
A Layout-aware Optimization Strategy for Collective I/O
Yong Chen 1 Huaiming Song 1 Rajeev Thakur 2 Xian-He Sun 1

1 Department of Computer Science, Illinois Institute of Technology
2 Mathematics and Computer Science, Argonne National Laboratory

{yong.chen@iit.edu, huaiming.song@iit.edu, thakur@mcs.anl.gov, sun@iit.edu}

ABSTRACT
In this study, we propose an optimization strategy to promote a
better integration of the parallel I/O middleware and parallel file
systems. We illustrate that a layout-aware optimization strategy
can improve the performance of current collective I/O in parallel
I/O system. We present the motivation, prototype design and
initial verification of the proposed layout-aware optimization
strategy. The analytical and initial experimental testing results
demonstrate that the proposed strategy has a potential in
improving the parallel I/O system performance.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design studies. D.4.3 [File
Systems Management]: Access methods.

General Terms
Performance

Keywords
Parallel I/O, MPI I/O, parallel file system, collective I/O, data
layout, petascale file system

1. INTRODUCTION
High-performance computing (HPC) has achieved substantial
computational performance improvement over the past decades
[16]. However, while computing resources are making rapid
progress, there is a significant gap between computational
capability and data-access capability. Due to this gap, although
computational resources are available, they have to stay idle
waiting for data to arrive, which leads to a severe overall
performance degradation [3][8]. Figure 1 shows the normalized
performance improvement of the processor, memory (DRAM)
and disk storage over the past decades. It can be seen that the
data-access speed has been improving with a much slower pace
than the computational performance. This slow performance
improvement of data-access speed is predicted to continue in the
near future. In the meantime, many HPC applications are
becoming more and more data intensive [10]. Due to the growing
performance disparity and emerging data intensive applications,
I/O has become a critical performance bottleneck in HPC
systems.

Parallel I/O middleware and parallel file systems are two critical
components to provide high data-access bandwidth for HPC
applications. However, historically, parallel I/O middleware and
parallel file systems are developed separately with a separated
modular design. This separation enhances the transparency
between different parallel I/O components at distinct layers and
eases the software implementation. Nevertheless, this separation

can lead to a potential information gap between these two layers
meantime. For instance, the collective I/O, one of the most
important optimization strategies in parallel I/O middleware,
often relies on the logical layout of file accesses from multiple
processes, other than the physical data layout on file servers,
because of lacking this information. On the other hand, it is the
parallel file system that decides the physical layout of data among
multiple file servers and thus decides the access latency and
concurrency. There is a disparity between the information
available in parallel I/O middleware and parallel file systems. In
this study, we argue that it would be beneficial if we bridge this
information gap and have a "well-matched" I/O. We propose to
pass some of the data layout information from parallel file
systems to parallel I/O middleware and rearrange accesses in a
way that reduces access latency (exploiting both physical locality
and parallelism). This strategy optimizes the existing widely used
two-phase collective I/O design and fosters a better integration of
parallel I/O middleware and file systems. The recent works in log-
like reordering of accesses and intermediate library of rearranging
accesses [1][7] have demonstrated the importance and significant
potential of arranging data accesses in a proper manner. This
optimization strategy requires understanding file system
abstractions, gaining knowledge of disk storage, knowing the
designs of high-level libraries, and making intelligent decisions. It
is a challenging and tedious task for end-users. There is a research
need to conduct such an optimization automatically and
transparently to users.

1

10

100

1000

10000

1980 1985 1990 1995 2000 2005 2010
Year

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

Processor Memory Disk

Memory

Disk

Procesor
(With multicore)

Gap

1

10

100

1000

10000

1980 1985 1990 1995 2000 2005 2010
Year

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

Processor Memory Disk

Memory

Disk

Procesor
(With multicore)

Gap

Figure 1. Performance improvement trend of processor,

memory and disk.

The rest of this paper is organized as follows. We first briefly
review collective I/O, one of the most important optimization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPDC'10, June 20–25, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-60558-942-8/10/06 ...$10.00.

360

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357402496?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

strategies in parallel I/O systems, and its common two-phase
implementation in Section 2. Section 3 introduces the basic idea
of the layout-aware optimization strategy for collective I/O and
the initial design. Section 4 presents the preliminary experimental
and analytical results. Section 5 concludes this study and
discusses ongoing and future work.

2. BACKGROUND
Many parallel applications require accessing large arrays from file
servers and distribute the data among multiple processes in a
certain manner. Even though each process may access several
non-contiguous portions of a file, the requests of multiple
processes are often interleaved and may constitute a large
contiguous portion of a file together [14]. In order to achieve
better I/O performance, a group of processes may cooperate with
each other in reading or writing data in a collective and efficient
way, which is known as collective I/O. In addition, the collective
I/O can improve the I/O access efficiency by filtering the
overlapping and redundant requests from multiple processes.
Furthermore, it can reduce the number of file system calls (and
thus the overhead involved) by combining and merging small
requests.
The collective I/O is a general idea that exploits the correlations
among accesses from multiple processes of a parallel application
and optimizes its I/O accesses. It can be applied at many levels,
such as disk level [6], server level [12] or client level [14]. In this
study, we focus on parallel I/O middleware and the integration
with parallel file systems. The collective I/O has been well
implemented in the most popular MPI-IO middleware
implementation, ROMIO [14]. If the user chooses collective I/O
semantics and provides the entire access information of a group of
processes to the underlying MPI-IO middleware, the MPI-IO
implementation can improve I/O performance considerably by
combining the requests of different processes and servicing the
combined aggregate requests.

File domains

Aggregator 0 Aggregator 1 Aggregator 2 Aggregator 3

Interconnect

0 1 2 3

Process 2Process 1Process 0 Process 3

I/O phase

Comm. phase

File servers

Figure 2. Collective I/O and two-phase implementation

The most popular method of implementing collective I/O is a two-
phase strategy [11] (and its extension - a generalized two-phase
I/O [15]). This strategy carries out collective I/O with separated
I/O phase and data exchange phase (or communication phase).
Figure 2 shows an example of two-phase collective I/O read. In
this example, we assume all processes participate in the I/O phase
(the processes participating I/O phase are called aggregators and
the number of aggregators can be specified by users) and each
process (also aggregator) has sufficient memory for temporary
buffer. The two-phase I/O implementation has a first-round

communication to let each aggregator knows the aggregated span
of the I/O requests of all processes. The implementation then
partitions the aggregated span of requests into multiple file
domains with each aggregator responsible for carrying out I/O
requests for its own file domain by using its temporary buffer.
This phase is called the I/O phase. In the data exchange phase,
each aggregator sends data to the requesting processes, and each
process receives its required data from corresponding aggregators
that fetch the data on behalf of it. Note that if the temporary
buffer is limited, we may need multiple times of two-phase I/O to
accomplish one collective I/O operation [14].

3. LAYOUT-AWARE OPTIMIZAITON
STRATEGY FOR COLLECTIVE I/O
As shown in Figure 2 and explained in the previous section, a
separated design of parallel I/O middleware and parallel file
systems makes the current collective I/O strategy and
implementation unaware of the physical layout of data on file
servers and disks. The calculation of the span of the combined I/O
requests and the creation of the file domains are based on logical
partitions. Even though the file domain that each aggregator is
responsible for carrying out I/O requests is logically contiguous, it
does not translate to physically contiguous, as which is decided
by the layout strategy of the underlying parallel file systems. The
separated design of parallel I/O middleware and file systems and
the information gap between them may limit the performance
improvement potential of collective I/O.
We argue that it would be beneficial if we bridge the information
gap between parallel I/O middleware and parallel file systems.
Specifically, in this study, we propose to incorporate the physical
layouts of data distribution among servers, the information from
parallel file systems, with parallel I/O middleware, and rearrange
file domain's partition and the requests from aggregators in a
fashion that matches with the physical layout on servers. In
addition, with the support of noncontiguous file system calls in
advanced parallel file system such as in PVFS2 [9], we are able to
keep the number of file system calls and overhead in constant. We
call this strategy as a layout-aware optimization strategy for
collective I/O. In essence, this proposed strategy fosters a better
integration of the parallel I/O middleware and parallel file
systems by revealing certain information with each other. As
demonstrated by initial testing and analysis, this approach could
be beneficial in improving the overall parallel I/O system
performance.

0 1 2 3 0 1 2 3 0 1 2 3File domains
(Logical)

LB# 0 1 2 3 4 5 6 7 8 9 10 11

S#

Aggregator 0 Aggregator 1 Aggregator 2 Aggregator 3

Interconnect

0 1 2 3

LB0

LB4

LB8

LB1

LB5

LB9

LB2

LB6

10

LB3

LB7

11

ProcessesProcessesProcessesProcessesProcesses

I/O phase

Comm. phase

File servers
(Physical)

Figure 3. Layout-aware optimization for collective I/O

361

Figure 3 illustrates the basic idea of such a layout-aware
optimization strategy for collective I/O. In this figure, we
illustrate the details of the previous collective I/O operation
example and the physical layout of requested data (distinguished
by the logical position, i.e. LB#) on file servers. The file server
number, i.e. S#, represents which file server the requested data
reside on. Since the proposed layout-aware optimization strategy
focuses on optimizing the I/O phase of the two-phase I/O strategy,
we omit the details of communication phase here. The data layout
strategy of file servers is assumed to be the most common round-
robin mechanism. The proposed layout-aware optimization
strategy rearranges the partitions of file domains and the requests
of aggregators in a way that the requests are physically
contiguous as much as possible, as shown in Figure 3. This
example demonstrates that we rearrange requests of aggregators
to have each aggregator accesses data on file servers
contiguously, and multiple aggregators can access file servers
concurrently. We assume that the data layout information can be
obtained from the API provided by the underlying parallel file
systems. It is not unusual that parallel file systems provide the
interface to inquire the data layout on file servers, such as in
PVFS2 [2][9]. Note that the rearrangement here is to change the
requests that each aggregator carries out on behalf of the
processes, or the way the aggregators access data. The
rearrangement does not exchange data themselves among
aggregators.

4. PRELIMINARY EXPERIMENTAL
TESTING AND ANALYSIS
In this section, we present the results of several initial tests by
manually bridging the information gap and providing the layout
information and rearranging aggregators' accesses between
parallel I/O middleware and parallel file systems. This method
can be effective for us to measure the performance improvement
of the proposed layout-aware optimization and analyze its
potential. We first briefly describe the experimental environment
and then present the preliminary testing and analytical results
with two benchmarks.

4.1 Experimental Setup
Our experiments were conducted on a 65-node Sun Fire Linux-
based cluster. This cluster is composed of one Sun Fire X4240
head node, with dual 2.7 GHz Opteron quad-core processors and
8GB memory, and 64 Sun Fire X2200 compute nodes with dual
2.3GHz Opteron quad-core processors and 8GB memory. The
head node has 12 500GB 7.2K-RPM SATA-II drives configured
as RAID-5 system. Each compute node has a 250GB 7.2K-RPM
SATA hard drive. The experiments were tested on MPICH2-
1.0.5p3 release and PVFS 2.8.1 file system.

4.2 Preliminary Results and Analysis
4.2.1 Synthetic Benchmark
We have coded a synthetic benchmark in which each process does
strided reads but the aggregated requests of all processes are
sequential reads over the file. We have performed a series of tests
on the Sun Fire cluster to compare the performance of rearranged
layout-aware accesses and the original one. The total size of the
data accessed by all processes are 128MB, 320MB, 640MB,
800MB and 4000MB respectively. The results are shown in

Figure 4. It can be observed that the optimization strategy with
layout awareness could have a considerable impact on the
performance of parallel I/O system. The performance variation
and the potential performance improvement could be up to 48%.

0

5

10

15

20

25

128MB 320MB 640MB 800MB 4000MB

Ti
m
e
(s
ec
on

ds
)

File Size

Existing strategy Layout‐aware optimization

Figure 4. Potential of layout-aware optimization with
synthetic benchmark testing

4.2.2 IOR Benchmark

0

50

100

150

200

250

300

64 128 256 512 1024 2048 4096 8192 16384

Read (existing)

Read (layout‐aware)

Write (existing)

Write (layout‐aware)

Ba
nd

w
id
th
(M

B/
s)

Filesize (MB)

(a) Random accesses

0

50

100

150

200

250

300

64 128 256 512 1024 2048 4096 8192 16384

Read (existing)

Read (layout‐aware)

Write (existing)

Write (layout‐aware)

Ba
nd

w
id
th
(M

B/
s)

Filesize (MB)
(b) Interleaved accesses

Figure 5. Potential of layout-aware optimization with IOR
benchmark testing

362

Figure 5 reports the testing results with IOR-2.10.2 benchmark
from Lawrence Livermore National Laboratory [4]. We
performed both interleaved reads/writes and random reads/writes
tests, and varied the file size. As can be seen from these results,
the layout-aware optimization strategy can affect the IOR
benchmark testing performance considerably. The layout-aware
strategy can potentially improve the I/O bandwidth up to 86%,
45%, 113% and 35% for random reads, random writes, sequential
reads and sequential writes respectively. The average potential
improvement of layout-aware strategy with different file sizes is
46%, 26%, 49% and 24% for random reads, random writes,
sequential reads and sequential writes respectively.

5. CONCLUSION AND FUTURE WORK
Parallel I/O middleware and parallel file systems are fundamental
and critical components for data-intensive and high-performance
computing applications. While both of the technologies have
made their success, little has been done to investigate a better
integration of these two parallel I/O subsystems and to improve
the overall performance. Collective I/O is one of the most
important optimization strategies for parallel I/O middleware;
however, with the separation of parallel I/O middleware and
parallel file systems, the current collective I/O strategy may not
produce the optimal performance improvement. In this study, we
propose to reveal certain information between parallel I/O
middleware and file systems to improve the overall I/O
performance. Specially, we propose to incorporate layout
information with collective I/O to improve the performance gain
of collective I/O optimization. Although the current study and
testing results are preliminary, they have demonstrated that
layout-aware optimization can improve the collective I/O
performance considerably. We will continue this research
direction and carry out the prototype system implementation and
evaluation. We are also actively working on modeling and
dynamically choosing optimal data layout for HPC applications
depending on the specific application features [13]. Recent works
in a replicated storage system such as [5] demonstrate a great
potential in improving I/O throughput and data durability and
availability by utilizing idle storage. We plan to explore data
layout optimizations in such replicated storage systems too.

6. REFERENCES
[1] J. Bent, G. Gibson, G. Grider, B. McClelland, P.

Nowoczynski, J. Nunez, M. Polte, M. Wingate, “PLFS: A
Checkpoint Filesystem for Parallel Applications,” in Proc. of
ACM/IEEE Supercomputing'09, 2009.

[2] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur,
“PVFS: A Parallel File System For Linux Clusters,” in
Proceedings of the 4th Annual Linux Showcase and
Conference, 2000.

[3] Y. Chen, S. Byna, X.-H. Sun, R. Thakur, and W. Gropp,
"Hiding I/O Latency with Pre-execution Prefetching for
Parallel Applications," in Proc. of the ACM/IEEE
SuperComputing Conference (SC'08), 2008.

[4] Interleaved or Random (IOR) Benchmark,
http://sourceforge.net/projects/ior-sio/.

[5] A. Gharaibeh and M. Ripeanu. Exploring Data Reliability
Tradeoffs in Replicated Storage Systems. in Proc. of High
Performance Distributed Computing (HPDC), 2009

[6] D. Kotz. Disk-directed I/O for MIMD Multiprocessors.
ACM Transactions on Computer Systems, 15(1):41–74,
1997.

[7] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki and C.
Jin, “Flexible IO and Integration for Scientific Codes
Through the Adaptable IO System (ADIOS),” in Proc. of the
6th International Workshop on Challenges of Large
Applications in Distributed Environments, 2008.

[8] J. May, “Parallel I/O for High Performance Computing,”
Morgan Kaufmann Publishing, 2001.

[9] PVFS2 Development Team, “PVFS Developer's Guide,”
http://www.pvfs.org/cvs/pvfs-2-8-branch-docs/doc//pvfs2-
guide.pdf.

[10] I. Raicu, I. Foster, Y. Zhao, P. Little, C. Moretti, A.
Chaudhary, D. Thain. "The Quest for Scalable Support of
Data Intensive Workloads in Distributed Systems", in Proc.
of ACM High Performance Distributed Computing (HPDC),
2009.

[11] J. del Rosario, R. Bordawekar, and A. Choudhary,
"Improved Parallel I/O via a Two-Phase Run-time Access
Strategy", in Proc. of the Workshop on I/O in Parallel
Computer Systems at IPPS ’93, 1993.

[12] K. Seamons, Y. Chen, P. Jones, J. Jozwiak and M. Winslett,
"Server-Directed Collective I/O in Panda", in Proc. of
Supercomputing’95. ACM Press, 1995.

[13] X.-H. Sun, Y. Chen and Y. Yin, "Data Layout Optimization
for Petascale File Systems," in Proc. of The 4th Petascale
Data Storage Workshop, 2009.

[14] R. Thakur, W. Gropp and E. Lusk, “Data Sieving and
Collective I/O in ROMIO,” in Proceedings of the 7th
Symposium on the Frontiers of Massively Parallel
Computation, 1999.

[15] R. Thakur and A. Choudhary, "An Extended Two-Phase
Method for Accessing Sections of Out-of-Core Arrays,"
Scientific Programming, (5)4:301-317, Winter 1996.

[16] Top 500 Supercomputing Website. http://www.top500.org.

363

