses six legs with six freedoms (or six 
single DOF joints) in each leg. In a number of such platform-
type simulators where full motion (i.e., six DOF) is not needed 
the number of legs is also reduced to desired level with 
appropriately reduced number of joints in legs.  

This paper provides, first; a strategy to design a parallel 
manipulator for a given platform mobility: Second; to 
enumerate the total number of platform-type manipulators 
within the given restriction on the number of parallel legs and 
the defined degree of freedom of the platform. This theory is 
also applied for analyzing platform type mechanisms for finding 
out the mobility of the platform. A detailed review of the 
mobility of mechanisms is presented by Gogu [4]. He discussed 
35 approaches followed by different researchers in the last 150 
years. He considered mobility with and with out constraint 
equations. Rico Martinez, J. M., and Ravani [5] have also 
worked on parallel mechanism with emphasis on Paradoxical 
Linkages.  

The present paper uses the concept of redundant constraints 
on some what similar lines to that of Dai, et al. [6,7] who use 
virtual and common constraints concept.   
Copyright © 2008 by ASME
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The paper extends their approach further by integrating 
loops in mobility analysis. The approach begins with the case 
of non-redundant constraints and with changes in equation 
incorporates the element of redundant constraints and their 
effect on the mobility of the platform. It is observed that in 
such mechanism the legs are attached symmetrically about the 
centre vertical axis joining the base and the platform. Since 
there exists symmetry in leg designs, positioning and joint 
orientations about the vertical axis, there lies a strong 
possibility of linear dependency of the freedom (and 
constraint) screws of the joints of one leg to that of the other. 
This understandably affects the freedom of the platform. There 
is thus very little possibility for a mechanism to agree to the 
Kutzbach mobility criterion [8] in its original form. In line 
with a large number of published material, this is the main 
motivation behind this paper. Mechanisms that obey the 
Kutzbach mobility criterion in its original form are referred to 
as trivial mechanisms. 

Numerous publications focus on the Kutzbach mobility 
criterion and its limitations to accurately predict the DOF of 
over constrained mechanisms [5,6,9,]. Grübler [10,11,12] 
mobility formula also suffered the same limitations. Specific 
cases of parallel manipulators and platform type manipulators 
are solved in [13-16]. This present work explores the subject 
of virtual and common constraints at the junction point of all 
the kinematic chains or loops of a platform-type manipulators. 
The number synthesis part discussed in this paper is similar to 
that presented by Kokkinis [13]. The procedure followed in 
this paper for the number synthesis of parallel manipulators 
can lead to various mechanisms that belong to the category of 
parallel manipulators. Type syntheis of such mechanisms was 
presented by Xianwen and Gosselin [15]. The method, used in 
this paper, for linear dependency or otherwise of freedoms and 
constraints depends heavily on screw theory or screw algebra. 
Screw algebra was developed by Ball in 1900 [17] but the 
theory remained dormant for quite sometime. The revival of 
the theory of screws is evidenced by the work of Dimentberg 
[18], Waldron [19], Hunt [20], Roth [21], Sugimoto and Duffy 
[22], and Phillips [23]. The theory has been applied to 
mechanisms by a large number of researchers, for example, 
Sugimoto and Duffy [22], Lipkin and Duffy [24], Rico and 
Duffy [25], Dai [26], Dai and Jones [27]. A comprehensive 
book by Davidson and Hunt [28] gives detailed insight into 
the theory of screws and its applications in mechanisms. The 
theory of screws elegantly describes the concept of freedoms 
and restraints in mechanisms.  

The remainder of this paper is arranged as follows. 
Section 2 is a study of the DOF of the platform using the 
Kutzbach mobility criterion which is then modified to suite a 
platform-type manipulator. Section 3 discusses the problem of 
the orientations of the joints in the legs and linear 
dependencies of the constraints (and freedoms) within the legs 
in which the mobility criterion is further modified by 
incorporating the constraint dependencies. Section 4 presents a 
systematic approach, with the help of an example, to perform 
the number synthesis of this category of mechanism. Section 5 
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presents three examples incorporating the developed concept in 
the previous sections. The results of the examples agree with the 
work of others, for example Dai [6,7]. Section 6 gives number 
synthesis extended from the mobility study.  
 
2. Parallel manipulators with In-Parallel Legs 
A platform-type mechanism consists of a base which is the 
ground; a platform (whose degree of freedom is of interest in 
this study). The base and the platform are joined together with 
legs. The legs are further composed of joints and links. The 
number of joints in each leg vary depending upon the freedom 
equation dealt in depth in the proceeding lines. The number of 
legs are limited between three and six in this paper. 

The study of the individual legs of the mechanism as the 
open kinematic chains provides the freedoms and constraints of 
the legs. When the legs are joined, the intersection of the 
constraints and mobility spaces of the legs at the intersection 
point (platform) give the constraints and degrees of freedom of 
the platform respectively.                 

Consider parallel mechanisms with legs having equal DOF. 
The freedom equation of one leg (expressed in terms of screws) 
is equal to that of the remaining individual legs. The necessary 
condition for the mechanism to successfully move can hence be 
written as:       
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where if1  denotes the degrees of freedom of the ith joint of leg 
1, and n is the number of single degree of freedom joints in the 
respective leg. The number of legs range from 1 to L. Since all 
these legs are connected in parallel, the degrees of freedom of 
the platform can not be more than the degree of freedom of the 
leg with least joints. However, there may exist freedoms of the 
legs, called local freedoms, which do not affect the mobility of 
other legs and, therefore, not the platform. For example, a leg of 
the Stewart Platform type rotating about its own axis.  

In the most general case, the constraints constituted by all 
the legs are linearly independent and thus the total constraints at 
the platform are equal to the sum of all the constraints of the 
legs. However, when the constraint screw of one leg is 
dependent on the constraint screw of the other leg (s), it can not 
be considered a separate constraint. This, then increased the 
freedom of the platform.  

Note that each leg can have more than one actuator. 
However, to maintain the intrinsic advantages of the parallel 
mechanism each leg will contain only one actuator. As a passing 
remark note that:  If all the actuators of the mechanism are 
locked the mechanism should behave like a rigid structure with 
mobility zero. If one of the actuator moves then the freedom 
provided by that actuator at the platform must be supported by 
the passive joints of other legs and vice versa. The passive 
joints, here means, the joints other than actuators. At times 
these are considered as the joints that do not take part in the 
Copyright © 2008 by ASME
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operation of the mechanism. This approach can also help in 
selection of the actuators in respective legs. The subject of 
appropriate selection of actuators is not part of this paper.  
 
3. Loop Integrated Mobility Analysis  

It is well-known that in some cases the Kutzbach mobility 
criterion cannot provide the right answer for the mobility of a 
mechanism. One reason is that it does not cater for over 
constrained mechanisms with common and virtual constraints. 
In this paper such mechanisms are categorized as the ones 
possessing redundant constraints. The Kutzbach mobility 
criterion will be modified in this section to cater for such 
redundancies in all their forms. According to the Kutzbach 
mobility criterion [8], the mobility of a spatial mechanism can 
be written as     

M = 6 (n – g - 1) + ∑
=

g

i
if

1
   (2) 

where n is number of links, g is the number of joints, 

and∑
=

g

i
if

1
 is the total DOF of all the joints. For parallel 

manipulators, Equation (2) can be modified as follows. The 
number of known bodies (platform and base) = 2, the number 
of parallel legs = L, and the DOF of the i-th leg = fli. Thus the 
loop number is L. Therefore, the total degrees of freedom of 
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, and the number of links in the 

i-th leg = fli – 1 (excluding the platform and the base). 
Substituting these values into Equation (2) gives      

M = 6 [{2 + (fl1-1) + (fl2-1) + ..... + (flL-1)} – {fl1 + fl2 + …. 

+ flL} – 1] + ∑
=

L

i
lif

1
                   (3) 

The term (-1) in the first curly brackets, appears L times so 
can be replaced by “- L” and Equation (3) can be written as:      

M = 6(1 - L) + ∑
=

L

i
lif

1
          (4) 

The number 6 in this equation is replaced by the symbol “d”, 
which denotes the dimension of the screw system.  
 
4. Redundant Constraints Integrated Mobility Analysis 

The presence of redundant constraints introduces 
additional terms into the mobility formula of Equation (4). 
These redundant constraints can be divided into two types: (i) 
the common redundant constraint Cc and; (ii) the virtual 
redundant constraint Cv. Also, there is a third condition that 
brings an additional change in the mobility equation and that 
is of linear dependencies of constraints. This condition will 
not be discussed in this paper because it involves a large 
 3
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variation in the linear dependencies. However, it will be the 
subject of a future research activity.  

The common redundant constraint Cc is defined as a 
constraint present in all the legs of the mechanism. The 
additional term, due to the common redundant constraint, is       
 

Cc (L - 1) (5) 
 
where Cc represents the number of common constraints. In the 
case of one common constraint, the number of redundant 
constraint is (L-1), that is, one less than the number of legs 
which is also conceptually verified. The presence of a virtual 
redundant constraint, defined as; a constraint which is present in 
more than one legs but not in all, adds another term to the 
mobility formula. One has to incorporate all the virtual 
redundant constraints separately, since; each virtual redundant 
constraint may be present in two or more than two legs and 
those legs may be different for different virtual constraint. The 
additional term in this case is        

N
C (L -1)  vi vii 1

∑
=

 (6a) 

where, Cvi  is the i-th virtual redundant constraint, Lvi is the total 
number of legs in which that i-th virtual redundant constraint is 
present and N is the total number of virtual redundant 
constraints. It is more convenient to hand each virtual redundant 
constraint separately with the additional term Cvi(Lvi-1). These 
terms (i.e., virtual redundant constraints) can be added to give  

∑
=

N

i 1
vivi   1)-(LC     (6b) 

The modified mobility formula can now be written as 

M = 6(1-L) + ∑
=

L

i
lif

1
+Cc(L-1) + ∑

=

N

i 1
vivi   1)-(LC           (7) 

If the term redundant constraint is to replace the common and 
virtual constraints then the Equation (7) can be written as         

M = 6 (1 - L) + ∑
=

L

i
lif

1
 + Cr                    (8) 

where Cr represents the number of common and virtual 
redundant constraints. The number 6 in Equation (8) is the total 
dimension of the freedom screw system in free space with no 
constraints. If there exist some common constraints, then the 
number 6, will be reduced by that number.  

Let the number of common constraints be 1. This means 
that the dimension of the freedom screw system is 5, that is, it is 
reduced by one dimension. If the dimension “d” is used in the 
equation then the term of the common constraint is omitted from 
Equation (5) and the mobility formula changes. If the number 6, 
in Equation (1), is replaced by “d”, the dimension of the 
freedom screw system, then Equation (1) can be written as    

M = d(1 - L) + ∑
=

L

i
lif

1

+ ∑
=

N

i 1
vivi   1)-(LC              (9) 
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Equations (7) or (9) can be used to evaluate the mobility 
of a parallel platform-type manipulator with or without 
redundant constraints.  

The following section presents an analytical treatment of 
the theory that was presented in previous sections.                
 
5. Examples of Parallel Manipulators  

The freedom provided by a joint in the leg of a parallel 
manipulator can be written in the form of a twist screw on the 
basis of the geometric arrangement of that joint in the 
mechanism. The twist screw of each joint of the leg must be 
linearly independent of others in that leg. And we know that 
the constraint screws of each leg are the reciprocal screws to 
the freedom screws of that leg. Three typical parallel 
mechanisms are chosen for case studies to illustrate the 
implementation of the theoretical analysis presented in the 
previous sections. The mechanisms chosen in these examples 
possess redundant constraints including the case of constraint 
which is common to all the legs and in some cases this 
commonality is not among all legs. It thus proves from a 
different angle the results that are proven by a large number of 
researchers.  
 
Example 1. A platform-type manipulator with three 
symmetric legs and five revolute joints in each leg is shown in 
Fig. 1. The three legs (legs 1, 2 and 3) are attached at 120 
degree intervals and rotated about the centre vertical line 
joining the base and the platform.  

The joint screw of leg 1 can be written as   
 

$11 = [0     0     1     p11   q11   0]T        (10a) 

$12 = [0     0     1     p12   q12   0]T       (10b) 

$13 = [1     0     0     0      0     0]T       (10c) 

$14 = [l14   m14  n14  0      0     0]T       (10d) 

and 
$15 = [l15   m15  n15  0      0     0]T       (10e) 

 
Fig. 1. Platform-Type Mechanism with Five Revolute Joints 
in each of the Three Legs.  
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where the subscript i in $ij indicates the leg number and the 
subscript j refers to the joint number in the sequence starting 
from the base to the platform.  

Since there is symmetry in the three legs then the joint 
screws for legs 2 and 3 can be obtained from a simple 
transformation of the screws for leg 1. Since there are five 
linearly independent joints in each leg, thus, each leg contains 
one constraint screw, as the reciprocal screw to the five twist 
screws. The legs being symmetric about the vertical axis, the 
simple transformation shows that the above reciprocal screw is 
common to all the three legs and can be written as        

r
l1$  = r

l 2$  = r
l3$  = [0   0   1   0   0   0]T           (11) 

where the subscript 1 in r
l1$  indicates the reciprocal screw to leg 

1.  There are a total of three constraints of the mechanism which 
are the same constraint screws of the three legs then the 
redundant constraints Cr = 2. This mechanism has one common 
constraint and no virtual constraints. Therefore, the degrees of 
freedom of the platform, from Equation (7), are     

M = 6(1 - L) + ∑
=

L

i
lif

1
 + Cc (L - 1) + 

N

i 1

C (L -1)  vi vi=
∑   (12a) 

Substituting the values into this equation gives 
 

M = 6(1 - 3) + 15 + 1(3 – 1) + 0 = 5         (12b) 
 

This result shows the effect of the common constraint. If 
the Kutzbach mobility criterion were used in their original form 
the answer for the mobility of the platform would be 3. Due to 
the common redundant constraints which are two that 2 more 
freedoms are obtained and, Equation (12b) gives the correct 
answer for the DOF which is 5.  
 
Example 2. A spherical mechanism with three legs and three 
joints in each leg is shown in Fig. 2. The three legs (legs 1, 2 
and 3) are attached at 120 degree intervals and rotated about the 
centre vertical line joining the base and the platform.  
The joint axes of the joints in each leg are coincident with the 
centre, point O, as shown in Fig. 2. 
 

 
Fig. 2. A Spherical Mechanism Possessing Three Legs.  
4 Copyright © 2008 by ASME
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If the fixed reference frame is located at the intersection 

point of the joint axes then the twist screws of the joints of the 
three legs can be written in a straightforward manner. The 
twist screws for leg 1, are 
 

$11 = [1     0     0  ;   0    0    0]T        (13a) 
$12 = [0     1     0  ;   0    0    0]T        (13b) 

and 
$13 = [0     0     1  ;   0    0    0]T        (13c) 

 
Since the three legs are symmetric then the twist screws of the 
other two legs will be similar. The three reciprocal screws to 
the three twist screws can be written as   
 

r
11$  = [1   0   0   0   0   0]T       (14a) 
r
12$  = [0   1   0   0   0   0]T       (14b) 

and 
r
13$  = [0   0   1   0   0   0]T       (14c) 

where the 1 in r
12$  indicates the second reciprocal screw of 

leg 1.  From Fig. 1, it can be verified that the three reciprocal 
screws are common to all three legs; i.e., 
 

r
11$  = r

21$  = r
31$   = [1   0   0   0   0   0]T       (15a) 

r
12$  = r

22$  = r
32$   = [0   1   0   0   0   0]T      (15b) 

and 

r
13$  = r

23$  = r
33$   = [0   0   1   0   0   0]T       (15c) 

 
Applying Equation (7), the degrees of freedom of the 
mechanism can be written as        

M = 6(1 - L) + ∑
=

L

i
lif

1
+Cc(L-1) + ∑

=

N

i 1
vivi   1)-(LC       (16a) 

Substituting the values into this equation gives 
 

M = 6(1 - 3) + 9 + 3(3 – 1) + 0 = 3        (16b) 
From Equation (7), the degrees of freedom of the mechanism 
can be written as                    

M = d(1 - L) + ∑
=

L

i
lif

1

+ ∑
=

N

i 1
vivi   1)-(LC       (17a) 

Substituting the values into this equation gives 
 

M = 3(1 – 3) + 9 + 0 = 3       (17b) 
 
Example 3. Consider the four leg mechanism shown in Fig. 3. 
Each leg is an RRR configuration of joints. With reference to 
leg1, legs 2, 3 and 4 are attached at an interval of 90, 180 and 
270 degrees about the centre line connecting the base and the 
platform. All three joint axes of leg 1 are parallel to the X-
axis. The orientation of the joints of the remaining three legs 
can then be easily ascertained.   
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Fig. 3.  The Four Leg RRR Platform-Type Mechanism.   
 
The twist screws of leg 1 are  
 

$11 = [1     0     0  ;   0    0    b]T        (18a) 
$12 = [1     0     0  ;   0    c    e]T        (18b) 

and 
$13 = [1     0     0  ;   0    h    a]T        (18c) 

 
The twist screws of leg 2 are 
 

$21 = [0     1     0  ;   0    0    b]T        (19a) 
$22 = [0     1     0  ;   -c    0    e]T        (19b) 

and 
$23 = [0     1     0  ;   -h    0    a]T        (19c) 

 
The twist screws of leg 3 are 
 

$31 = [1     0     0  ;   0    0    -b]T        (20a) 
$32 = [1     0     0  ;   0    c    -e]T        (20b) 

and 
$33 = [1     0     0  ;   0    h    -a]T        (20c) 

 
The twist screws of leg 4 are     

$41 = [0     1     0  ;   0    0    -b]T        (21a) 
$42 = [0     1     0  ;   -c    0    -e]T        (21b) 

and 
$43 = [0     1     0  ;   -h    0    -a]T        (21c) 

 
The constraint screws of leg 1 are 
 

1
1$r

l = [0     0     0  ;   0    0    1]T        (22a) 
2
1$r

l = [0     0     0  ;   0    1    0]T        (22b) 
and 

3
1$r

l = [1     0     0  ;   0    0    0]T        (22c) 
 

5 Copyright © 2008 by ASME
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The constraint screws of leg 2 are 
 

1
2$r

l = [0     0     0  ;   0    0    1]T        (23a) 
2
2$r

l = [0     0     0  ;   1    0    0]T        (23b) 
and 

3
2$r

l = [0     1     0  ;   0    0    0]T        (23c) 
 
The constraint screws of leg 3 are 
 

1
3$r

l = [0     0     0  ;   0    0    1]T        (24a) 
2
3$r

l = [0     0     0  ;   0    1    0]T        (24b) 
and 

3
3$r

l = [1     0     0  ;   0    0    0]T        (24c) 
 
The constraint screws of leg 4 are 
 

1
4$r

l = [0     0     0  ;   0    0    1]T        (25a) 
2
4$r

l = [0     0     0  ;   1    0    0]T        (25b) 
and 

3
4$r

l = [0     1     0  ;   0    0    0]T        (25c) 

where, the number 2 in 2
1$r

l  indicates the second reciprocal 
(constraint) screw of leg 1.       

Observe from Eqs. (22)-(25) of reciprocal screws, that, 
there is one screw which is common to all four equations, that 
is, Eqs. (22a), (23a), (24a), and (25a), are the same. Similarly, 
the second and third screws of leg 1 and leg 3 are the same 
and can therefore be considered as virtual constraints. Also, 
the second and third constraint screws of legs 2 and 4 are the 
same.  

Substituting Equations (18)-(25) into Equation. (7), the 
DOF of the mechanism can be written as:       

M = 6(1 - L) + ∑
=

L

i
lif

1
+Cc(L-1) + ∑

=

N

i 1
vivi   1)-(LC       

     (26a) 
Substituting the known values into this equation gives 
 
M = 6(1 - 4) + 12 + 1(4 – 1) + [(2-1)+(2-1)+(2-1)+(2-1)] = 1 

     (26b) 
Therefore, the DOF of the platform of the mechanism is one. 

Note that in the last entry of Equation (26a) each virtual 
constraint is handled separately. Therefore, there are four 
similar entries of “(2-1)”, representing one virtual constraint in 
two legs separately. So in this case the limits of i goes from 1 
to 4. Equation (9) will also give the same result; i.e:    

M = d(1 - L) + ∑
=

L

i
lif

1
+ ∑

=

N

i 1
vivi   1)-(LC       (27a) 

Substituting the known values into Equation (27a) gives 
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M = 5(1 – 4) + 12 + [(2-1)+ (2-1)+ (2-1)+ (2-1)] = 1 
     (27b) 

This gives the same result to that of Equation [26b]. 
 
6. Number Synthesis of Parallel manipulators 

Given the limits on the mobility of the platform and the 
number of legs, the purpose here is not to enumerate all possible 
platform type mechanisms but to devise a simple strategy for the 
enumeration. This strategy can then be applied to the 
enumeration of all mechanisms within the given limits of the 
number of legs and the number of degrees of freedoms of the 
platform. A systematic approach, with the help of an example is 
applied to enumerate all possible mechanisms within the design 
constraints. 
 
6.1 Design Example 

Let the mobility of the platform M = 3, and the number of 
legs L = 3. The cases with no redundant constraints to the case 
of maximum possible redundant constraints are dealt for the 
exhaustive enumeration within the design limits. The trivial case 
with no redundant constraints agrees to the Kutzbach criteria. In 
the example, with M = 3 and L = 3, the extreme limits are from 
zero redundant constraint (15 single DOF joints), to a maximum 
possible of 6 redundant constraints (9 single DOF joints). 
(i)  No Redundant Constraints.  Applying Equation (7), the 
number of single DOF joints, ∑ fi = 15. Note that this is the 
trivial case [8] where the mechanism obeys the Kutzbach 
criteria. The type of joints and their arrangement is generalized 
to be such that no special geometries are encountered. The 
distribution of the 15 joints in the three legs also follows a set 
rule. This is also based on Equation (7), applied on two legs and 
single leg cases separately. It may be noted that Equation (7) is 
not only applied on the complete mechanism with L legs, but it 
must be applied to all possible number of combination of legs 
called kinematics-sub-chains (KSC) here.  

Applying Equation (7) on one leg (a serial mechanism with 
3 freedom) gives us ∑ fi =3. Thus, as obvious, any one leg 
should have minimum 3 linearly independent joints. Again 
using Equation. (7) on 2 leg case with M=3, the number of 
single DOF joints i.e., ∑ fi  equals 9. For three legs we have 
already calculated the number of joints to be 15. Arranging the 
number of joints in the three parallel legs, the possible 
mechanisms with mobility M = 3, possessing 3 legs are as 
shown in Table 1.             
 
Mechanisim-I (3  6  6) 
Mechanisim-II (4  5  6) 
Mechanisim-III (5  5  5)              
Table 1.  The Number of Possible Mechanisms possessing 3 

legs considering freedoms 
The number of entries in each row in Table 1 represents 

three legs in the respective mechanism. Each entry in every row 
represents the number of freedoms of that leg. In the spatial 
case, the number of freedoms and constraints of a leg or of any 
KSC or the whole mechanism should add up to 6. If the 
Copyright © 2008 by ASME
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constraints of the legs are considered, instead of the degrees of 
freedoms, then Table 1 can be written as Table 2.  
 
Mechanisim-I (3  0  0) 
Mechanisim-II (2  1  0) 
Mechanisim-III (1  1  1)     
Table 2.  The Number of Possible Mechanisms possessing 3 

legs considering constraints          
The number of entries in each row, in Table 2, represents 

the number of legs (which are three in each case). In this case, 
unlike Table 1, each entry in every row represents the number 
of constraints of that leg. The total number of constraints in 
every mechanism in this example is 3. Since freedoms plus 
constraints should be equal to 6 then the freedoms at the 
platform are also 3. The important point to note here is, that, 
the constraints of every leg are linearly independent of the 
constraints of other legs individually. With the above 
procedure, the following proposition is suggested. 
 
Proposition I. In a platform type mechanism of mobility M at 
the platform, every sub-mechanism or kinematic sub-chain 
(KSC) must be capable of providing at least M, DOF to the 
platform. 

In the three mechanisms presented in Table 2 there are 
three constraints at the platform. For example in the case (3  0  
0), all the 3 constraints of the mechanism are in leg 1, and the 
other two legs give no constraints. In case of (1  1  1), each leg 
gives one constraint at the platform and similarly case (2  1  0) 
shows that there are two constraints because of leg 1 and 1 
constraint by leg 2, and the third leg does not give any 
constraint at the platform. And all these constraints are 
linearly independent of each other. By considering the 
freedoms of the legs and observing Table 1, another 
proposition can be put forth:      
Proposition II. In the absence of redundant constraints, a 
spatial KC (the whole mechanism of Figure-1) with mobility 
M, in which every KSC (any leg or combination of legs) has 
mobility M, must contain all KSCs which possess minimum of 
M+6 freedoms. 

However; in the presence of redundant constraints in the 
legs the formula is to be described in such a way so as to cater 
for the redundant constraints. The cases of one or more 
redundant constraints are discussed in the subsequent text.  
(ii)  One Redundant Constraint.  A parallel manipulator is 
said to have one redundant constraint if there is one 
constraint screw of any one of the legs which is same as any 
one (only one) constraint screw of any other leg. More than 
one redundant constraint screws are handled in the same 
manner. 

Most of the practical mechanisms do possess special 
geometries and thus redundant constraints are present in the 
legs of the mechanisms. The mobility of the platform in the 
presence of redundant constraints increases by the terms 
already discussed above.  

In parallel legged mechanisms the redundant constraints 
occur mostly due to symmetries in leg designs. The 
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symmetries in the legs are preferred so as to avoid unnecessary 
additional manufacturing costs. Also, since the presence of 
redundant constraint increases the DOF of the platform, they are 
a welcome feature.  
A Design with One Redundant Constraint.  With one 
redundant constraint in Equation (7), that is Cr =1, and M = 3, 
the number of single DOF joints reduce by one and we get 

∑
=

L

i
lif

1

=14. In this case there are total of 4 constraints but one 

of these is a redundant constraint. The inclusion of this 
redundant constraint with all possibilities in the legs gives us 
three additional mechanisms. Note that the redundant 
constraints are to be added in already existing mechanisms of 
Table 2, which has no redundant constraints. The additional 
mechanisms are: 
Mechanism I    (3   1   0)  redundant constraint between leg 1 
and leg 2.  
Mechanism II   (2   2   0) redundant constraint between leg 1 
and leg 2.    
Mechanism III  (2   1   1) redundant constraint between leg 1 
and leg 2.    
 
(iii)  Two Redundant Constraints.  Substituting Cr = 2 and M 

= 3 into Equation (7) gives ∑
=

L

i
lif

1

=13. Out of the total five 

constraints, shown in the following mechanisms, only three are 
independent. The distribution of the redundant constraints in the 
mechanisms of Table 2 gives the additional mechanisms: 
Mechanism I (3  2  0). In this mechanism, two independent 
constraints of leg 2, are common to two independent constraints 
of leg 1. 
Mechanism II (3  1  1). In this mechanism, there can be two 
possibilities. First, the only constraint of leg 2 is common to a 
constraint of leg1, and the constraint of leg 3, is common to the 
other constraint of leg 1. Second; there is common constraint in 
all the three legs. The structure of the mechanism remains same 
in both the cases, thus it is considered only one mechanism. 
Mechanism III (2  2  1). There are many possibilities of the 
relationships of the redundant constraint in this case. First; one 
constraint of leg 1 is common to one constraint of leg 2, and the 
other constraint of leg 1, is common to the other constraint of 
leg 2. Second; One constraint of leg 1 is common to one 
constraint of leg 2, and the other constraint of leg 1 is common 
to the constraint of leg 3. Third; One constraint of leg 2 is 
common to one constraint of leg 1, and the other constraint of 
leg 2 is common to the only constraint of leg 3. Fourth; There is 
a common constraint to all the three legs. So we have three 
linearly independent constraints including 1 common to all legs. 
 
(iv)  Three Redundant Constraints.  With Cr = 3, and M = 3, 
the number of single DOF joints is 12. With these three 
additional constraints and with the similar explanations of the 
distribution of these additional constraints, the additional 
mechanisms are:     
Copyright © 2008 by ASME
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Mechanism I - (3   3   0), Mechanism II - (3   2   1) and 
Mechanism III - (2   2   2) 
 (iv)  Four Redundant Constraints.  The total number of 
joints in this case reduces from 15 to 11. With four redundant 
constraints the additional mechanisms are tabulated as 
Mechanism I - (3   3   1) and Mechanism II - (3   2   2) 
(v)  Five Redundant Constraints.  In case of five redundant 
constraints there is one additional mechanism; namely 
Mechanism I - (3   3   2).                              
(vi)  Six Redundant Constraints. In case of six redundant 
constraints there is one additional mechanism, which is 
Mechanism I - (3   3   3).                       

One such mechanism is the spherical mechanism that is 
studied in some detail in [2, 28, 5]. It may be noted here that 
the platform-type mechanism with minimum possible number 
of joints possessing 3 degrees of freedom at the platform with 
three legs has three common constraints. Similarly, a 
mechanism with the arrangement (5  5  5) with the mobility 
formula, Equation (5) but with a common constraint will give 
5 degrees of freedom at the platform.  

 
6.2 Total Number of Mechanisms with Platform Mobility 
M = 3 

Summarizing the above tables, the total number of 
platform-type mechanism possessing three legs and three DOF 
at the platform are presented in the following table.   
 
Mechanism I (3   0   0) 
Mechanism II (2   1   0) 
Mechanism III (1   1   1) 
Mechanism IV (3   1   0) 
Mechanism V (2   2   0) 
Mechanism VI  (2   1   1) 
Mechanism VII (3   2   0) 
Mechanism VIII (3   1   1) 
Mechanism IX  (2   2   1) 
Mechanism X (3   3   0) 
Mechanism XI (3   2   1) 
Mechanism XII (2   2   2)  
Mechanism XIII (3   3   1) 
Mechanism XIV  (3   2   2) 
Mechanism XV (3   3   4) 
Mechanism XVI (3   3   3) 
Table - 3 The total number of mechanisms including   
redundant constraints – For M=3 and L=3 

Therefore, for the case of three leg mechanisms with the 
requirement of 3 DOF at the platform, the total number of 
mechanism increases from 3 with no common constraints to 
16 with maximum of six common constraints. The number of 
single DOF joints decreases from 15 to 9.  
 
7. Conclusions  

This research work had three major parts. First, it 
investigated and suggested a mobility formula specific to 
parallel manipulators, incorporating the mobility M, the 
number of parallel legs L, and the number of single DOF 
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joints. It also studied the redundant constraints which were 
either common, or virtual in their relationships with other legs. 
On the basis of these relationships of freedoms and constraints, 
the paper suggested a formula that fully functions in designing 
platform-type mechanism and analyzing/evaluating the mobility 
of an existing mechanism. This was then substantiated with the 
help of numerical examples. Theory of screws was used in the 
analysis of the design examples. Freedom screws and their 
reciprocals (constraints screws) were used in the study of 
mechanisms. Based on the formula developed, the paper 
suggested a number synthesis of parallel manipulators. The 
paper also presented a numerical example of mobility 3 with 
three legs. The aspect which this paper did not touch but is an 
integral part of the subject is that of linear dependence of the 
linear combination of the freedoms (and constraints) of one leg 
to that of the other. This aspect of parallel manipulators will be 
the subject of a future research activity.   
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