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Abstract

The article proposes an analytical method for constructing control function that
ensures transferring linear inhomogeneous stationary system from an initial state
to a given final state. Conditions under which the specified transfer is guaranteed
are presented.
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1 Introduction

Among the most important and difficult aspects of the mathematical control theory
are issues related to the development of methods for building control functions,
wherein solutions of linear stationary systems of ordinary differential equations
connect the given points in phase space. There is a wealth of research papers on the
subject. Most closely this work is connected to the research presented in [1] — [3].
In [1] the linear time-invariant homogeneous system is considered. An algorithm
for constructing the desired control function and the corresponding functions of
phase coordinates presented in [1] is reduced to solving a system of linear algebraic
equations. This system might be of quite high order. Therefore, an implementation
of this algorithm involves computational difficulties. Methods of construction of
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control functions for linear inhomogeneous systems proposed in [2, 3] do not allow,
in general, to find the required functions in an analytical form.
The main difference of the present article from the others is the simplicity of

developed algorithm implementation. The latter is achieved due to the fact that the
desired control function and the corresponding function of phase coordinates are
being found in analytical form.

The object of the study is a controlled system of differential equations

X=Px+Qu+ f, (1.2)
where  x=(x',..,x")", xeR"; u=(',...u)",ueR", te[0,1];
feR", f=(f',.., f")" —constant vector;

P= { pij}, i,j=1...n; Q ={qij}, i=1..n, j=1..r —constant matrices;

rank(B, AB, ..., A"'B) =n. (1.2)

Statement of the problem. Find functions x(t) € C'[0,1] , u(t) eC'[0,1] ,
satisfying system (1.1) and conditions

X(t)) =%, X(T) =% (1.3)

In(1.3) X =(x,..,x7)" isa fixed vector. Let us agree for the mentioned pair

of functions to be called a solution to the problem (1.1), (1.3).
Let us make a change of variables in the system (1.1) replacing the dependent
and independent variables x and t according to the formulas
X=Y+X, t=0+t,. (1.4)
Then in the new variables system (1.1) and boundary conditions (1.3) will be
as follows:

%zPy+Qu+Px0+f, (1.5)
y(0)=0, y(T-t)=x_, (1.6)

where X, =X —X;.

Changing the independent variable ¢ to @ by the formula

%
= 1.7
T (1)
brings the system (1.5) and the boundary conditions (1.6) to the form
dy _
@—P(T to)y+Q(T tO)U+(|- to)(PXo"' f), (1.8)

y0) =0, y@=x, X=X —X,.
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We assume below that the transformations (1.4) and (1.7) are satisfied and the
boundary conditions for system (1.1) after the substitution of variable y by X

have the form of (1.8). Herein we assumeP=PF,, Q=Q,, f=1f, B =P -t,),
Q1=Q(T_t0)7 f1=(T_t0)(PXO+ f)! t=w

2 Problem solution

Theorem. Let the condition (1.2) be fulfilled. Then V x, e R" there exists a

solution to the problem (1.1), (1.3), which can be obtained after solving the
stabilization problem for linear time-dependent system of a special type and the
subsequent solution to the Cauchy problem for the auxiliary linear system of
ordinary differential equations.

Proof. We will look for a function x(t), which is the solution to the considered

problem, in the following form:

x(t)=a(t)+x, . (2.1)
After substituting (2.1) in (1.1) we obtain the system
a=Pa+Qu+Px +f. (2.2)

Let us seek functions a(t)eC'[0,1], u(t) eC'[0,1], satisfying (2.1) and
conditions
a(0)=-x, a()—>0 as t—>1. (2.3)
Replacing the variable t to 7 by the formula

1-t=e"; 7e[0,+x0), (2.4)

where ¢ >0 is a fixed number, converts the system (2.2) and conditions (2.3)
into the form

dc

i

c(r)=a(t(z)), d(r)=u(t(z)), 7e[0,+x0). (2.6)

We will look for functions c(r) e C'[0,%0), d(r) e C'[0,0) that satisfy (2.5)

and conditions

ae ““Pc+oe ™ Qd +ae " Px +ae™ ™ f, (2.5)

c(0)=-x, c(r) >0 as 7 —>o. (2.7)
Let us make the change of variable ¢ according to the formula
c=c® —(Px + f)e™. (2.8)
In that case, system (2.5) and condition (2.7) take on the form
®
dc” _ gerpe ae " Qd — e P(Px, + f), (2.9)

dr
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c(0) = —x +(f +Px). (2.10)

Next, we do the transformation of variable ¢ according to the formula
o = ¢ +%e‘2‘”P(Px1 1) (2.11)
Then the system (2.9) and conditions (2.8) take the form

dC(Z)
dr

=ae“Pc? + e Qd + % ae P?(Px + f), (2.12)

c?(0) =—x, +(f +Px1)—%P(f +Px,). (2.13)
In turn, the transformation
¢® = —%ee"”Pz(le 1) (2.14)
brings the system (2.12) and the initial -condition (2.13) to the form

dc(‘?’)
dr

= e Pc® + ae ™ Qd - % ae P (Px, + f),

c¥(0) = —x + (f +Px1)—%P(f +Px1)+%P2(f +Px,).

Using the latter system, as well as the initial conditions of the system and the
inductive approach, we obtain the transformation

_ o=
C(J*l) :C(J) +%e—1arpj—l(PX1+ f), (215)
J:

that results in the original system (2.5) and the initial condition taking the following
form:

dc(i) ) 1 . )
= ae “Pc) 4+ e Qd + e TVTPI(Px + ), (2.16)
T j!
. j
c(0) :—X1+Z(—1)k+1%Pk‘l(f +Px,). (2.17)
k=1 .

Together with (2.16) let us consider the system

e
dr
We will search for d(c"”,z) =M (z)c'? that provide exponential stability for the

=ae “Pc? + e Qd . (2.18)

system (2.18). Let q;,i=1,...,r be the i-th column of matrix Q. Let us construct a
matrix
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S ={q11---1 Pkiilqu---,qr,---, Pk,—lqr}, (219)

where k;,i=1..,r is the maximum number of columns of the form
a.Pg,....,P?q,, i=1..,r, so that the vectors q,,Pq,,..,P“"q,,....q,,..., P“q,
are linearly independent.

Condition (1.2) implies that the rank of the matrix (2.19) equals n.
Transformation

¢ =gy (2.20)
brings the system (2.18) to the form

g—y = aSPSe 'y +aS Qe d . (2.21)
T

Based on [2], matrices S*PS and S'Q have the form

SPS ={€,,.18 1 Oy 118 o€ 1Oy T
e =(0,...,.1,..,0)" ,, where “1” is in the i-th place and

=

O = (=G = 0 o =0 =00, O)1

i_l
Zglpl , _ngjinqi,i=1,...,r.

i=0

(2.22)

In (2.22) gkjl,j:01__,,|<1_1,__,ng",j:0,___,ki —1 are coefficients of the vector

decomposition into vectors
. . . . B r-1
Plg;j=0,..k-1..,Pig;j=0,.k -1, S'Q ={&, € i€ Y = D K
i=1

Let us consider the stabilization problem for the system

e _e,...8, G, Jae Y, +8ae A i =L,
T C '

Y = O e YEOT 4385 = (0L, O

(2.23)

where “1” is in the i-th place, and g, =(-g, ,,_,,—glf_"l)l_xl; d=(d",...d")".
In scalar form, the system (2.23) can be written as:
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dy; 4

W _ —agle Y +ae™d’,

dr ' '

0 e e

—S =ge 'y, —ag e Yy,

dr

....................................................... (2.24)
k:

y -H —art K- i—2a—aT \ K
= ey g ey

dr

dy

% — ae—a‘r y:ii_l _agll((ii—le—ar yll:I, .
T

Let yL‘; = oy . Using the last equation from (2.24) and the inductive approach,
we obtain
Y =a‘y,

y:ii—l — aki—learl/j(l) + g::—lakiw,

yEI—Z :aki—ZeZOcrl//(Z) +(aki—le2a‘r +ak'_lea‘[g:((:_l)l//(l) + glk(:_zak'l//, (225)

1 a(kDar, (k-1) (k-2) @ ki gL
Y, =ae “y +I‘ki_2(2')l// +o. () +a Qv

After differentiating the last equation (2.25), from the first equation of system
(2.24) we get
w4 gkifl(r)z//(kifl) +otg () =ed"; i=1..,r. (2.26)

In (2.25) 1, _,(7),...n(z) are linear combinations of exponentials with

exponents not greater than (k; —L)ar. Expressions & ,(7),...,&(z) in (2.26)

are linear combinations of exponentials with exponents not greater than zero.
Let
o' =e " d', i=1..r. (2.27)
Let us assume that

K, .
v'=>(6_ ;@ =r W Vri=1.r, (2.28)
=1

where », . j=1..k areselected so that the roots AL, A8 of the equation

A5 4y ATy =0 =L
satisfy the following conditions:
A A, i= ], A <=2na-1 j=1..k, i=L..r. (2.29)
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Using (2.20), (2.25), (2.27), and (2.28), we obtain

d' =5 T 'scV; i=1..r, (2.30)
where 5 = (g, ,(t) =¥ 1r&(2)—7p) + T, IS the matrix from (2.25), i.e.
Y =T v=w%" . ) Sk_.l is the matrix consisting of the
corresponding k. -rows of S Let us substitute (2.30) into the right side of the

system (2.18). Let &d(7), ®(0)=E be the fundamental matrix of the system (2.18)
with a control (2.30). From the conditions (2.29), (2.25), and (2.20) we obtain

|®@)|<Ke ™, 1>na, e[0,x). (2.31)

System (2.16) with the control (2.30) (for the case j=2n) can be represented in
the following form

(2n)
dc —= A(r)c® + %ae-@“ﬂwﬂp2n (Px, + f), (2.32)

where
A(r) = ae P +ae " Qe* 5, T 'S, ;
M (T) — ekaré'ka—lSk—l — (ek10tT5k1TkzlSk—11, . ekraré‘ker:lSk—rl)T .

The solution to the system (2.32) with initial conditions (2.17) (for i=2n) has the
form

¢ (7) = d(r)c®(0) +% P2"(Px, + f)j@(r)d)l(t)e(z””)dt, re[0,0). (2.33)

Conditions (2.25) and (2.31) ensure the existence of a constant K, >0 so that
|lo(@)@™ 1) < Ke %", A>na, re[0,%). (2.34)

Formulas (2.33), (2.34) imply that

Hc(z")(r)u < Ke™*

()| +

A | a2n Oy .nat (2.35)
+5P (F’X1+f)H£e K.e™dt, K, >0, 7 e[0,00).

Based on (2.35) we get

HC(Z”)(T)H < Ke™

@ (0)H+ K,e ™, K,>0, re[0,0). (2.36)
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Condition (2.36) guarantees that
c®(r) >0 as 7 —>o. (2.37)

Substituting the function (2.33) in (2.30) with (i=2n) and moving to the
original variable c(z) using formulas (2.15) (with j=2n), (2.14), (2.11), and
(2.8) will provide a pair of functions c(zr) e C'[0,0), d(r)eC'[0,00) which,
according to (2.17) (with j=2n,2n-1,...,1) and (2.37), satisfy the system (2.5)
and the conditions (2.7). If in the obtained pair of functions we return to the initial
dependent and independent variables using formulas (2.6), (2.4), (2.1), (1.7), (1.4)
and move to the limitas t—1, then we obtain the solution to (1.1), (1.3 ). In turn,
the transition to the initial dependent and independent variables by formulas (1.4)
and (1.7) gives the solution to the original problem (1.1), (1.3). The theorem has
been proved.

Modeling example. Let vector f , matrices P,Q, and system (1.1) with

conditions (1.3) have the form:

01 1 0 1 2yT
{1 oj’Qz[oj’f:(o)’xz(x’x) ’

0 -1
x(O)z(OJ,x(l)ﬂl,><1=(><i,><f),x1=(oj-

Using the developed algorithm, after ordinary calculations we obtain the desired
control function and the corresponding functions of phase coordinates in the
following form:

1
0= ~2a0+%2a,0);
P B o R
A=Ay 2% aap T
+2a(l- t) a (lt);’
(2-3a)
L Loy @ - 2y o
a,(t) = (1) + 2 (1-1) —1 a1y —2 y
eD T Gl g e g o -1
=9 v 2%y aay 5
+2a(l- t) a (]'t);_]_,

(2-3a)
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3a-1 3a-2
1 1 2
1 Lty « -1 2@ty « -1
() =—(-t) +a2(1—t) L2 =L ey @D © 21,
()=~ +o* Q-0 Sty
1
o =—.
4

3 Conclusion

The analysis of the proof shows that the method proposed in the article allows
the possibility of finding the required control in analytical form. This fact
significantly simplifies the implementation of the developed algorithm.
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