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Abstract— The particle swarm and quantum particle swarm o2 = %, where Ny is the unilateral power spectral density;

n

optimization (PSO and QPSO) techniques applied to Direct the spreading sequence for theh user is defined by:
Sequence/Code Division Multiple Access systems (DS/CDMA)

with multiuser detection (MuD) are analyzed, evaluated and com- Nl
pared. The swarm techniques efficiency when applied to the DS- sp(t) = Z pr(t —nT.)cpn 2
CDMA MuD (PSO-MuD and QPSO-MuD) in Flat Rayleigh chan- n=0

nels is compared through the trade-off between performance ah . .
computational complexity. With the same simulation scenario, wherepr(-) is the rectangular shaping pulse and, < [+1]

the comparison is accomplished among the PSO-MuD, QPSO- is the chip sequence with duratid). Considering short codes
MuD, genetic algorithm (GA) and evolutionary programming the processing gain coincides with the sequence length, i. e
with cloning (EP-C) algorithms. The complexity of these four N = %

heuristics-MuD (Heur-MuD) is compared, expressing it through  The ‘channel attenuation and distortion will be represented
the number of computational operations necessary in order to by a flat Rayleigh channel, characterizing a non-light ohsig

reach the performance obtained through the maximum likelihood L .
detector (ML). (NLOS) communication defined by [8]:

I. INTRODUCTION Ce(t) = (b . ed0(1) ©)

This work analyzes two heuristic algorithms based on tl’\],ﬂ']ere the complex coefficient enve|opﬁo(.), is a random
swarm combinatorial optimization, originally proposed byariable (RV) with Rayleigh distribution and the phasg(-),
Kennedy and Eberhart [1]. This technique is based in thea uniform RV in the interval0; 2). Considering a slowly
individual-society interaction which learning sufferdlience varying channel, i. eT, << (At)., where (At). is the
from the group behavior/learning as well from the indiviluacoherence time of the channel,(t) and 6, (t) are admitted
The swarm technique shows to be promising in its discreggnstants during the bit intervd,.
version [2], [3], [4], [5], and consequently adequate foe th For a synchronous flat fading channel th¢h DS/CDMA
MuD problem treatment. signal at the matched filter to tHeth spreading sequence is:

Trying to optimize the PSO-MuD and QPSO-MuD input K
parameters the analysis will characterize the algorithers p yli] = Abrli)Culi] + ZAjbj [{1¢ [ A, + neli]  (4)
formances in flat Rayleigh channels as a function of somesof it oy '
parameters. The MuD problem is treated under the perspectiv . ] i
of search heuristic techniques applying, besides the swatiijierenxli is thei-th sample of filtered AWGN for thé-th

two other evolutionary techniques, the GA-MuD [6] and EPYSEr and\; denotes thek, j-th element of the normalized

C-MuD [7]. correlation matrixR given by [9]:

With BPSK modulation and synchronous channel shared by
K users, thei-th bit of received baseband DS/CDMA signal
is given by:

1T
Il. SYSTEM MODEL Mej = N/ sk () s; (¢)dt, k,j=1,2,...,K (5)
0
11

. HEURISTICSMUD DETECTORS

K The maximum likelihood (ML) detector is based in the
r(t) = ZAk bi(t) - Cr(t) - sp(t —iTy) +n(t) (1) maximum likelihood function in order to obtain the optimum
k=1 detection (OMuD) [9], [10]. The ML simultaneous estimate

whereA,, is the signal amplitudey, (¢) the transmitted bit and for the detection ofi” synchronous users is given by:

sk(t) the spreading sequence contained in the intdtualy ), - T~ T H
where T} is the information bit period; the additive white P = &8 be?ff}KQRe{y C™Ab} - b" CARAC™D
Gaussian noise (AWGN),(t), has zero mean and variance (6)



whereb € {£+1}¥ are all possible column-vector, solutionsvherew is the weight of the previous velocity in the present
for the MuD problem;C is a diagonal matrix with the speed calculatiorJ;, [t] andU,, [t] are diagonal matrices with
channel complex coefficientd\ is the diagonal matrix with dimensionK, and elements are RV modeled through uniform
the DS/CDMA signal amplitudes; and the vectpris the distributioni/(0, 1), generated for the-th particle;xgest[t] is
baseband received signal with dimensi@nx 1. The solution the K x 1 vector with the best global position found until that
vectorb will be one that maximizes (6). iteration andx?es![t] is the best individual position for the
The inconvenient of ML detector is the exponential increagh particle until that iteration, with lengtlk” x 1; ¢, and ¢2
of complexity with the number of user€)(2¥). Trying to are weight factors regarding the best individual positiod a
improve the trade-off complexityx performance, heuristic the best global position influences in the velocity calaalat
algorithms minimize the computational cost of (6) redudimg respectively.
search space for possible solutions but reaching a perfaena For the MuD problem, each elemeny; in (9) just assumes
still close to the OMuD solution. the “0” or “1” values. This implies in a discrete mode for the
Heuristic algorithms are optimization methods based on thesition choice. That is carried out inserting in the altyon
progressive approximation for a given problem. One objectia command of choice, dependent of the velocity. However, the
function (cost) evaluates the possible solutions for thebpr velocity needs to be adjusted to a probabilistic mode. Séver

lem. functions possess this characteristic, being adopted there
By brevity the EP-C and GA algorithms, both based ogigmoid function:

the Darwin evolutionary theory, are not described here. For 1

details see [6], [7]. Next the PSO and QPSO algorithms are S(a) = e (11)

described. In the MuD context, particle (or individual) is . S :

vector with bits belonging to the set of all possible solnsip %?]'anunc“on 'Sa“n"c;'t;d ;nwtﬁteerrltnterva[l():rﬂéi (eic)act:ggsoﬁr?e

being population ) a set of particles present in a generatio @ —oo alitt 10 - L 00

(the actual iteration in the search of optimization projete ﬁ:ture particle position is obtained through the statement

number of particles in the initial population can be detewxi |f S(vialt]) > pialt], thenag[t +1] = 1, elsexy[t + 1] = 0,

by [6], [11]: (12)
where p;4[t] is a RV modeled througlf (0, 1).

p=10- {0'3454 (\/ m(K —1)+ 2)J @) Starting from the necessity of larger diversification foe th

. search universe (in order to escape from a local maximum),
where the operatof-| returns the greatest integer not Iargeg1 factor /,,.,) is added to the algorithm model, which
than the argument. will be responsible for limiting the velocity in the range
. [£Vmaz). This factor inserts in the velocity calculation a
A. Swarm Algorithm minimum probability that the bit change, making possible

The algorithm is based on the movement of a group @fat the algorithm escapes from eventual local maximum and
particles, randomly distributed in the space, each one arith consequently the performance improvement occurs.
own position and velocity. This velocity is responsible bgt  Table | shows this probability as a function of thg,,,
movement imposed to the particle, changing its spatiatioea value. The bit change is more probable every time that the
in a search of a better performance. Thth dimension of the particle velocity crosses the limit established (B0 -
i-th particle position at time is given by:

TABLE |
2id(t) = 2ia(t — 1) + viq(t — 1) (8) MINIMUM PROBABILITY OF BIT CHANGE AS A FUNCTION OF Vyaz-

Vmax 1 2 3 4 5

where v;4(t — 1) is the i-th particle velocity in itsd-th T00[T — S(Vinaz)][%] | 26.90 11.92 4.74 1.80 0.67

dimension and timét —1). For a kind of problems, like MuD,
we should adapt the algorithm to a discrete model, adoptingThe steps for the PSO-MuD are:
some probabilistic methods. Firstly, the number of dimensi 1) Input variables definitionss, 61, éo, Vinas-

should .be considered as being the number of users of the) Generation of the initiah particles. The initial particle
system; each particleis represented by & x 1 vector: of the population is adopted as being the conventional
FRE 4 . T . detector (CD) output, and the others are generated in
x;i[t] = [z lt] zi2lt] - k[t], i=1,2,..,p (9) random mode.
The interaction among particles, which is the base of the3) Each particle (position) is evaluated through the cost
swarm algorithm, is inserted in the calculation of partcle function (6):
velocity. The velocity of the-th particle, with dimensior x y —9RevICH Ax Y — xTCARACHx. (13
1, is defined by: f (i) ey xit =%, xi (19)
best if there are better positions, the best global performance
vilt +1] = w-vit] + ¢1 - Uy, [t (77 [t] — x4[t]) + is updated inx’** and the best performance of each
+ - Uy, [t] (x5 [t] — x4[t]) (10) particle inx?est,

g9



4) The velocity of each particle is calculated through 4) Change the energy of each partieiglt], according (18),
equation (10) and the position of the particle is updated  following by discretization, through (15), in order to

through (12). obtainx;[t].
5) Return to step 3 until to reach the previously established5) Return to step 3 until to reach the previously established
number of iterations. number of iterations.
6) The output vector isc*". 6) The output vector isc2es.
B. Quantum Swarm Algorithm IV. NUMERICAL RESULTS

The QPSO was presented in [5] as an algorithm with Tests for the PSO-MuD and QPSO-MuD parameters opti-
good performance-complexity trade-off. Using the sociad a mization in the synchronous flat Rayleigh channels were car-
biological principles of the swarm algorithm, the QPSO iged out (not shown here), in the attempt to find the optimum
based on the behavior of group of various animals, assdciauglues (or almost optimum). For all simulations spreading
to the quantum mechanics physical principle. In the quantusgduences with processing gdin= 32 was adopted.
theory aqubit is defined as the smaller unity that holds For comparison purpose the conventional detector (CD) and
information, assuming any value in the rangel]. Thei-th the single user bound (SuB) were included [8].

particle with quantum energy is defined by: A. PSO-MuD parameters optimization

alt] = laalt] aelt] - axt)]” (14) V,,..: a slow convergence was observed for valiigs,, <

: . 3.5. This delay is more significant increasing the number of
where K is the patrticle length (equal to the number of USerS . users and the /No values. FoiV,, > 10 a short dela
for the MuD case); = 1,2,...p andg;4[t] € (0, 1). b/7%0 ) mar y

. t the end of convergen r Wi rved indicatin
For the MuD problem the term;,[t] means the probability at the end of convergence process was observed indicating &

of a bit to be “0”, and has to be transformed to a discrete for Ia.ck of diversity. Thereforey,,, = 4 was adopted,

- . : . L .¢1. as theg, value increases, occurs a slow start in the PSO-
In the original swarm algorithm a sigmoid function is used i L “

2 uD algorithm, but the algorithm tends to reach a slightly
order to adapt the velocity in the_ ran@}el]. .In _the QPSO case superior performance; this gain is not expressive. Theydela
the energies are already contained in this interval. Theeef

: . : - r .. effect is more pronounced as the number of users increases.
the discretized particle;[t] = [xﬂ.[t} wiplt] ... wik[t)] s compromise value of; — 2 was adopted.
obtained through the statement: ) . . . . .
¢2: the convergence is faster increasifg due to the intensi-
If pia[t] > qialt], thenzigft + 1] =1, elsexyft + 1] =0, fication of the best global position search (as a consequence
(15) smaller diversification of the space search); however, tBR B
Like the PSO the QPSO algorithm has memory in order R£rformance improvement is insignifican_t for a large ranfje o
store the best position values already found for each prrtiéésted values fop,. In the subsequent simulations the value
(x?**[t]) and the best global positionc***[t]). From these ¢2 =10 was adopted.
positionS, the best g|0ba| and individual quantum energ&i smaller number of iterations and better performance were
values are calculated in order to generate changes in ffained withw = 1. An increase inv implies in a reduction

particle positions. in the diversification, resulting in a low efficiency to eseap
, , , from local maximums. A decrease in thevalue implies in
aptft] = o x gt + B+ (1 — %, [t]) (16) slow convergence. The value= 1 was adopted.
QM t] = - x2St + B - (1 — x2e*]t)) (17) B. QPSO-MuD parameters optimization

where the parameters and 3 control the step for they a.andﬁ: The_ algori_thm has better performance for< 01
function, witha+ 8 = 1.0. Thei-th particle energy is updatedngh values imply in slow convergence and low ones imply
by: ’ in convergence to non-optimal performance values. Thus,

Qlt + 1] =1 - qift] + 2 [t + 3 - qt'[f]  (18) 0.05andf=0.95. ,
c1, ¢2, andes: In a similar way as obtained for the PSO, the
wherecy, co andcs represent the weight for each componenteight of best global position factor) is more important
of the energy, withe; + ¢z + ¢ = 1.0. than the others. Low values fag imply in slow convergence
The algorithm can be implemented following the steps: and high values result in lack of diversity. A good tradeieff
1) Input variables definitions: a, 3, ¢1,c2,c3, with obtained for the values; = c; = 0.2 andcs = 0.6.
a, fB,c1,c0,c3 € Ry,
2) Generation of the initial p particles, eaghth with
energy q;[t] generated in a random form an;] System parameters
obtained through (15); o Ey/Ny € [0;30]dB;
3) Evaluation ofx;[t] through the cost function (13). If « Near-far effect (NFR) with perfect power control scenario
there are better positions, the best individual and/or (NFR = 0) or half of users withVF'R = 0dB and half
global positions(x?“**[t] andx%***[t]) will be updated. with NFR = +8dB;

C. Convergence and BER for 4 Heur-MuD algorithms




« PN spreading sequences with length= 32;
o Number of usersK = 16 (load L = 0.5) or K = ‘ ey :
32 (L = 1.0); -O-'CD

« Number of errors in the Monte Carlo Simulation (MCS 5} = (E;Z'C
equal or greater than 30. ——PSO

Heur-MuD parameters —$—QPsO
. Population given by equation (7); —— SuB (BPSK)
e PSO: V0o =4, 91 =2, ¢o =10 andw = 1;
e QPSO:c; = ¢ =0.2,¢3 =0.6, « = 0.05 and3 = 0.95;
o GA: T = p/10 (number of better selected particleg)—=
50% andp,, = 100/K%;
o EP-Ciig, =10 and Ic = p1%.
Fig. 1 shows the Heur-MuD, the conventional detector (CL 0 10 20 20 20
and the bound limit (SuB) mean performance considerir Iterations
E, /Ny = 12dB. The GA algorithm has a good start, reaching Fig. 2. Heur-MuD convergencd, = 100% and E, /Ny = 12dB.
the OMuD performance (not shown in the figure) after ahly

iterations. The EP-C was shown to be slow at beginning butThe Heur-MuD performance degradation was also analyzed
also reaching the same BER after 20 iterations. The PSO afhsidering errors in the channel estimates. Errors were-in

QPSO have a initial delay in order to start the convergeng@ced separately and jointly being modeled through uniform
but both reach the OMuD performance after 2 iterations @fstributions:

GA convergence, showing their efficiency in those condgion R R
This delay is due to the null initial velocity condition fonet o= UL Ee) <y ; 0= U(lEe) x b
PSO and the random initial energy condition for the QPSQ,,

Avg

BER

heree, andey are the maximum module and phase channel
coefficients errors, respectively. Figure 3 shows the BER®f
four Heur-MuD algorithms, after convergence, as a function

10 4
-O--CD PO of E,/Ny for K = 16 users, with (0% and 25%) and
i(E;F/:C without errors in the channel coefficients estimates. The fo
—%—PSO algorithms have similar behavior, once they optimize thaesa

> —6—QPSO cost function. Without errors the performance is close ® th

= = SuB (BPSK) SuB case. With errors the same degradation can be observed

BER

for the four algorithms. Note that phase errors cause more
degradation than module errors.

-1
i i i 10 ¢

0 10 20 30 40
Iterations

Fig. 1. Heur-MuD algorithms convergenck;= 50% and E, /No = 12dB.
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Next, the Heur-MuD algorithms performances were ana: mf% _e_ﬁeDur c0e 0 ksl
lyzed with power disparities (8 users witi FR = +8dB). Wy = O - Heun g 0. &= <
The average convergence curves for the 8 weaker use || o
(NFR = 0dB), not shown here, have indicated that the two O 4w Heure, 20,6, 2 025
swarm algorithms are robust against the near far effect.

The performance at medium and hidf /Ny (18dB and SuB (BPSK)
25dB) were also analyzed, consideriiig= 50%. GA, PSO 10" = = "
and QPSO keep their convergence. For these conditions tt EN, [dB]

EP-C algorithm has a very low convergence, not shown here, ) . -
9 y 9 Fleg. 3.  Heur-MuD performance with errors in the channel coeffits

Voo &9

V‘"‘"-o—
VLS, 74

Bt

. —— Heur, sy= 0.25, se =0

—a— Heur, Sv =0.10, Se =0.10

- @ —Heur, Ev =0.25, &= 0.25

20 25 30

indicating a weak diversification strategy. estimates.
With the same system conditions as in Fig. 1, except by
increasing the number of users 6 = 32, the Heur-MuD V. COMPUTATIONAL COMPLEXITY

algorithms performance were analyzed. The results in Fig. 2In spite of the fact that the four Heur-MuD algorithms have
indicate that the performances are very similar tokhe 50% reached a similar performance, the number of iteratig)s (
case, except for the increase of the iteration in that cgarmere in order to reach this point changes wify, /N, and also
happens. with the particular algorithm in the forngea < gopso <



TABLE Il

geso < gep-c- The total number of required operations defines MUD COMPLEXITY IN TERMS OF THE NUMBER OF OPERATIONS

the computational complexity through the computation aof
the number of multiplications, random number generations, !

Number of Operations

. : Literal 16 users 32 users
comparisons and selections. OMUD  2KKZF BK) + K(AK2+6K13) 2x107 48 x 1012
Note that the two terms of (13) can be calculated before thgp-c pg (K2 + 6K + K/1¢) 242912 1557824
iterations loop: +K (4K%2+ (6+p)K +4p+glc +2)
- GA pg (K? +7K) + 126432 1180480
fi =2y " C"A and f; = CARAC K (4K2 + (p+6)K +3p+2)
o 5 ) ) . PSO pg (K2 +12K +2) +p+ g+ 176109 1424254
resulting in4K?® + 6K* + 3K operations and representing K [4K? + K(p+ 6) + (4p + 3)]
a marginal computational cost a increases. Thus, cost QPSO pg (K?> +8K +2) +p+ g+ 155997 1315006
. . . 2
function calculation can be obtained as: K [4K? + (p+ 6)K + (5p + 39 + 3)]

@E,No = 12dB

f (Xi) = Re{flxl} — X;erXi (19)
These two factors result in a total p§( K2 + 2K operations. chapnel shows that the algorithms reach very clogely the
K . . optimum ML performance and are stable for many different
OMuD. There are 2% K generations of bits andgystem's operation point (load, near-far effect abg/No),
2f (K? + 2K) + 4K* + 6K? + 3K products in the considering the optimized parameters as constant. The two
calculation of the cost function. swarm algorithms are robust converging in a fast mode, even

PSO-MuD. Random number generation occurs in the velocityith high load condition, in spite of a slow initial converge.
calculation and discretization. The total generated numise The four Heur-MuD suffer similar performance degradation
given by3pgK +pK. There are (pg+ p—+2) transpositions. in the presence of errors in the channel coefficient estisnate
Also occur pg(2K + 2) + g + p comparisons, between thebeing more sensitive to the phase errors.
particle positions with the best global position, the besti-i ~ The four Heur-MuD algorithms have a complexity of the
vidual position and the velocities in each iteration with,,; Same order)(pgK?), with the GA-MuD resulting the smaller
there are stillpg(K2 + 6K) + K[4K? + (6 + p)K + 2p + 1] number of operations for the two analyzed loadidg € 16
multiplications in order to compute the cost function, wip and K = 32 users).
and discretization. For the MuD problem the swarm technique results in a
_ ) good complexityx performance tradeoff, having the QPSO-
QPSO-MuD. It should be consideredyg <K +6K) +  MuD a smaller computational complexity than the PSO-MuD;
K [AK? + (6 + p)K + 3p + 3g + 1] multiplications for the powever this complexity difference tends to be marginal as
cost function (19) and energy calculation. The number

. . : A ading increases.
comparisons i€pg+p+ g, in the update of the best individual
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