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ABSTRACT 
In this study, we propose an optimization strategy to promote a 
better integration of the parallel I/O middleware and parallel file 
systems. We illustrate that a layout-aware optimization strategy 
can improve the performance of current collective I/O in parallel 
I/O system. We present the motivation, prototype design and 
initial verification of the proposed layout-aware optimization 
strategy. The analytical and initial experimental testing results 
demonstrate that the proposed strategy has a potential in 
improving the parallel I/O system performance. 

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Design studies. D.4.3 [File 
Systems Management]: Access methods. 

General Terms 
Performance 

Keywords 
Parallel I/O, MPI I/O, parallel file system, collective I/O, data 
layout, petascale file system 

1. INTRODUCTION 
High-performance computing (HPC) has achieved substantial 
computational performance improvement over the past decades 
[16]. However, while computing resources are making rapid 
progress, there is a significant gap between computational 
capability and data-access capability. Due to this gap, although 
computational resources are available, they have to stay idle 
waiting for data to arrive, which leads to a severe overall 
performance degradation [3][8]. Figure 1 shows the normalized 
performance improvement of the processor, memory (DRAM) 
and disk storage over the past decades. It can be seen that the 
data-access speed has been improving with a much slower pace 
than the computational performance. This slow performance 
improvement of data-access speed is predicted to continue in the 
near future. In the meantime, many HPC applications are 
becoming more and more data intensive [10]. Due to the growing 
performance disparity and emerging data intensive applications, 
I/O has become a critical performance bottleneck in HPC 
systems. 

Parallel I/O middleware and parallel file systems are two critical 
components to provide high data-access bandwidth for HPC 
applications. However, historically, parallel I/O middleware and 
parallel file systems are developed separately with a separated 
modular design. This separation enhances the transparency 
between different parallel I/O components at distinct layers and 
eases the software implementation. Nevertheless, this separation 

can lead to a potential information gap between these two layers 
meantime. For instance, the collective I/O, one of the most 
important optimization strategies in parallel I/O middleware, 
often relies on the logical layout of file accesses from multiple 
processes, other than the physical data layout on file servers, 
because of lacking this information. On the other hand, it is the 
parallel file system that decides the physical layout of data among 
multiple file servers and thus decides the access latency and 
concurrency. There is a disparity between the information 
available in parallel I/O middleware and parallel file systems. In 
this study, we argue that it would be beneficial if we bridge this 
information gap and have a "well-matched" I/O. We propose to 
pass some of the data layout information from parallel file 
systems to parallel I/O middleware and rearrange accesses in a 
way that reduces access latency (exploiting both physical locality 
and parallelism). This strategy optimizes the existing widely used 
two-phase collective I/O design and fosters a better integration of 
parallel I/O middleware and file systems. The recent works in log-
like reordering of accesses and intermediate library of rearranging 
accesses [1][7] have demonstrated the importance and significant 
potential of arranging data accesses in a proper manner. This 
optimization strategy requires understanding file system 
abstractions, gaining knowledge of disk storage, knowing the 
designs of high-level libraries, and making intelligent decisions. It 
is a challenging and tedious task for end-users. There is a research 
need to conduct such an optimization automatically and 
transparently to users. 
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Figure 1. Performance improvement trend of processor, 

memory and disk. 

The rest of this paper is organized as follows. We first briefly 
review collective I/O, one of the most important optimization 
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strategies in parallel I/O systems, and its common two-phase 
implementation in Section 2. Section 3 introduces the basic idea 
of the layout-aware optimization strategy for collective I/O and 
the initial design. Section 4 presents the preliminary experimental 
and analytical results. Section 5 concludes this study and 
discusses ongoing and future work. 

2. BACKGROUND 
Many parallel applications require accessing large arrays from file 
servers and distribute the data among multiple processes in a 
certain manner. Even though each process may access several 
non-contiguous portions of a file, the requests of multiple 
processes are often interleaved and may constitute a large 
contiguous portion of a file together [14]. In order to achieve 
better I/O performance, a group of processes may cooperate with 
each other in reading or writing data in a collective and efficient 
way, which is known as collective I/O. In addition, the collective 
I/O can improve the I/O access efficiency by filtering the 
overlapping and redundant requests from multiple processes. 
Furthermore, it can reduce the number of file system calls (and 
thus the overhead involved) by combining and merging small 
requests. 
The collective I/O is a general idea that exploits the correlations 
among accesses from multiple processes of a parallel application 
and optimizes its I/O accesses. It can be applied at many levels, 
such as disk level [6], server level [12] or client level [14]. In this 
study, we focus on parallel I/O middleware and the integration 
with parallel file systems. The collective I/O has been well 
implemented in the most popular MPI-IO middleware 
implementation, ROMIO [14]. If the user chooses collective I/O 
semantics and provides the entire access information of a group of 
processes to the underlying MPI-IO middleware, the MPI-IO 
implementation can improve I/O performance considerably by 
combining the requests of different processes and servicing the 
combined aggregate requests.  
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Figure 2. Collective I/O and two-phase implementation 

The most popular method of implementing collective I/O is a two-
phase strategy [11] (and its extension - a generalized two-phase 
I/O [15]). This strategy carries out collective I/O with separated 
I/O phase and data exchange phase (or communication phase). 
Figure 2 shows an example of two-phase collective I/O read. In 
this example, we assume all processes participate in the I/O phase 
(the processes participating I/O phase are called aggregators and 
the number of aggregators can be specified by users) and each 
process (also aggregator) has sufficient memory for temporary 
buffer. The two-phase I/O implementation has a first-round 

communication to let each aggregator knows the aggregated span 
of the I/O requests of all processes. The implementation then 
partitions the aggregated span of requests into multiple file 
domains with each aggregator responsible for carrying out I/O 
requests for its own file domain by using its temporary buffer. 
This phase is called the I/O phase. In the data exchange phase, 
each aggregator sends data to the requesting processes, and each 
process receives its required data from corresponding aggregators 
that fetch the data on behalf of it. Note that if the temporary 
buffer is limited, we may need multiple times of two-phase I/O to 
accomplish one collective I/O operation [14]. 

3. LAYOUT-AWARE OPTIMIZAITON 
STRATEGY FOR COLLECTIVE I/O 
As shown in Figure 2 and explained in the previous section, a 
separated design of parallel I/O middleware and parallel file 
systems makes the current collective I/O strategy and 
implementation unaware of the physical layout of data on file 
servers and disks. The calculation of the span of the combined I/O 
requests and the creation of the file domains are based on logical 
partitions. Even though the file domain that each aggregator is 
responsible for carrying out I/O requests is logically contiguous, it 
does not translate to physically contiguous, as which is decided 
by the layout strategy of the underlying parallel file systems. The 
separated design of parallel I/O middleware and file systems and 
the information gap between them may limit the performance 
improvement potential of collective I/O. 
We argue that it would be beneficial if we bridge the information 
gap between parallel I/O middleware and parallel file systems. 
Specifically, in this study, we propose to incorporate the physical 
layouts of data distribution among servers, the information from 
parallel file systems, with parallel I/O middleware, and rearrange 
file domain's partition and the requests from aggregators in a 
fashion that matches with the physical layout on servers. In 
addition, with the support of noncontiguous file system calls in 
advanced parallel file system such as in PVFS2 [9], we are able to 
keep the number of file system calls and overhead in constant. We 
call this strategy as a layout-aware optimization strategy for 
collective I/O. In essence, this proposed strategy fosters a better 
integration of the parallel I/O middleware and parallel file 
systems by revealing certain information with each other. As 
demonstrated by initial testing and analysis, this approach could 
be beneficial in improving the overall parallel I/O system 
performance.  
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Figure 3. Layout-aware optimization for collective I/O 
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Figure 3 illustrates the basic idea of such a layout-aware 
optimization strategy for collective I/O. In this figure, we 
illustrate the details of the previous collective I/O operation 
example and the physical layout of requested data (distinguished 
by the logical position, i.e. LB#) on file servers. The file server 
number, i.e. S#, represents which file server the requested data 
reside on. Since the proposed layout-aware optimization strategy 
focuses on optimizing the I/O phase of the two-phase I/O strategy, 
we omit the details of communication phase here. The data layout 
strategy of file servers is assumed to be the most common round-
robin mechanism. The proposed layout-aware optimization 
strategy rearranges the partitions of file domains and the requests 
of aggregators in a way that the requests are physically 
contiguous as much as possible, as shown in Figure 3. This 
example demonstrates that we rearrange requests of aggregators 
to have each aggregator accesses data on file servers 
contiguously, and multiple aggregators can access file servers 
concurrently. We assume that the data layout information can be 
obtained from the API provided by the underlying parallel file 
systems. It is not unusual that parallel file systems provide the 
interface to inquire the data layout on file servers, such as in 
PVFS2 [2][9]. Note that the rearrangement here is to change the 
requests that each aggregator carries out on behalf of the 
processes, or the way the aggregators access data. The 
rearrangement does not exchange data themselves among 
aggregators.  

4. PRELIMINARY EXPERIMENTAL 
TESTING AND ANALYSIS 
In this section, we present the results of several initial tests by 
manually bridging the information gap and providing the layout 
information and rearranging aggregators' accesses between 
parallel I/O middleware and parallel file systems. This method 
can be effective for us to measure the performance improvement 
of the proposed layout-aware optimization and analyze its 
potential. We first briefly describe the experimental environment 
and then present the preliminary testing and analytical results 
with two benchmarks.  

4.1 Experimental Setup 
Our experiments were conducted on a 65-node Sun Fire Linux-
based cluster. This cluster is composed of one Sun Fire X4240 
head node, with dual 2.7 GHz Opteron quad-core processors and 
8GB memory, and 64 Sun Fire X2200 compute nodes with dual 
2.3GHz Opteron quad-core processors and 8GB memory. The 
head node has 12 500GB 7.2K-RPM SATA-II drives configured 
as RAID-5 system. Each compute node has a 250GB 7.2K-RPM 
SATA hard drive. The experiments were tested on MPICH2-
1.0.5p3 release and PVFS 2.8.1 file system.  

4.2 Preliminary Results and Analysis 
4.2.1 Synthetic Benchmark 
We have coded a synthetic benchmark in which each process does 
strided reads but the aggregated requests of all processes are 
sequential reads over the file. We have performed a series of tests 
on the Sun Fire cluster to compare the performance of rearranged 
layout-aware accesses and the original one. The total size of the 
data accessed by all processes are 128MB, 320MB, 640MB, 
800MB and 4000MB respectively. The results are shown in 

Figure 4. It can be observed that the optimization strategy with 
layout awareness could have a considerable impact on the 
performance of parallel I/O system. The performance variation 
and the potential performance improvement could be up to 48%. 
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Figure 4. Potential of layout-aware optimization with 
synthetic benchmark testing 

4.2.2 IOR Benchmark 
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(a) Random accesses  
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Figure 5. Potential of layout-aware optimization with IOR 
benchmark testing 
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Figure 5 reports the testing results with IOR-2.10.2 benchmark 
from Lawrence Livermore National Laboratory [4]. We 
performed both interleaved reads/writes and random reads/writes 
tests, and varied the file size. As can be seen from these results, 
the layout-aware optimization strategy can affect the IOR 
benchmark testing performance considerably. The layout-aware 
strategy can potentially improve the I/O bandwidth up to 86%, 
45%, 113% and 35% for random reads, random writes, sequential 
reads and sequential writes respectively. The average potential 
improvement of layout-aware strategy with different file sizes is 
46%, 26%, 49% and 24% for random reads, random writes, 
sequential reads and sequential writes respectively. 

5. CONCLUSION AND FUTURE WORK 
Parallel I/O middleware and parallel file systems are fundamental 
and critical components for data-intensive and high-performance 
computing applications. While both of the technologies have 
made their success, little has been done to investigate a better 
integration of these two parallel I/O subsystems and to improve 
the overall performance. Collective I/O is one of the most 
important optimization strategies for parallel I/O middleware; 
however, with the separation of parallel I/O middleware and 
parallel file systems, the current collective I/O strategy may not 
produce the optimal performance improvement. In this study, we 
propose to reveal certain information between parallel I/O 
middleware and file systems to improve the overall I/O 
performance. Specially, we propose to incorporate layout 
information with collective I/O to improve the performance gain 
of collective I/O optimization. Although the current study and 
testing results are preliminary, they have demonstrated that 
layout-aware optimization can improve the collective I/O 
performance considerably. We will continue this research 
direction and carry out the prototype system implementation and 
evaluation. We are also actively working on modeling and 
dynamically choosing optimal data layout for HPC applications 
depending on the specific application features [13]. Recent works 
in a replicated storage system such as [5] demonstrate a great 
potential in improving I/O throughput and data durability and 
availability by utilizing idle storage. We plan to explore data 
layout optimizations in such replicated storage systems too.  
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