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Abstract. In this paper, we present our vision for a framework to facilitate 
computationally-based aerospace vehicle design by improving the quality of the 
response surfaces that can be developed for a given cost. The response surfaces 
are developed using computational fluid dynamics (CFD) techniques of varying 
fidelity. We propose to improve the quality of a given response surface by 
exploiting the relationships between the response surface and the flow features 
that evolve in response to changes in the design parameters. The underlying 
technology, generalized feature mining, is employed to locate and 
characterize features as well as provide explanations for feature-feature and 
feature-vehicle interactions. We briefly describe the components of our 
framework and outline two different strategies to improve the quality of a 
response surface. We also highlight ongoing efforts. 

1   Introduction 

Design studies for advanced aerospace vehicles are typically performed using a suite 
of computational fluid dynamics (CFD) simulation tools. An integral component of 
these design studies is the development of response surfaces describing vehicle 
performance characteristics as functions of the various geometrical design parameters. 
Essentially, the response surfaces provide a method for abstracting the results of a 
simulation [1]. A response surface may be generated using tools of differing fidelity, 
i.e., variable complexity modeling [1]. Because of various factors associated with the 
simulations, e.g., incomplete convergence of iterative methods, round-off errors, and 
truncation errors [2], numerical noise may be present in the response surfaces. When 
such noise occurs, the optimization procedure may be slow to converge or converge 
to an erroneous local extrema in the design space. This can be partially obviated 
through the use of response surface modeling [1]. The response surfaces typically 
include force and moment components and consist of the outputs from a series of 
CFD simulations. Continuous approximations to the response surfaces are obtained 
through a surface fitting process. These continuous approximations are then employed 
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in a design algorithm to determine a geometrical parameter set that results in a set of 
vehicle characteristics that satisfy specified criteria.  

Response surfaces can also be employed to optimize vehicle trajectories. In this 
context, the design parameters include vehicle attitude, control surface deflections, 
etc. Knowledge about the presence and location of flow features would provide 
guidance on judicious use of the available analysis tools as well as provide an 
understanding of the level of confidence that can be placed on the computational 
results in various regions of the parameter space. 

Unfortunately, the quality of a given response surface is difficult to ascertain. This 
is primarily due to the fact that development of analysis techniques for CFD data has 
not kept pace with our ability to generate massive data sets. To address the difficulties 
associated with analyzing evolutionary data generated by large-scale simulations of 
complex phenomena, we are developing a framework that we term generalized 
feature mining. In the context of this effort, i.e., aerospace vehicle design, we are 
interested in how flow features, which influence the performance of the vehicle, 
evolve in response to changes in the design parameters. Hence, the features, which 
may be static features in the sense that they do not evolve over time, do evolve as the 
design parameters are modified.  

1.1   Motivation 

We can formalize the notion of response surfaces by letting a={a1,…,an} be the set of 
n parameters that are considered in the design of a vehicle. These typically include the 
geometrical characteristics of the configuration of interest. Let f(a)={ψ1(a),…,ψm(a)} 
be m quantities of interest such as force and moment components. Each of the ψι(a) 
form a response surface. Vehicle design attempts to find a set of design parameters a 
which yields a desirable vector f(a) for certain operational conditions. These response 
surfaces are obtained by computing the flow field and the desired quantities ψι for a 
given configuration a. It should be noted that some response surfaces, such as 
configuration gross weight, depend only on the geometry and material properties and 
are independent of the flow simulation.  

What is lacking from the approaches described above is a true “cause and effect” 
perspective for vehicle design. Changes in the response surfaces ψi(a) are correlated 
only to changes in the design parameter vector a. In our approach, we seek 
explanations for the behavior of a response surface ψi. Desirable conditions may 
occur in due to the presence (or absence) of specific flow phenomena. Understanding 
the properties of these phenomena and their interactions with the vehicle or other flow 
features provides more insight than correlations with the design parameters. We 
believe that these insights will lead to more cost effective methods for estimating the 
response surface, thereby reducing design cost. 

1.2   Outline of Paper 

In Section 2 we describe the basic components of our feature-centric design 
framework. Section 3 describes two scenarios which can exploit generalized feature 
mining in a design context. In Section 4, we describe related work and in Section 5 
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we describe on-going work in to develop generalized feature mining technologies. 
Finally, we include a summary of the paper in Section 6. 

2   Components of Generalized Feature Mining  

The generalized feature mining framework will accept as input a set of CFD 
simulation results S and the corresponding set of designs A that produced these 
results. Additional inputs include a definition of the material properties and a 
specification of flight and environmental conditions. There are four components that 
must be developed to accomplish our stated objective: 

• Extraction of the feature set: The simulation results S will be processed to 
extract features F. Shape descriptors will be used to characterize the features. 
Here, a shape descriptor for a given feature is an abstract representation of 
the feature including its geometrical and dynamical characteristics. 

• Explanation of feature-feature and feature-vehicle interactions: In 
addition to shape descriptors, generalized feature mining will generate 
explanations E correlated with changes in the design a through the evolution 
of the feature set F. 

• Characterization of a response surface: Once a response surface R is 
generated, it will be characterized qualitatively and quantitatively using 
shape descriptors F and explanations E. 

• Estimation of the response surface: New points on the response surface 
will be estimated based on the response surface characterization. This will 
facilitate determination of whether an additional computation needs to be 
performed to locally 1) refine the response surface or 2) improve its accuracy 
user a higher fidelity method. 

3   Application to Aerospace Vehicle Design 

We envision that our framework may be employed for aerospace vehicle design via 
two different design-of-experiment paradigms. Both approaches are designed to 
improve the quality of a response surface that can be generated for a given cost 
resulting in a higher confidence design. We describe them below: 

• The quality of a response surface may be improved locally through the use of 
higher fidelity methods. An initial response surface is developed using lower 
fidelity (less expensive) computational tools. Our framework is then 
employed to identify regions of the response surface whose associated 
feature catalogs, i.e., flow features, feature-feature interactions, and feature-
vehicle interactions, suggest that a higher fidelity simulation tool should be 
employed. The cost of generating the response surface is decreased since the 
number of expensive simulations needed to adequately define the response 
surface is reduced. 
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• The quality of a response surface may be improved locally through 
refinement. An initial response surface is developed using a relatively coarse 
sampling. Our framework is then employed to identify regions of the 
response surface whose associated feature catalogs suggest are under-
sampled. Additional simulations of appropriate fidelity may be performed at 
the identified design points. The cost of generating the response surface is 
again decreased since the number of expensive simulations needed to 
adequately define the response surface is reduced. 

We also suggest that it may be possible to employ the two different paradigms in 
tandem to adaptively generate a high quality response surface for a reduced cost.  

4   Related Work 

In this section we report on work related to the current effort. A timely book on 
scientific and engineering data mining techniques edited by Grossman, Kamath, 
Kegelmeyer, Kumar, and Namburu [3] discusses many issues relevant to this effort. 
Kamath provides a beautiful overview of the area along with some of the inherent 
challenges (Chapter 1). Marusic and his associates (Chapter 13) and Han and his 
associates (Chapter 14) consider the problem of mining computational fluid dynamics 
simulations using standard data mining techniques in conjunction with basic physical 
modeling of entities or features. The work by the authors Machiraju, Thompson and 
colleagues (Chapter 15) on the EVITA project is a precursor to the current effort. Han 
and colleagues (Chapter 25), Sekhar and colleagues (Chapter 26), and Lesage and 
Pace (Chapter 24) report on the usefulness of spatial data analysis and survey such 
techniques in the context of engineering and scientific applications. Additionally 
techniques for mining astronomical data (Chapters 5 and 6) and earth science 
observations (Chapter 10) are also reported in this book. However, few of the above 
methods actually account for the structural or physical properties of the data. Also, 
none of them address the application of these techniques to design. 

Yip and Zhao [4] proposed a framework called Spatial Aggregation (SA). They 
relied on segmentation (or spatial aggregation) to cluster both physical and abstract 
entities and constructed imagistic solvers to gain insights about physical phenomena. 
Our paradigms for feature mining have close relationship to the SA framework. The 
work by Ester and colleagues [5] on trend detection in spatial databases and spatial 
database primitives are also quite relevant to our work on spatial associations. The 
work by Graves and colleagues [6] is also relevant but focused mainly on feature 
extraction and mining of image data (satellite). It should be noted that the ADAM 
framework is extensible and it may be possible to incorporate many of the techniques 
described here. 

5   Ongoing Work 

In this section we describe our preliminary efforts in data mining and effort towards 
realizing a framework for generalized feature mining. Our combined preliminary  
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(a) (b) 

Fig. 1. Point Classification Techniques (a) The Blunt Fin Example (b) A zoomed version 

work on feature mining has been reported in the literature [7-9]. It should be noted 
that our work spans two application domains, namely CFD and molecular dynamics. 
Because of the paucity of space and vehicle design context, we focus on work 
applicable to CFD simulation data. 

We first describe two distinct feature mining paradigms. The common thread is 
that both are bottom-up feature constructions based on underlying physically based 
criteria. They consist essentially of similar steps; however, the order of the steps is 
different. The first paradigm, based on point classification, is suitable for features 
that can be defined and detected with local operators such as shocks and defects. The 
second paradigm, based on an aggregate classification, is suitable for features with a 
more global influence such as vortices. More details can be found in [8-9].  

As an example of the point classification paradigm, we consider shock wave 
detection in flow fields. A shock is an abrupt compression wave that may occur in 
fluid flows when the velocity of the fluid exceeds the local speed of sound. The 
properties of shocks are can be exploited to develop highly discriminating shock 
detection algorithms [10]. Figure 1(a) shows a detached oblique shock that wraps 
around the blunt fin in the standard blunt fin/flat plate flow field solution. Figure 1(b) 
shows the symmetry plane which intersects a lambda-shock. 

We recently developed vortex detection and verification algorithms that exploit the 
aggregate classification paradigm [11,12]. For the local detection operator, a 
combinatorial labeling scheme is employed. Our detection algorithm labels the 
velocity vectors at the grid points and identifies grid cells that are likely to contain the 
vortex core. Our technique then segments candidate vortex core regions by 
aggregating points identified from the detection step. We then classify (or verify) 
these candidate core regions based on the existence of swirling streamlines 
surrounding them. In Figure 2 we show the vortex cores and a detailed view of the 
vortical flow near the fin/plate intersection in the left and center images, respectively. 
The aggregate classification paradigm identifies individual points as being probable 
candidate points in a feature and then aggregates them. The verification algorithm 
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Fig. 2. Aggregate Classification Techniques. We use the Blunt Fin example again. The first 
inset shows the verification algorithm at work. The second inset shows the modeling of the 
swirling region as a collection of frusta. 

then is applied to the aggregate using physics-based non-local criteria to determine 
whether the aggregate is actually a feature. In this case, the binary feature 
classification is applied to an aggregate of points. Features that are regional in nature, 
such as a vortex, benefit from the aggregate classification approach.  

Having extracted the features, we now describe the next step: characterizing them 
using geometric shape attributes. The swirling region of a vortex can be characterized 
using a sequence of elliptical frusta (a conical frusta with two ends as ellipses) [8]. 
Starting from the upstream extent of the vortex core, the modeling process seeds a set 
of swirling streamlines surrounding the core region. Each elliptical frustum is oriented 
along the longest segment of the vortex core that does not curve by more than a user-
specified amount. We illustrate the adaptive and hierarchical shape characterization 
process in the right image of Figure 2. The elliptical shape of the primary vortex as 
well as its curved core provide visual validation of the choice of the geometric 
descriptors. 

We now describe an ongoing data mining effort that has, to date, been employed 
for the discovery of substructures in large molecules. Motifminer, is a novel scalable 
toolkit to efficiently discover frequently occuring spatial and structural relationships 
in scientific data [13]. The technique relies on range pruning (limits the search for 
viable spatial relationships) and candidate pruning (similar to candidate pruning in 
association rule mining but with a spatial twist) for pruning the search space of 
possible frequent structures. We also rely on fuzzy recursive hashing, a technique 
akin to geometric hashing, for rapid matching of frequent spatial relationships (to 
determine frequency of occurrence). 

In addition feature characterization, much work is being conducted towards 
tracking of these swirling regions. Also, work has begun toward determining spatial 
associations and using the gained knowledge to glean explanations about the 
underlying phenomena. 
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6   Summary 

We have described our vision for a feature-centric framework to improve simulation-
based aerospace vehicle design. We proposed two different strategies, both based on 
generalized feature mining, to improve the quality of response surfaces employed in 
the design process by exploiting the relationships between the response surface and 
the flow features that evolve in response to changes in the design parameters. Also 
included were brief discussions of the various components of our framework and 
current efforts to realize these components. We believe our approach may prove to be 
a viable cost effective alternative to current automated design techniques.  
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