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Abstract. Robust bio-cryptographic schemes employ encoding meth-
ods where a short message is extracted from biometric samples to en-
code cryptographic keys. This approach implies design limitations: 1) the
encoding message should be concise and discriminative, and 2) a dissim-
ilarity threshold must provide a good compromise between false rejec-
tion and acceptance rates. In this paper, the dissimilarity representation
approach is employed to tackle these limitations, with the offline signa-
ture images are employed as biometrics. The signature images are repre-
sented as vectors in a high dimensional feature space, and is projected on
an intermediate space, where pairwise feature distances are computed.
Boosting feature selection is employed to provide a compact space where
intra-personal distances are minimized and the inter-personal distances
are maximized. Finally, the resulting representation is projected on the
dissimilarity space to select the most discriminative prototypes for en-
coding, and to optimize the dissimilarity threshold. Simulation results on
the Brazilian signature DB show the viability of the proposed approach.
Employing the dissimilarity representation approach increases the en-
coding message discriminative power (the area under the ROC curve
grows by about 47%). Prototype selection with threshold optimization
increases the decoding accuracy (the Average Error Rate AER grows by
about 34%).

Keywords: Dissimilarity-representation, Prototype selection, Bio-Cryptography,
Offline signatures.

1 Introduction

Bio-cryptographic systems are introduced to replace the traditional usage of
simple user passwords by biometric traits like fingerprint, iris, face, signatures,
etc., to secure the cryptographic keys within security schemes like encryption
and digital signatures [1]. Different than the simple passwords, biometrics pro-
vide a more trusted authentication tool. However, their fuzzy nature harden the
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classification decision. Similarities between inter-personal traits result in false
acceptance and dissimilarities between intra-personal traits result in false rejec-
tions.

Robust bio-cryptographic systems operate in the key-binding mode where
classical crypto-keys are coupled with the biometric message. For key binding,
some encoding schemes like Fuzzy Commitment [2] and Fuzzy Vault (FV) [3]
are the most commonly employed. In the enrollment phase, a prototype bio-
metric message encodes the secret key. In the authentication phase, a message
is extracted from the query sample to decode the key. The idea behind these
schemes is to consider the query biometric message as a noisy version of the
encoded message. If the query sample is genuine, the dissimilarity between the
encoding and decoding messages is limited, so this noise can be eliminated by
the decoder. On the other hand, if the query sample belongs to another person,
or if it is a forged sample, the dissimilarity between the two messages is too high
to cancel. Accordingly, the secret key will be unlocked only to users who apply
similar enough query samples.

Some error correction codes like R-S codes [4] are employed to realize the
key binding approach. Practical decoding complexity of such codes need that
employed biometric messages should be concise. Also, error correction capacity of
such codes can be controlled by adjusting a dissimilarity threshold. The decoder
succeeds to unlock the secret, only if the dissimilarity between the prototype and
the query message is beyond the threshold. Accordingly, this threshold should be
properly adjusted based on the expected dissimilarity ranges. So that, the code
can cancel the intra-personal dissimilarities and fails to cancel the inter-personal
dissimilarities.

For physiological biometrics like fingerprint and iris, small number of simple
features extracted in the spacial domain can be employed to constitute informa-
tive encoding messages. This is simply because the intrinsic stability and discrim-
inative nature of such biometrics. On the other hand, for behavioral biometrics
like offline signature images, the intra-personal variability and inter-personal
similarity are intrinsic properties. Moreover, it is easy to produce forged signa-
ture images. Accordingly, discrimination between genuine and forged signatures
needs high dimensional feature representation and complicated classifiers [5]. It
is a challenging task to produce a concise and informative messages from the sig-
nature images, and to use simple classifiers like the bio-cryptographic decoders
to differentiate between genuine and forged signatures.

In this paper, design of reliable decoders for offline signature-based bio-
cryptography is tackled by employing the concept of dissimilarity-representation
[6]. This concept is originally introduced to build classical classifiers, by replac-
ing the feature representation of objects by their dissimilarity to a fixed set of
prototypes. Performance of these classifiers relies on the accuracy of the em-
ployed dissimilarity measure and how carefully the prototypes are chosen [8].
In literature, dissimilarity measures often composed of graphs, strings, or nor-
malized versions of the raw measurements. However, the dissimilarity approach
may also be used on top of a feature representation, where object proximity is
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represented by computing the distance between ordinary feature representations
in a vectorial space [7].

As most of work on classical offline signature verification is feature-based,
where many techniques of feature extraction are already proposed [5], we base
our method on top of a feature representation. In such case, the encoding mes-
sages are composed of a set of features. The dissimilarity between the prototype
and query messages is measured by the distance between the feature vectors that
constitute these messages. The rational behind the proposed method is that the
overall dissimilarity between two messages is an accumulation of individual dis-
similarities between every pair of corresponding elements of the message. So, to
increase the separation between the intra-personal and inter-personal dissimilar-
ity ranges, we select features that decrease the intra-personal distances and that
increase the inter-personal distances.

The enrolling signature images are first represented as vectors in a high di-
mensional feature space. This representation is projected on an intermediate
space, which we call a ”feature-dissimilarity” space, where pairwise feature dis-
tances are computed. Boosting feature selection is employed in this intermediate
space, producing a compact space with the intra-personal distances are min-
imized and the inter-personal distances are maximized. Finally, the resulting
representation is projected on the dissimilarity space to select the most discrim-
inative prototypes for encoding, along with optimizing the dissimilarity thresh-
old.

For proof of concept simulations, the Brazilian signature DB (including gen-
uine and samples with different levels of forgeries) is employed [9]. The impact of
proposed dissimilarity representation approach is investigated by analyzing the
separation between the intra-personal and the inter-personal dissimilarity dis-
tributions. The benefit of prototype selection with optimizing the dissimilarity
threshold is tested by its impact on the overall recognition accuracy.

The rest of this paper is organized as follows. The next section provides some
background on the dissimilarity representations as applied to bio-cryptographic
offline signature based systems. The proposed dissimilarity representation and
prototype selection approach for designing signature-based bio-cryptographic
systems is illustrated in section 3. The experimental methodology is illustrated
in section 4. The experimental results are presented and discussed in section 5.

2 Background

Signature Verification systems (SV) are employed to authenticate individuals
based on their handwritten signatures. Classical SV systems output a simple
acceptance/rejection decision for a query signature sample. On the other hand,
signature-based bio-cryptographic systems release a secret cryptographic key
only for a user who applies a genuine signature sample. There are two modes
of operation for signature-based systems: online and offline. For online systems,
users use special devices like special pens and tablets to acquire their signature
dynamics such as velocity, pressure, etc. On the other hand, offline signature-
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based systems use scanned signature images for the recognition task. Only static
information can be acquired from the signature images, producing less informa-
tive signals, and hence, a harder pattern recognition task.

Most of work done in the signature verification area applied feature-based
pattern recognition approaches, where feature representations are constituted
from signature signals. The classifiers are then designed in the feature space.
Performance of such systems are basically limited by the quality of employed
feature representations.

Handwritten signature images imply high variability between different user
samples, and also high similarity between signatures of different users. Accord-
ingly, the feature-based approach succeeds to produce offline SV verification
systems, only when high dimensional feature representations and complex clas-
sifiers are employed. For a comprehensive review on the different approaches see
[5].

For bio-cryptographic systems design, there are some restrictions on the size
of the employed feature representations, and on the classification complexity. Ac-
cordingly, direct application of the feature-based approach produces inaccurate
systems. In literature, few bio-cryptographic implementations are done based on
the handwritten signatures. The online signatures produced bio-cryptographic
systems with acceptable performance [14], as discriminative features like ve-
locity, pressure, etc, are employed. On the other hand, it is shown that static
features extracted from the offline signature images are unstable and they are
not discriminant enough to design a bio-cryptographic system [15].

Different than the feature-based approach, the concept of dissimilarity-based
classification has been proposed by Elzbieta Pekalska and Robert P.W. Duin.,
[6]. The rational behind this concept is that modeling the proximity between
objects may be more discriminative than modeling the objects themselves. This
is because objects belong to a specific class have a shared degree of commonality
that could be captured by a dissimilarity value.

We propose that the dissimilarity-based approach can be employed to design
reliable key-binding bio-cryptographic systems. In such systems, error correction-
based decoders are used. If the dissimilarity between the decoding and the encod-
ing signals is less than a specific threshold, the decoder succeeds to decouple the
encoded bio-ctyptographic key. So, functionality of these decoders can be consid-
ered as two-class simple thresholding classifiers that operate in the dissimilarity
space.

In literature, the concept of dissimilarity representation is not directly em-
ployed to design bio-cryptographic systems. However, some authors proposed
methodologies to absorb the dissimilarities between encoding and decoding bio-
metric signals, so that they are within the error correction capacity of the de-
coder. For instance, Fingerprint-based fuzzy vaults are designed by using some
minutia points extracted in the spatial space to constitute the encoding message
[16]. The dissimilarity between encoding and decoding messages is decreased by
aligning the query and the template fingerprints prior to the decoding process.
For our proposed method, instead of aligning the dissimilar messages, we design
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them in a way that produces similar intra-personal messages and dissimilar inter-
personal encoding messages. A preliminary realization of the proposed method is
appeared in [17], where a Fuzzy Vault (FV) system based on the offline signature
images is proposed. Boosting feature selection (BFS) is employed to select infor-
mative representation, so that intra-personal dissimilarities are minimized and
inter-personal dissimilarities are maximized. Although produced discriminative
representations, this method did not cancel some of the intrinsic fuzziness of the
signature signals.

In this paper, we extend the method in [17], so that some of the residual
fuzziness of the signature representations is canceled. Inspired by fingerprint
alignment technique proposed by Nandakumar et al., [16], we model the repre-
sentation dissimilarities, and use this information to absorb the residual message
fuzziness before sending it to the bio-cryptographic decoders. Moreover, as qual-
ity of representation relies mainly on the quality of employed reference signatures
(few work is done on selecting a reference subset for classical signature verifica-
tion systems, e.g., [10].), we extend this idea to the bio-cryptography domain.
The designed messages are projected to the dissimilarity space, where each di-
mension is the message distance to a prototype message. In this space, the most
discriminative prototypes are selected, along with optimizing the dissimilarity
threshold.

3 Proposed Dissimilarity Representation and Prototype
Selection Method

Assume an encoding biometric message: Ep = {fpi }ti=1, where p is the signature
prototype used for message extraction, fpi is a feature extracted from p to con-
stitute a message element, and t is the message length. In the enrollment phase,
Ep is extracted and used to encode a secret cryptographic key K. In the authen-
tication time, a decoding query message EQ = {fQi }ti=1 is extracted, where Q
is the query signature sample applied to decode the locked key K1. Assume the
dissimilarity between the two messages is DQp. For error correction decoders like
the R-S decoders [4], the decoder succeeds to cancel the dissimilarity between Q
and p, if the dissimilarity (error) DQp is less than its error correction capacity
Θ. Hence, decoder functionality DF can be formulated as follows:

DF =

{
1 if DQp ≤ Θ

0 if DQp > Θ
(1)

where Θ is the error correction capacity of the decoder (dissimilarity thresh-
old). Hence, to achieve perfect decoding accuracy, the following condition should
be satisfied:

1 Details of how the crypto-key is encoded/decoded by means of a biometric message
is out of the scope of this paper. For more details on this aspect see [3], and [2]
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Fig. 1. Illustration of feature selection in the original feature space (left) and in the
feature-dissimilarity space (right).

DQp

{
≤ Θ if Q is a genuine sample

> Θ if Q is a forgery sample
(2)

Satisfying the above condition relies on the following design issues:

1. selection of the message elements {fi}ti=1.
2. the dissimilarity measure employed to produce the dissimilarity score DQp.
3. selection of the signature prototype p for encoding.
4. the correction capacity of the decoder (dissimilarity threshold) Θ.

In this paper we propose a methodology to optimize these design issues, so
high decoding accuracy is achieved. The proposed method consists of two main
stages: 1) design of the encoding messages and the dissimilarity measure, and 2)
prototype selection and dissimilarity threshold optimization.

3.1 Design of the Encoding Messages and the dissimilarity Measure

For a message of length t, consider Euclidean distance δQjpr between the query
message Qj and the prototype pr:

δQjpr =

√√√√ t∑
i=1

(δf
Qjpr
i )2 (3)



7

where δf
Qjpr
i = ‖fQji − fpri ‖.

Hence, the overall dissimilarity between messages is an accumulation of the
individual dissimilarities between every two corresponding elements of the mes-
sage. So, to increase the separation between the intra-personal and inter-personal
dissimilarity ranges, we select features that decrease the intra-personal distances
and that increase the inter-personal distances.

The enrolling signature images are first represented as vectors in a high di-
mensional feature space F . This representation is projected on an intermediate
space, which we call a ”feature-dissimilarity” space FD, where pairwise feature
distances are computed. Figure 1 illustrates the transformation from space F
to space FD. In the left side, signatures of three writers are represented in F .
For simplicity, only two features f1 and f2 are shown in this figure, while typi-
cal representations might have high dimensionality. In this example, we assume
that writer 1 is the only authentic person, whose signatures should succeed to
decode the cryptographic key K. Two signatures are considered as prototypes
for this user, p1 and p2. Euclidean distance is employed as a dissimilarity mea-
sure. It is clear that a dissimilarity representation that is built on top of this
feature representation is discriminative. Distances among intra-personal signa-
tures (like δQ1p1) are generally smaller than the distances among inter-personal
signatures (like δQ2p1). However, in this space it is not clear which feature is
more discriminative. With representations of high dimensionality, high number
of system users, unknown forgeries and a small number of training samples, it
is not feasible to select the most discriminative features in the feature space F .

Accordingly, we project this representation on a feature-dissimilarity space
FD, as shown in the right side of Figure 1. In this space, distance between each
corresponding features, for each pair of signatures, is computed and used as new
set of features {δfi}ti=1. So, dimensionality of the F and FD spaces is equal. A
distance δQjpr between a query Qj and a prototype pr is mapped from F to FD
as a point dQjpr :

dQjpr = {δfQjpri }ti=1 (4)

where, δQjpr is represented by the distance from the origin point to dQjpr .
Here, the impact of every individual feature on the signature dissimilarities is
clear. It is obvious that f2 is more discriminative than f1. For all genuine query
samples like Q1, δfQ1pr

2 < δ2 and for all forgery query samples like Q2 and Q3,

δf
Qjpr
2 > δ2. On the other hand, f1 is less discriminant. For the forgery query Q2,

δfQ2p1

1 < δ1, same as that for the genuine sample Q1. Accordingly, it is easier
to rank and select features in the FD space, as the impact of the individual
features on the overall dissimilarity is clear in this space. Moreover, the multi-
class problem with few training samples per class in F space is transformed to
a two-class problem in FD space, with more training samples per class.

Ranking and selecting the most discriminant features in the FD space,
produces encoding/decoding messages with low dissimilarities between intra-
personal instances and with high dissimilarities between inter-personal instances.
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However, some of the intrinsic fuzziness of the signature signal will not be can-
celed through this feature selection approach. To alleviate that, we propose an
adaptive distance measure that is computed in the DF space, and absorbs some
of the residual fuzziness. For a feature representation F = {fi}ti=1, the feature
dissimilarity vector ∆ = {δi}ti=1 is learnt in FD space, where δi discriminates
between the intra-personal and the inter-personal dissimilarities for a feature fi.
Based on this modeled dissimilarity, we replace the Euclidean distance measure
(δQjpr ) by an adaptive dissimilarity measure:

DQjpr =

t∑
i=1

(D
Qjpr
i ), where D

Qjpr
i =

{
0 if (δf

Qjpr
i < δi)

1 otherwise
(5)

Employing this adaptive distance measure absorbs some of the intrinsic fea-
ture variability and increases its discriminative power. For instance, according to
Eq.5, distances among the genuine query and its prototypes DQ1pr = 0. More-
over, most of the distances between the unauthorized queries and the genuine
prototypes DQjpr = 2, ∨j ∈ [2, 3]. Hence, some of the variability of the dissimi-
larity values is canceled.

Ranking the features {fi}ti=1 and learning the dissimilarity vector {δi}ti=1 in
the FD space is a general approach, that can be achieved by employing different
feature selection methods. However in this paper, this concept is realized by
employing a two-step boosting feature selection (BFS) method [12], for fast
searching in high dimensional spaces. Decision-stumps (DS) [19], that are single-
split single-level classification trees, are trained through a boosting process [18].
Training of a DS is equivalent to selection of a single feature that discriminats
between two classes based on a splitting threshold. If the BFS runs in the FD
space, a DSi at a learning iteration i, locates the best dissimilarity feature δfi,
that splits the two classes around a splitting dissimilarity threshold δi.

In the first step, a development database (DevDB) containing samples of
simulated users, is used for training. The reason is that the signature samples
of real users are not enough for feature selection in high dimensional spaces.
Then, population-based representation is produced by running a BFS process
in a DF space, generated by multi-feature representations extracted from the
DevDB database. This approach is employed by Rivard et al., to design a writer-
independent (WI) classical offline signature verification system [11]. However,
the produced population-based spaces have high dimensionality. This is not suit-
able for encoding bio-cryptographic systems, as the encoding/decoding messages
should be concise.

In the second step, the exploitation database (ExpDB), containing samples
of the real users, is used for training. Signature samples are represented in the
population-based space defined through the first step, and additional BFS pro-
cess runs in this user-based space. Recently, we employed this approach to adapt
WI systems to specific writers [13]. Reliable writer-dependent (WD) systems are
achieved based on concise and discriminative user-based feature spaces. In this
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paper, a similar two-step BFS process is employed, however, the user-based BFS
step is employed in a FD space, in order to model the feature dissimilarity vector
∆ = {δi}ti=1.

3.2 Prototype Selection and Dissimilarity Threshold Optimization

The aforementioned approach enlarges the separation between the dissimilar-
ity distributions of the genuine and impostor encoding messages. However, the
distributions differ based on the prototype used for the dissimilarity computa-
tions (Eq.5). To get the best possible dissimilarity representation, we propose a
prototype selection method.

To this end, the user-based representation, produced through the two-step
BFS process, is projected from the FD space to a dissimilarity space D. Consider
the available set of R prototypes P = {p1, p2, ..., pR}. The adaptive dissimilarity
distance for a query Qj is computed for every prototype pr ∈ P , according to
Eq.5. This operation produces a dissimilarity vector DQj in the dissimilarity
space, where

DQj = {DQjp1 , DQjp2 , ..., DQjpR}. (6)

Figure 2 illustrates the transformation between the FD and D spaces. In
the left side, distances between prototype and query messages are represented in
the FD space. It is obvious that different prototypes produce different distance
values, where significant variability exists for the genuine and the forgery classes.
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Also, in this space, it is not clear which prototype is the most informative.
For space D shown in the right figure, it is obvious that some variability is
absorbed through employing the adaptive dissimilarity measure. For instance,
DQj = {0, 0} for all genuine queries (see Eq.5 and Eq.6), as feature dissimilarities

δf
Qjpr
1 < δ1 and δf

Qjpr
2 < δ2, for the genuine queries. Also, for most of the

forgery queries, DQj = {2, 2}, as δf
Qjpr
1 > δ1 and δf

Qjpr
2 > δ2 for the forgery

queries.
Moreover, the dissimilarity space representation provides easier way to rank

prototypes according to their discriminative power. For instance, p2 is more
discriminative than p1, as for all forgery queries, DQjp2 = 2. While for Q2,
DQ2p1 = 1 (as δfQ2p1

1 < δ1). So, measuring the dissimilarity relative to p2
results in more isolated clusters.

Finally, in the D space, we optimize the dissimilarity threshold (Θ). In the
illustrated example, if the selected prototype is p2, then any Θ2 < 2 is dis-
criminant. For p1, any Θ1 < 1 is discriminant. Selection of prototypes with
higher margin between clusters, provides wider range for selecting the dissimi-
larity threshold Θ. This results in more flexibility for parameter setting of the
bio-cryptographic decoder and hence, higher security and recognition accuracy
can be achieved [16].

Based on the proposed method, the decoding functionality DF formulated
by Eq.1 can be reformulated as:

DFr(Qj) = sign(Θr −DQjpr ). (7)

where r is the index of the selected prototype pr, Qj is the query encoding
message, Θr is the dissimilarity threshold associated with this prototype, and
DQjpr is the dissimilarity value computed according to Eq. 5.

The prototype selection method can be realized by various feature selection
techniques (with considering prototypes as features), however, we realized it
through employing the BFS approach [12].

4 Experimental Methodology

4.1 Database

The Brazilian database [9] is used for proof-of-concept simulations. It contains
7,920 samples of signatures that were digitized as 8-bit grayscale images over
400X1000 pixels at resolution of 300 dpi. This DB contains three types of sig-
nature forgery: random, simple and simulated. Random forgeries do not know
neither the signerś name nor the signature morphology. It can also happen when
a genuine signature presented to the system is mislabeled to another user. For
simple forgery, the forger knows the writerś name but not the signature mor-
phology. He can only produce a simple forgery using a style of writing of his
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liking. Simulated forgeries have access to a sample of the signature. A forger can
therefore imitate the genuine signature.

The signatures were provided by 168 writers and are organized as follows:
the first 60 writers have 40 genuine signatures, 10 simple forgeries and 10 simu-
lated forgeries per writer, and the other 108 have only 40 genuine signatures
per writer. The experimental database is split into two sets: a development
dataset (DevDB) composed of the last 108 writers, and an exploitation dataset
(ExpDB) composed of the first 60 writers. SetDevDB is used for the population-
based BFS step as illustrated in Section. 3.1.

Set ExpDB is split into two subsets: the reference subset (R) contains the
first 30 genuine signatures, and the query subset (Q) contains the rest 10 genuine
samples, 10 simple and 10 simulated forgeries. The subset R is used for the user-
based BFS step as illustrated in Section. 3.1, and for the prototype selection and
dissimilarity threshold optimization as illustrated in Section. 3.2. Both subsets
of ExpDB are used for evaluating the method performance.

4.2 Feature Extraction

Extended-Shadow-Code (ESC) [20], and Directional Probability Density Func-
tion (DPDF) [21] are employed. Features are extracted based on different grid
scales, hence a range of details are detected in the signature image. A set of 30
grid scales is used for each feature type, producing 60 different single scale fea-
ture representations. These representations are then fused to produce a feature
representation of huge dimensionality (30, 201) [11].

4.3 Design of Encoding Messages and Dissimilarity Measure

The two-step BFS process is implemented as illustrated in section 3.1. First, the
(DevDB) is used for the population-based BFS phase. We followed the same
experimental settings as in the system in [11]. This phase produced a population-
based representation (PR) of dimensionality L = 555. Second, the reference
subset (R) is used for the user-based BFS phase. For each user in ExpDB,
the signatures in R are used to represent the genuine class, and some signatures
from the DevDB are used to represent the forgery class. Then, signatures of both
classes are represented in the PR space of L dimensionality. This representation
is then transformed to the FD space, where the user-based BFS step runs for
t boosting iterations. The process outputs the message elements {fi}20i=1, along
with their dissimilarities ∆ = {δi}20i=1, that are used for computing the adaptive
dissimilarity measure defined by Eq. 5.

4.4 Prototype Selection and Dissimilarity Threshold Optimization

The thirty signatures in the reference subset (R) are used as a prototype set P =
{pr}30r=1. To constitute the dissimilarity space D, the adaptive dissimilarity value
is computed for every signature in R against all of the thirty signatures (Eq.6).
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Fig. 3. Dissimilarity score distribution for a specific user.

To constitute the forgery class, samples from DevDB are chosen randomly, and
dissimilarities between them and the prototypes are computed. BFS runs in
this dissimilarity space, to select the best prototype of pr with the associated
threshold Θr.

4.5 Performance Measures

To assess the impact of the proposed dissimilarity representation approach on the
separability of the genuine and impostor clusters, we use the Hellinger distance.
Assuming normal distributions G and I for the genuine and impostor classes,
respectively. the squared Hellinger distance between them is give by:

H2(G, I) = 1−
√

2σ1σ2
σ2
1 + σ2

2

e
− 1

4
(µ1−µ2)2

σ21+σ22 . (8)

where, µ1, µ2 and σ1, σ2 are the mean and variance values for G and I,
respectively.

To measure the clusters separability for the different types of forgeries, we
report Hrandom, Hsimple and Hsimulated, where the parameters µ and σ of the
impostor cluster I are computed each time, based on the dissimilarities against
samples of a specific type of forgeries. Also, we reportHall, where the distribution
parameters are computed according to dissimilarities of all forgery types.

Also, as the recognition accuracy of bio-cryptographic decoders relies on the
dissimilarity ranges separability and on the employed dissimilarity threshold,
we measure the recognition errors for all of the dissimilarity scores and use
them to generate ROC curves. A ROC curve plots the False Accept Rate (FAR)
against the Genuine Accept Rate (GAR) for all possible thresholds (all generated
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dissimilarity scores). FAR for a specific threshold is the ratio of forgery samples
with a dissimilarity score smaller than this threshold. GAR is the ratio of genuine
samples with a dissimilarity score smaller than the threshold.

In order to have a global assessment on the quality of encoding messages
representation, we compute and average the area under the ROC curves (AUC),
for all users in the ExpDB subset. High AUC indicates more separation between
the dissimilarity score distributions for the genuine and impostor classes.

To assess the impact of the prototype and threshold selection step, we com-
pute the recognition rates. Decoder outputs are estimated by employing Eq. 7
for the selected prototypes and thresholds. By comparing the decoder outputs
to the actual class labels, we compute the average error rate (AERall), where

AERall = (FRR+ FARrandom + FARsimple + FARsimulated)/4 (9)

False Reject Rate (FRR) is the ratio of genuine queries that produce ’0’
decoding outputs, FARrandom, FARsimple and FARsimulated are the ratio of
random, simple, and simulated forgeries respectively that produce ’1’ decoding
outputs. The error rates are also computed when no prototype selection step is
employed and for a fixed threshold Θ = 6. 2

5 Experimental Results

The power of the proposed method for designing the encoding messages and
employing the adaptive dissimilarity measure is assessed by its impact on the
separability of the genuine and impostor dissimilarity distributions. Figure 3 il-
lustrates the impact of each step of the proposed method for a specific user of
the ExpDB dataset. It is obvious that, when no feature selection is employed
to constitute the encoding message, the genuine and impostor distributions are
overlapped. Running BFS based on population signature samples increases the
separation between the two distribution. Running the user-based BFS step en-
hanced the separability. Employing the adaptive distance measure, increased the
stability of the genuine class. For instance, the maximum dissimilarity score for
the genuine class is decreased from 9 to 5. However, this impact differs for the
different forgery types. For instance, in Figure 4, it is clear that while the ran-
dom forgery class distribution is significantly separated, the simulated forgery
distribution still has significant class overlap.

To asses the average performance of the proposed method, the average Hellinger
distance is computed over the 60 Users, and for the different types of forgeries.
Table 1 shows the results of this analysis. It is obvious that each processing
step increased the distances between the genuine and impostor distributions, for

2 Θ = 6 is equivalent to encoding a crypto-key of 128− bits by a biometric message of
length t = 20, by implementing the FV key-binding scheme [3]. Also, for technical
issues, the message elements {fi}ti=1 are quantized in 8-bit words before computing
the dissimilarities.
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Fig. 4. Dissimilarity score distribution for different forgery types.

Table 1. Average Hellinger distance over all Users for the different design scenarios

Design Without Population-based User-based User-based
Aspect Feature Feature Feature Feature Selection

Selection Selection Selection with Adaptive
Distance Measure

Average Hrandom 0.2976 0.6093 0.6617 0.7398
Average Hsimple 0.2519 0.5531 0.6011 0.6951
Average Hsimulated 0.1466 0.4395 0.4786 0.5907
Average Hall 0.2496 0.5590 0.5923 0.6617

Average AUC 0.6577 0.7724 0.9328 0.9700

all types of forgeries. Average distance of the all forgeries distributions Hall is
increased from 0.2496 to 0.6617. Also, the average AUC is increased by about
47% (from 0.6577 to 0.9700).

The dissimilarity scores reported above are averaged for all prototypes in
the subset R. However, class separation differs for the different prototypes. For
instance, Figure 5 shows distributions of the best and worst prototypes for a
specific user. For the worst prototype, a dissimilarity threshold Θ = 4 results
in FRR = 10%, FARrandom = 10% and FARsimulated = 30%. For the best
prototype, FRR = 0%, FARrandom = 0% and FARsimulated = 20%.

The overall impact of running the prototype selection and threshold opti-
mization step is investigated by computed the recognition error rates for both
cases. Tabel 2 shows that AER is decreased by about 34% (from 11.15% to
7.32%), through employing this selection step.

6 Conclusions and Future Work

In this paper, a methodology for designing bio-cryptographic systems based on
the dissimilarity representation approach, is proposed. Separation between gen-
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Fig. 5. Dissimilarity score distributions for different prototypes.

Table 2. Impact of the Prototype Selection on Average Error Rate over all Users

Design Aspect Without Prototype Selection With Prototype Selection

Average FRR 5.25 4.83
Average FARrandom 2.74 0.6
Average FARsimple 3.49 1.5
Average FARsimulated 33.14 22.33

Average AER 11.15 7.32

uine and impostor distributions is increased through maximizing the distance
between the individual elements of the encoding messages. Some of the intrinsic
variability of the messages is absorbed by employing an adaptive dissimilarity
measure. A prototype selection and dissimilarity threshold optimization method
is proposed, to enhance the recognition performance. Future work will employ
the proposed method to build a complete signature-based bio-cryptographic sys-
tem.
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