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Many phenomena in the real world are inherently complex and involve many dynamical variables
interacting nonlinearly through feedback loops and exhibiting chaos, self-organization, and pattern
formation. It is useful to ask if there are generic features of such systems, and if so, how simple can
such systems be and still display these features. This paper describes several such systems that are
accessible to undergraduates and might serve as useful examples of complexity. © 2008 American
Association of Physics Teachers.
�DOI: 10.1119/1.2830540�
I. INTRODUCTION

The study of nonlinear dynamics has blossomed in the
past few decades primarily as a result of readily available,
powerful computers. Such topics provide the opportunity for
students to perform original multidisciplinary research and
offer motivation for them to hone their computational skills.
Much of the past interest has centered on relatively simple,
low-dimensional iterated maps such as the logistic map1 and
the Hénon map,2 and systems of ordinary differential equa-
tions �ODEs� such as the Lorenz equations3 and the Rössler
equations.4

One line of research is to seek the algebraically simplest
systems of various types that are capable of producing
chaos.5 For example, the simplest dissipative chaotic flow
with a quadratic nonlinearity is6

x� + aẍ − ẋ2 + x = 0, �1�

where ẋ=dx /dt. This system is chaotic over most of the
range 2.0168�a�2.0577 and has its maximum Lyapunov
exponent �the exponential rate of separation of initially
nearby orbits and a useful measure of chaos� of �=0.0559 at
a�2.0169.

The simplest such system with a cubic nonlinearity is7

x� + aẍ − xẋ2 + x = 0, �2�

which is chaotic over most of the range 2.0277�a
�2.0840 and has its maximum Lyapunov exponent �
=0.0852 at a�2.0278. The simplest such system with an
absolute-value nonlinearity is8

x� + aẍ + ẋ − �x� + 1 = 0, �3�

which is chaotic over most of the range 0.5463�a
�0.6410 and has its maximum Lyapunov exponent �
=0.0768 at a�0.5641. The simplest periodically driven con-
servative chaotic flow with a cubic nonlinearity is9

ẍ + x3 = sin �t , �4�

which is chaotic over most of the range 0���2.8 with its
maximum Lyapunov exponent �=0.0791 at ��1.88. Note
that in Eqs. �1�–�3�, the bifurcation parameter a is a damping
rate and the chaos occurs over a narrow range of this param-
eter. This feature will also characterize the more complex
systems considered here. Equation �4� also has a dissipative
variant with an added aẋ term, called the Ueda oscillator,10

which is a special case of Duffing’s oscillator,11 which also

contains a term linear in x.
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Systems such as these provide a wealth of opportunity for
undergraduates to perform original research on systems with
complicated dynamics including bifurcations, multistability,
hysteresis, calculation of Lyapunov exponents and fractal di-
mensions, basins of attraction, synchronization, chaotic elec-
trical circuit implementation, and much more. These topics
are described in most of the standard chaos texts.12–14 How-
ever, their low dimension makes them suitable models only
for relatively simple systems with a small number of dy-
namical variables. Much of the current interest in nonlinear
dynamics is in complex high-dimensional systems involving
large networks of many nonlinearly interacting variables.15

Such networks arise often in ecology, economics, sociology,
epidemiology, meteorology, and neurology, among others.16

The physics laboratory is a highly atypical environment
where phenomena are well described by low-dimensional
models.

High-dimensional nonlinear systems can exhibit all the
complexity of their low-dimensional counterparts, and can
also exhibit new phenomena such as self-organization, evo-
lution, learning, and adaptation,17–19 phenomena that we nor-
mally ascribe to living systems. In some ways their behavior
is simpler, much as a large collection of molecules in a gas
can be described statistically without concern for the details
of the interactions. Whereas chaotic systems are readily iden-
tified by their sensitive dependence on initial conditions and
quantified by their Lyapunov exponents, complex systems
are less well characterized. They contain many nonlinearly
interacting parts with positive and negative feedback loops
and are driven out of equilibrium by the flow of energy or
other resource through the system. They are usually �perhaps
weakly� chaotic in both space and time. Complex systems
may be complicated in the sense of requiring many param-
eters, but they can also be relatively simple, as this paper will
show.

II. FULLY CONNECTED NEURAL NETWORKS

How does one model a complex system without being an
expert in the area the model is attempting to describe? One
approach is to construct a model of sufficient generality that
it can represent almost any complex system with an appro-
priate choice of parameters and then see if there are universal
or at least generic behaviors when those parameters are cho-
sen at random. There are many candidate models, including
cellular automata, coupled map lattices, and partial differen-
tial equations. As a natural extension of current chaos re-

search and because continuous-time systems are more famil-
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iar to physicists, we consider a system of coupled ODEs with
a sigmoidal nonlinearity such as the hyperbolic tangent:

ẋi = − bixi + tanh� �
j=1,j�i

N

aijxj	 , �5�

where N is the dimension of the system �the number of vari-
ables�. The particular nonlinearity in Eq. �5� is appropriate
because it mimics the common situation in nature where a
small stimulus produces a linear response, but the response
saturates when the stimulus is large, thereby avoiding un-
bounded and hence unphysical solutions.

With an appropriate choice of the vector bi and the matrix
aij, Eq. �5� can model a wide range of dynamics, including
chaos for N as small as 4. In what follows, it will be conve-
nient to take bi=b for all i as the bifurcation parameter in
analogy with the low-dimensional systems described in Sec.
I. This system is equivalent to an alternate form20 in which
the hyperbolic tangent of xj is inside the summation. The
−bxi term is analogous to frictional damping and guarantees
that the solutions are bounded.

Equation �5� can be considered as an artificial neural net-
work in which the neurons accept weighted inputs from all
the other neurons and nonlinearly squash their sum. It could
equally well be considered as a collection of nonlinearly in-
teracting agents corresponding to people, firms, animals,
cells, molecules, or any number of other entities. The system
has a static equilibrium with all xi=0, and can be driven
away from equilibrium by the positive feedback among the
neurons, which implies an external energy source not explicit
in the equations. Similar and more extensive studies have
been done on discrete-time neural networks �iterated
maps�,21,22 but such models are less common in physics and
lead too easily to chaotic solutions that may not be physi-
cally realizable.

An interesting project would be to optimize the aij values
to fit some observed time series, such as the stock market,
but our interest here is to illustrate the generic behavior of
such a network. For that purpose, we take a large but still
tractable value of N=101 �a prime number� and select the aij
values from a random Gaussian distribution with mean zero
and variance 1 / �N−1�. In contrast to other studies,23 the ma-
trix is asymmetrical �aji�aij�, which complicates the theo-
retical analysis, but makes the model more general and en-
riches the dynamics. Initial conditions are taken randomly
from a small �10−8� Gaussian neighborhood of the origin,
and the equations are iterated 105 or more times using a
fourth-order Runge–Kutta integrator with a fixed step size of
0.1. The results were compared to a fifth-order Runge–Kutta
integrator with an adaptive step size and an absolute error
bound of 10−6 at each step.

The largest Lyapunov exponent is calculated using the
method of Sprott.12 An N-dimensional system has N
Lyapunov exponents, but we will be concerned only with the
largest Lyapunov exponent because its sign indicates the na-
ture of the dynamics, with a positive value signifying chaos.
The calculation of the Lyapunov exponent is the most chal-
lenging task in this work, but the Lyapunov exponent is criti-
cal for studying chaos. Existing routines are available,24 but
much is gained by programming the method from scratch,
and it is not conceptually difficult. It involves following two
initially nearby orbits and averaging the logarithmic growth

of their separation while normalizing the separation to the
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initial value at each time step but preserving the orientation.
A practical problem is that the value often converges slowly
with large fluctuations, especially in the vicinity of bifurca-
tions. The orbit must be followed for a long enough time to
reach and then sample all regions of the attractor, whose
dimension can be 50 or more. Some measure of convergence
is useful, such as requiring that the amplitude of the fluctua-
tions over the previous thousand time steps be less than the
resolution of the plot. Many of the figures in this paper re-
quired several days of computation using a compiled lan-
guage.

Values of b were chosen randomly in the range 0�b�2,
and the Lyapunov exponents for 472 networks are plotted in
Fig. 1. Note that the scale for b is plotted such that the
network activity increases to the right as the damping is re-
duced. Three regimes are evident in the figure. For strong
damping �b�1�, most values of the largest Lyapunov expo-
nent � are negative, implying a stable equilibrium. For
1�b�0.5 most Lyapunov exponents are zero, implying a
periodic �limit cycle� or quasiperiodic �attracting torus� solu-
tion. For weak damping �0.5�b�0� most Lyapunov expo-
nents are positive, implying a chaotic solution and an accom-
panying strange attractor. The value of � is reasonably well
fit in the three regimes by the simple piecewise-continuous
function

� = 
1 − b �b � 1�
0 �1 � b � 0.5�
b�0.5 − b� �0.5 � b � 0�

� �6�

shown as the solid line in Fig. 1. Note that the maximum
value of � from Eq. �6� is 1 /16 and occurs at b=1 /4. This
relatively small value is consistent with the appealing but
controversial idea that complex adaptive systems evolve at
the “edge of chaos.”25 Although it is not shown here, the
fractal dimension of the attractor, which is a measure of its
complexity, for the maximally chaotic systems with b=1 /4
is approximately N /2. These systems exhibit the quasi-
periodic route to chaos that is thought to be generic for high-

26,27

Fig. 1. Largest Lyapunov exponent � for a collection of 472 fully connected
artificial neural networks in Eq. �5� with N=101 and random Gaussian
weights.
dimensional systems with a variation of �, which
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depends only weakly on the details of the interactions and
hence may be universal in the limit of infinite N. The plot in
Fig. 1 will be used as the standard to which other simpler
models will be compared.

III. SPARSE CIRCULANT NEURAL NETWORKS

Although the prototypical system studied in Sec. II is rea-
sonably simple and ripe for student projects such as studying
the effect of varying N, the distribution of weights �aij val-
ues�, and the connectedness of the network on the likelihood
that a solution is chaotic, its route to chaos, and the value of
the largest Lyapunov exponent, our interest here is finding
even simpler systems with similar behavior. In particular, we
want to keep the dimension high, but reduce the number of
parameters in order to speed computation and facilitate ex-
ploration. In particular, we desire interaction matrices that
are circulant,28 corresponding to neurons arranged on a ring,
each interacting identically with its neighbors, and sparse
�most interactions are zero�, and also restricted to values
aij = �a �unweighted networks�. These conditions lead natu-
rally to networks described by

ẋi = − bxi + tanh��
j=1

N−1

ajxi+j	 , �7�

where aj is a vector with most components zero and xi+j
=xi+j−N for i+ j�N �periodic boundary conditions�. Sparse
networks �also called diluted networks�,29,30 even in a ring
configuration,31 have been studied using both discrete-time
and continuous-time models,32 but typically not with circu-
lant matrices.

Although chaos is relatively rare in such networks, one
example with N=101, found by trial and error, has aj = �4,
−5,1 ,−3 ,0 ,0 , . . . � and a route to chaos as shown in Fig. 2.
No claim is made that this system is the simplest such ex-
ample or that it is optimized in any way, but it does illustrate
that the number of parameters can be reduced from �104 to
4 and still achieve similar behavior, except for a somewhat
broader periodic region. Furthermore, this example has rela-
tively few of the periodic windows and other bifurcations

Fig. 2. Largest Lyapunov exponent � for the sparse circulant neural network
in Eq. �7� with N=101 and four-neighbor interactions.
that are so ubiquitous in low-dimensional chaotic systems,
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illustrating how high-dimensional chaotic systems generally
have simpler behavior than their low-dimensional counter-
parts. Even more remarkable is that the dynamics in the pe-
riodic and chaotic regimes are asymmetric �the xi values are
not all equal� even though the equations are symmetric. This
symmetry breaking is a common but counterintuitive feature
of such circulant networks. It is necessary to use asymmetric
initial conditions to avoid synchronization that would pre-
clude the chaos, but the choice of initial conditions is other-
wise not critical except when there are multiple coexisting
attractors.

Circulant networks with near-neighbor interactions pro-
vide the opportunity to study spatiotemporal chaos. One way
to illustrate this behavior is with a spatiotemporal plot in
which the values of xi�t� are plotted in the i− t-plane, as
shown in Fig. 3 for b=0.25. There is a dominant wavelength
of about 8.5, which probably has to do with the size of the
neighborhood �4 in this case�, and a dominant period of
about 60, implying that the structures propagate at a velocity
of about 1 /7. The behavior is not perfectly periodic, but
shows signs of chaos as confirmed by �=0.1149, which is
nearly twice the value of 0.0625 predicted by Eq. �6�.

Although Fig. 3 used initial conditions on the attractor
�obtained by discarding the first 200 time units with a ran-
dom initial condition�, we could also observe the self-
organization and pattern formation that occurs when the ini-
tial conditions are chosen randomly or highly ordered �but
not uniform�. Such plots offer one of the few ways to visu-
alize chaos in systems whose attractor dimension is high, and
they illustrate why circulant examples are desired. This sys-
tem invites a study of the effect of sparseness and neighbor-
hood size on the dynamics, with implications for social and
other types of complex networks. An interesting challenge
would be to find an even simpler and more elegant circulant
chaotic system than the one in Fig. 3.

IV. HYPERLABYRINTH CHAOS

A particularly simple circulant complex system was sug-
gested by Thomas et al.33 and has been called hyperlabyrinth
chaos34 because the trajectory wanders throughout an

Fig. 3. Spatiotemporal plot of chaos in a sparse circulant neural network
with N=101 and b=0.25.
N-dimensional, spatially periodic labyrinth. It is a simple
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variant of Eq. �7� in which the hyperbolic tangent is replaced
by the sine, and each variable interacts with a single nearest
neighbor according to

ẋi = − bxi + sin xi+1. �8�

Its route to chaos for N=101 as indicated in Fig. 4 resembles
the previous cases except there is an additional pitchfork
bifurcation at b=1 prior to the Hopf bifurcation at b
�0.4421, a relatively narrow region of quasiperiodicity, and
a positive Lyapunov exponent that increases all the way to
the conservative limit of b=0, where its value is �=0.4188.
The complexity as measured by the Kaplan–Yorke
dimension35 DKY increases linearly with N and decreases
with b �for b�0.34� as DKY 
�0.992–1.758b�N. The spa-
tiotemporal plot for b=0.25 in Fig. 5 shows self-organized
propagating chaotic structures.

V. LOTKA–VOLTERRA MODEL

Another simple complex system is a variant of the Lotka–
Volterra model,36 which is popular among ecologists because
it represents the interaction of different species competing
for a set of common resources and can be considered as a
low-order Taylor expansion of a wide range of more compli-
cated models.37 A particularly simple circulant example is
given by38

ẋi = xi�1 − xi−2 − bxi − xi+1� . �9�

The existence of a Lyapunov function39 precludes periodicity
and chaos in the more obvious symmetric case in which xi−2
is replaced by xi−1. The route to chaos of Eq. �9� as indicated
by Fig. 6 resembles the previous cases except that the peri-
odic region is narrow and the solution becomes static for b
�0.62, with some number of species surviving and all other
xi values equal to zero �the principle of competitive
exclusion40 or survival of the fittest�. Because there are 2N

equilibrium points of which N+1 are nondegenerate, this re-
gion is very complicated and deserving of further study. The
spatiotemporal plot for b=0.8 in Fig. 7 shows the now fa-
miliar self-organized propagating chaotic structures with a

Fig. 4. Largest Lyapunov exponent � for the hyperlabyrinth system in
Eq. �8� with N=101.
Lyapunov exponent of �=0.0227.
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VI. DELAY DIFFERENTIAL EQUATIONS

Other simple models with complex dynamics use delay
differential equations,41 the simplest form of which is the
autonomous retarded functional differential equation
ẋ= f�x�t−��� in which the function f depends on the value of
x at a single previous time t−�. Such equations have been
used extensively to model population dynamics42 with their
inherent gestation and maturation time delays and to study
epidemics,43 tumor growth,44 immune systems,45 lossless
electrical transmission lines,46 and the electrodynamics of
interacting charged particles �the Lorentz force with
Liénard–Weichert potentials.�47 Such systems are infinite-
dimensional in the sense that infinitely many initial condi-
tions over a continuous range −�� t�0 are required, but the
system can be approximated by an �N+1�-dimensional sys-
tem of ODEs such as

Fig. 5. Spatiotemporal plot of hyperlabyrinth chaos for N=101 and
b=0.25.

Fig. 6. Largest Lyapunov exponent � for the Lotka–Volterra model in

Eq. �9� with N=101.
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ẋ0 = f�xN� �10a�

ẋi = N�xi−1 − xi�/� . �10b�

This representation illustrates that 1 /� is a damping analo-
gous to b in the previous examples.

Many functional forms of f�x� are known to exhibit chaos;
one of the simplest48 is f�x�=sin x, for which the route to
chaos as shown in Fig. 8 with N=100 resembles the previous
examples. This system is not an example of spatiotemporal
chaos, but it does produce multiscroll strange attractors, as
shown in Fig. 9 for �=8 for which �=0.0794 and whose
complexity increases linearly with � as DKY 
0.437�
+0.406. The attractor stretches from −24�x�24, and the
trajectory exhibits Brownian motion despite its deterministic
origin. Delay differential equations have been relatively little
explored and offer many opportunities for student projects.
For example, we could explore other nonlinear functions f�x�
in Eq. �10a� besides the sine and cosine.

Fig. 7. Spatiotemporal plot of the Lotka–Volterra model for N=101 and
b=0.8.

Fig. 8. Largest Lyapunov exponent � for the delayed differential equation

model in Eq. �10� with f�x�=sin x and N=100.
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VII. PARTIAL DIFFERENTIAL EQUATIONS

Other infinite-dimensional systems are described by par-
tial differential equations �PDEs� in which the temporal, spa-
tial, and state variables are all continuous �in contrast to a
cellular automaton in which they are all discrete�. Many of
the fundamental laws of physics are described by PDEs, in-
cluding Maxwell’s equations, the time-dependent
Schrödinger equation, and the Navier–Stokes equation. One
of the simplest PDEs that is known to exhibit chaos is the
Kuramoto–Sivashinsky equation

u̇ = − uu� − u�/R − u�, �11�

where u�=�u /�x. Equation �11� consists of an antiviscosity
term u� which causes the long wavelength modes to grow
and a hyperviscosity term u� which damps the short wave-
length modes. The nonlinearity uu� transports energy from
the growing modes to the damped modes. Equation �11� has
been used to model waves in chemical reactions,49 flame
front modulations,50 and a thin liquid film flowing down an
inclined plane.51 It is known to exhibit chaos for R=2.

One of the most straightforward ways to solve such a PDE
numerically is to approximate it as a high-dimensional sys-
tem of ODEs, in which case it resembles the previous ex-
amples. The derivatives can be represented by their lowest-
order Taylor expansions as

ui� = �ui+1 − ui−1�/2 �12a�

ui� = ui+1 − 2ui + ui−1 �12b�

ui� = ui+2 − 4ui+1 + 6ui − 4ui−1 + ui−2, �12c�

Fig. 9. Strange attractor for the delayed differential equation model in
Eq. �10� with f�x�=sin x, �=8, and N=100.
which leads to the following system of ODEs for R=2,
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u̇i = − 0.5ui�ui+1 − ui−1� − ui+2 + 3.5ui+1 − 5ui + 3.5ui−1

− ui−2 − bui. �13�

An additional damping term −bu has been added to serve as
a bifurcation parameter, and the subscripts are periodic
around a ring with N elements as in the previous cases.

Figure 10 shows the Lyapunov exponent as a function of b
for N=101 with the now familiar behavior, albeit with a
compressed scale on both axes. Figure 11 shows turbulent
spatiotemporal behavior for b=0 where �=0.025. Chaos in
PDEs is an almost completely unexplored subject, and it is
not even known whether Eq. �11� is the simplest such ex-
ample, although it does serve as a proof of principle. A chal-
lenging student project would be to find a simpler example.

VIII. CONCLUSIONS

Nonlinear networks with many nodes and interconnections
are very likely to behave chaotically provided their solutions
are bounded. Thus we would expect chaos to be common in
nature. Surprisingly, there are features of such networks,

Fig. 10. Largest Lyapunov exponent � for the PDE model in Eq. �13� with
N=101.

Fig. 11. Spatiotemporal plot of the PDE model in Eq. �12� for N=101 and

b=0.
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such as their route to chaos, that are relatively simple and do
not depend strongly on the details of the interactions, and
thus may be universal. Even more surprising is that there are
very simple circulant networks with many nodes that have
similar behavior, although such networks are not always easy
to identify. These systems typically exhibit spatiotemporal
chaos, self-organization, pattern formation, and symmetry
breaking. This paper has described several such systems
which can be used as a starting point for multidisciplinary
research by undergraduates and others and which may have
profound implications on our understanding of complex sys-
tems in nature.
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