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Abstract— The particle swarm and quantum particle swarm
optimization (PSO and QPSO) techniques applied to Direct
Sequence/Code Division Multiple Access systems (DS/CDMA)
with multiuser detection (MuD) are analyzed, evaluated and com-
pared. The swarm techniques efficiency when applied to the DS-
CDMA MuD (PSO-MuD and QPSO-MuD) in Flat Rayleigh chan-
nels is compared through the trade-off between performance and
computational complexity. With the same simulation scenario,
the comparison is accomplished among the PSO-MuD, QPSO-
MuD, genetic algorithm (GA) and evolutionary programming
with cloning (EP-C) algorithms. The complexity of these four
heuristics-MuD (Heur-MuD) is compared, expressing it through
the number of computational operations necessary in order to
reach the performance obtained through the maximum likelihood
detector (ML).

I. I NTRODUCTION

This work analyzes two heuristic algorithms based on the
swarm combinatorial optimization, originally proposed by
Kennedy and Eberhart [1]. This technique is based in the
individual-society interaction which learning suffers influence
from the group behavior/learning as well from the individual.
The swarm technique shows to be promising in its discrete
version [2], [3], [4], [5], and consequently adequate for the
MuD problem treatment.

Trying to optimize the PSO-MuD and QPSO-MuD input
parameters the analysis will characterize the algorithms per-
formances in flat Rayleigh channels as a function of some of its
parameters. The MuD problem is treated under the perspective
of search heuristic techniques applying, besides the swarm,
two other evolutionary techniques, the GA-MuD [6] and EP-
C-MuD [7].

II. SYSTEM MODEL

With BPSK modulation and synchronous channel shared by
K users, thei-th bit of received baseband DS/CDMA signal
is given by:

r(t) =

K∑

k=1

Ak · bk(t) · ζk(t) · sk(t − iTb) + n(t) (1)

whereAk is the signal amplitude,bk(t) the transmitted bit and
sk(t) the spreading sequence contained in the interval[0, Tb),
where Tb is the information bit period; the additive white
Gaussian noise (AWGN),n(t), has zero mean and variance

σ2
n = N0

2 , whereN0 is the unilateral power spectral density;
the spreading sequence for thek-th user is defined by:

sk(t) =

N−1∑

n=0

pT (t − nTc)ck,n (2)

wherepT (·) is the rectangular shaping pulse andck,n ∈ [±1]
is the chip sequence with durationTc. Considering short codes
the processing gain coincides with the sequence length, i. e.,
N = Tb

Tc

.
The channel attenuation and distortion will be represented

by a flat Rayleigh channel, characterizing a non-light of sight
(NLOS) communication defined by [8]:

ζk(t) = γk(t) · ejθk(t) (3)

where the complex coefficient envelope,γk(·), is a random
variable (RV) with Rayleigh distribution and the phase,θk(·),
is a uniform RV in the interval[0; 2π). Considering a slowly
varying channel, i. e.Tb << (∆t)c, where (∆t)c is the
coherence time of the channel,γk(t) and θk(t) are admitted
constants during the bit intervalTb.

For a synchronous flat fading channel thek-th DS/CDMA
signal at the matched filter to thek-th spreading sequence is:

yk[i] = Akbk[i]ζk[i] +

K∑

j 6=k

Ajbj [i]ζj [i]λk,j + nk[i] (4)

wherenk[i] is the i-th sample of filtered AWGN for thek-th
user andλk,j denotes thek, j-th element of the normalized
correlation matrixR given by [9]:

λk,j =
1

N

∫ Tb

0

sk (t) sj (t)dt, k, j = 1, 2, . . . ,K (5)

III. H EURISTICSMUD DETECTORS

The maximum likelihood (ML) detector is based in the
maximum likelihood function in order to obtain the optimum
detection (OMuD) [9], [10]. The ML simultaneous estimate
for the detection ofK synchronous users is given by:

b̂ = arg

{
max

b∈{±1}K

2Re{yT CHAb} − bT CARACHb

}

(6)



whereb ∈ {±1}K are all possible column-vector, solutions
for the MuD problem;C is a diagonal matrix with the
channel complex coefficients;A is the diagonal matrix with
the DS/CDMA signal amplitudes; and the vectory is the
baseband received signal with dimensionK × 1. The solution
vector b̂ will be one that maximizes (6).

The inconvenient of ML detector is the exponential increase
of complexity with the number of users,O(2K). Trying to
improve the trade-off complexity× performance, heuristic
algorithms minimize the computational cost of (6) reducingthe
search space for possible solutions but reaching a performance
still close to the OMuD solution.

Heuristic algorithms are optimization methods based on the
progressive approximation for a given problem. One objective
function (cost) evaluates the possible solutions for the prob-
lem.

By brevity the EP-C and GA algorithms, both based on
the Darwin evolutionary theory, are not described here. For
details see [6], [7]. Next the PSO and QPSO algorithms are
described. In the MuD context, particle (or individual) is a
vector with bits belonging to the set of all possible solutions,
being population (p) a set of particles present in a generation
(the actual iteration in the search of optimization process); the
number of particles in the initial population can be determined
by [6], [11]:

p = 10 ·
⌊
0.3454

(√
π(K − 1) + 2

)⌋
(7)

where the operator⌊·⌋ returns the greatest integer not larger
than the argument.

A. Swarm Algorithm

The algorithm is based on the movement of a group of
particles, randomly distributed in the space, each one withan
own position and velocity. This velocity is responsible by the
movement imposed to the particle, changing its spatial location
in a search of a better performance. Thed-th dimension of the
i-th particle position at timet is given by:

xid(t) = xid(t − 1) + vid(t − 1) (8)

where vid(t − 1) is the i-th particle velocity in itsd-th
dimension and time(t−1). For a kind of problems, like MuD,
we should adapt the algorithm to a discrete model, adopting
some probabilistic methods. Firstly, the number of dimensions
should be considered as being the number of users of the
system; each particlei is represented by aK × 1 vector:

xi[t] = [xi1[t] xi2[t] . . . xiK [t]]
T

, i = 1, 2, ..., p (9)

The interaction among particles, which is the base of the
swarm algorithm, is inserted in the calculation of particles
velocity. The velocity of thei-th particle, with dimensionK×
1, is defined by:

vi[t + 1] = ω · vi[t] + φ1 · Ui1 [t](x
best
i [t] − xi[t]) +

+φ2 · Ui2 [t](x
best
g [t] − xi[t]) (10)

whereω is the weight of the previous velocity in the present
speed calculation;Ui1 [t] andUi2 [t] are diagonal matrices with
dimensionK, and elements are RV modeled through uniform
distributionU(0, 1), generated for thei-th particle;xbest

g [t] is
theK×1 vector with the best global position found until that
iteration andxbest

i [t] is the best individual position for thei-
th particle until that iteration, with lengthK × 1; φ1 andφ2

are weight factors regarding the best individual position and
the best global position influences in the velocity calculation,
respectively.

For the MuD problem, each elementxid in (9) just assumes
the “0” or “1” values. This implies in a discrete mode for the
position choice. That is carried out inserting in the algorithm
a command of choice, dependent of the velocity. However, the
velocity needs to be adjusted to a probabilistic mode. Several
functions possess this characteristic, being adopted herethe
sigmoid function:

S(a) =
1

1 + e−a
(11)

This function is limited in the interval[0, 1]. S(a) tends to 0
whena → −∞ and to 1 whena → ∞. The selection of the
future particle position is obtained through the statement:

If S(vid[t]) > ρid[t], thenxid[t + 1] = 1, elsexid[t + 1] = 0,
(12)

whereρid[t] is a RV modeled throughU(0, 1).
Starting from the necessity of larger diversification for the

search universe (in order to escape from a local maximum),
a factor (Vmax) is added to the algorithm model, which
will be responsible for limiting the velocity in the range
[±Vmax]. This factor inserts in the velocity calculation a
minimum probability that the bit change, making possible
that the algorithm escapes from eventual local maximum and
consequently the performance improvement occurs.

Table I shows this probability as a function of theVmax

value. The bit change is more probable every time that the
particle velocity crosses the limit established by[±Vmax].

TABLE I

M INIMUM PROBABILITY OF BIT CHANGE AS A FUNCTION OF Vmax .

Vmax 1 2 3 4 5
100[1 − S(Vmax)][%] 26.90 11.92 4.74 1.80 0.67

The steps for the PSO-MuD are:

1) Input variables definitions:ω, φ1, φ2, Vmax.
2) Generation of the initialp particles. The initial particle

of the population is adopted as being the conventional
detector (CD) output, and the others are generated in
random mode.

3) Each particle (position) is evaluated through the cost
function (6):

f (xi) = 2Re{yT CHAxi} − xT
i CARACHxi (13)

if there are better positions, the best global performance
is updated inxbest

g and the best performance of each
particle inxbest

i .



4) The velocity of each particle is calculated through
equation (10) and the position of the particle is updated
through (12).

5) Return to step 3 until to reach the previously established
number of iterations.

6) The output vector isxbest
g .

B. Quantum Swarm Algorithm

The QPSO was presented in [5] as an algorithm with
good performance-complexity trade-off. Using the social and
biological principles of the swarm algorithm, the QPSO is
based on the behavior of group of various animals, associated
to the quantum mechanics physical principle. In the quantum
theory a qubit is defined as the smaller unity that holds
information, assuming any value in the range[0, 1]. The i-th
particle with quantum energy is defined by:

qi[t] = [qi1[t] qi2[t] . . . qiK [t]]
T (14)

whereK is the particle length (equal to the number of users
for the MuD case),i = 1, 2, . . . p andqid[t] ∈ (0, 1).

For the MuD problem the termqid[t] means the probability
of a bit to be “0”, and has to be transformed to a discrete form.
In the original swarm algorithm a sigmoid function is used in
order to adapt the velocity in the range[0, 1]. In the QPSO case
the energies are already contained in this interval. Therefore,
the discretized particlexi[t] = [xi1[t] xi2[t] . . . xiK [t]]

T is
obtained through the statement:

If ρid[t] > qid[t], thenxid[t + 1] = 1, elsexid[t + 1] = 0,
(15)

Like the PSO the QPSO algorithm has memory in order to
store the best position values already found for each particle
(xbest

i [t]) and the best global position (xbest
g [t]). From these

positions, the best global and individual quantum energy
values are calculated in order to generate changes in the
particle positions.

qbest
g [t] = α · xbest

g [t] + β · (1 − xbest
g [t]) (16)

qbest
i [t] = α · xbest

i [t] + β · (1 − xbest
i [t]) (17)

where the parametersα and β control the step for theq
function, withα+β = 1.0. Thei-th particle energy is updated
by:

qi[t + 1] = c1 · qi[t] + c2 · q
best
i [t] + c3 · q

best
g [t] (18)

wherec1, c2 andc3 represent the weight for each component
of the energy, withc1 + c2 + c3 = 1.0.

The algorithm can be implemented following the steps:

1) Input variables definitions: α, β, c1, c2, c3, with
α, β, c1, c2, c3 ∈ R+.

2) Generation of the initial p particles, eachi-th with
energy qi[t] generated in a random form andxi[t]
obtained through (15);

3) Evaluation ofxi[t] through the cost function (13). If
there are better positions, the best individual and/or
global positions(xbest

i [t] andxbest
g [t]) will be updated.

4) Change the energy of each particle,qi[t], according (18),
following by discretization, through (15), in order to
obtainxi[t].

5) Return to step 3 until to reach the previously established
number of iterations.

6) The output vector isxbest
g .

IV. N UMERICAL RESULTS

Tests for the PSO-MuD and QPSO-MuD parameters opti-
mization in the synchronous flat Rayleigh channels were car-
ried out (not shown here), in the attempt to find the optimum
values (or almost optimum). For all simulations spreading
sequences with processing gainN = 32 was adopted.

For comparison purpose the conventional detector (CD) and
the single user bound (SuB) were included [8].

A. PSO-MuD parameters optimization

Vmax: a slow convergence was observed for valuesVmax <
3.5. This delay is more significant increasing the number of
the users and theEb/N0 values. ForVmax > 10 a short delay
at the end of convergence process was observed indicating a
lack of diversity. Therefore,Vmax = 4 was adopted.
φ1: as theφ1 value increases, occurs a slow start in the PSO-
MuD algorithm, but the algorithm tends to reach a slightly
superior performance; this gain is not expressive. The delay
effect is more pronounced as the number of users increases.
A compromise value ofφ1 = 2 was adopted.
φ2: the convergence is faster increasingφ2, due to the intensi-
fication of the best global position search (as a consequence,
smaller diversification of the space search); however, the BER
performance improvement is insignificant for a large range of
tested values forφ2. In the subsequent simulations the value
φ2 = 10 was adopted.
ω: smaller number of iterations and better performance were
obtained withω = 1. An increase inω implies in a reduction
in the diversification, resulting in a low efficiency to escape
from local maximums. A decrease in theω value implies in
slow convergence. The valueω = 1 was adopted.

B. QPSO-MuD parameters optimization

α andβ: The algorithm has better performance forα < 0.1.
High values imply in slow convergence and low ones imply
in convergence to non-optimal performance values. Thus,α =
0.05 andβ = 0.95.
c1, c2, andc3: In a similar way as obtained for the PSO, the
weight of best global position factor (c3) is more important
than the others. Low values forc3 imply in slow convergence
and high values result in lack of diversity. A good trade-offis
obtained for the valuesc1 = c2 = 0.2 andc3 = 0.6.

C. Convergence and BER for 4 Heur-MuD algorithms

System parameters:

• Eb/N0 ∈ [0; 30]dB;
• Near-far effect (NFR) with perfect power control scenario

(NFR = 0) or half of users withNFR = 0dB and half
with NFR = +8dB;



• PN spreading sequences with lengthN = 32;
• Number of usersK = 16 (load L = 0.5) or K =

32 (L = 1.0);
• Number of errors in the Monte Carlo Simulation (MCS)

equal or greater than 30.

Heur-MuD parameters:

• Population given by equation (7);
• PSO:Vmax = 4, φ1 = 2, φ2 = 10 andω = 1;
• QPSO:c1 = c2 = 0.2, c3 = 0.6, α = 0.05 andβ = 0.95;
• GA: T = p/10 (number of better selected particles),ic =

50% andpm = 100/K%;
• EP-C: i% = 10 andIC = p i%

100 .

Fig. 1 shows the Heur-MuD, the conventional detector (CD)
and the bound limit (SuB) mean performance considering
Eb/N0 = 12dB. The GA algorithm has a good start, reaching
the OMuD performance (not shown in the figure) after only9
iterations. The EP-C was shown to be slow at beginning but
also reaching the same BER after 20 iterations. The PSO and
QPSO have a initial delay in order to start the convergence
but both reach the OMuD performance after 2 iterations of
GA convergence, showing their efficiency in those conditions.
This delay is due to the null initial velocity condition for the
PSO and the random initial energy condition for the QPSO.
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Fig. 1. Heur-MuD algorithms convergence;L = 50% andEb/N0 = 12dB.

Next, the Heur-MuD algorithms performances were ana-
lyzed with power disparities (8 users withNFR = +8dB).
The average convergence curves for the 8 weaker users
(NFR = 0dB), not shown here, have indicated that the two
swarm algorithms are robust against the near far effect.

The performance at medium and highEb/N0 (18dB and
25dB) were also analyzed, consideringL = 50%. GA, PSO
and QPSO keep their convergence. For these conditions the
EP-C algorithm has a very low convergence, not shown here,
indicating a weak diversification strategy.

With the same system conditions as in Fig. 1, except by
increasing the number of users toK = 32, the Heur-MuD
algorithms performance were analyzed. The results in Fig. 2
indicate that the performances are very similar to theL = 50%
case, except for the increase of the iteration in that convergence
happens.
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Fig. 2. Heur-MuD convergence,L = 100% andEb/N0 = 12dB.

The Heur-MuD performance degradation was also analyzed
considering errors in the channel estimates. Errors were intro-
duced separately and jointly being modeled through uniform
distributions:

γ̂k = U (1 ± ǫγ) × γk ; θ̂k = U (1 ± ǫθ) × θk

whereǫγ andǫθ are the maximum module and phase channel
coefficients errors, respectively. Figure 3 shows the BER ofthe
four Heur-MuD algorithms, after convergence, as a function
of Eb/N0 for K = 16 users, with (10% and 25%) and
without errors in the channel coefficients estimates. The four
algorithms have similar behavior, once they optimize the same
cost function. Without errors the performance is close to the
SuB case. With errors the same degradation can be observed
for the four algorithms. Note that phase errors cause more
degradation than module errors.
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Fig. 3. Heur-MuD performance with errors in the channel coefficients
estimates.

V. COMPUTATIONAL COMPLEXITY

In spite of the fact that the four Heur-MuD algorithms have
reached a similar performance, the number of iterations (g)
in order to reach this point changes withEb/N0 and also
with the particular algorithm in the formgGA < gQPSO <



gPSO < gEP-C. The total number of required operations defines
the computational complexity through the computation of
the number of multiplications, random number generations,
comparisons and selections.

Note that the two terms of (13) can be calculated before the
iterations loop:

f1 = 2yT CHA and f2 = CARAC

resulting in 4K3 + 6K2 + 3K operations and representing
a marginal computational cost asK increases. Thus, cost
function calculation can be obtained as:

f (xi) = Re{f1xi} − xT
i f2xi (19)

These two factors result in a total ofpg(K2 +2K) operations.

OMuD. There are 2KK generations of bits and
2K

(
K2 + 2K

)
+ 4K3 + 6K2 + 3K products in the

calculation of the cost function.

PSO-MuD. Random number generation occurs in the velocity
calculation and discretization. The total generated numbers is
given by3pgK +pK. There areK(pg+p+2) transpositions.
Also occur pg(2K + 2) + g + p comparisons, between the
particle positions with the best global position, the best indi-
vidual position and the velocities in each iteration withVmax;
there are stillpg(K2 + 6K) + K[4K2 + (6 + p)K + 2p + 1]
multiplications in order to compute the cost function, velocity
and discretization.

QPSO-MuD. It should be consideredpg
(
K2 + 6K

)
+

K
[
4K2 + (6 + p)K + 3p + 3g + 1

]
multiplications for the

cost function (19) and energy calculation. The number of
comparisons is2pg+p+g, in the update of the best individual
and global positions. The random number generation is a great
advantage in confront to the PSO algorithm, being necessary
only pgK + pK generations in order to discretize the vector
of bit energy. Also occurK(pg + p + 2) transpositions.

EP-C-MuD. For the EP-C algorithm the number of operations
depends mainly on the operations of cost function [6], being
necessaryK(pg+p−1) bit generations,(pg+p)(K2+2K)+
4K(K2 + 6K + 3) operations for the computation of the cost
function,2Kpg ordinations,pgK/IC selections,gIC clonings
andpgK comparisons.

GA-MuD. It is necessaryK(pg + p− 1) bit generations,pgK
selections,(pg+p)(K2 +2K)+4K(K2 +6K +3) operations
for the computation of the cost function,2pgK ordinations and
pgK comparisons.

Finally, the complexity analysis shown here is limited by
the fact that some operations with distinct computational com-
plexity (multiplication, selection, comparison) were considered
with the same cost. Table II shows in literal and numerical
forms (for the analyzed conditions) the number of required
operations.

VI. CONCLUSIONS

The PSO-MuD and QPSO-MuD are promising algorithms.
The parameters optimization in a synchronous flat Rayleigh

TABLE II

MUD COMPLEXITY IN TERMS OF THE NUMBER OF OPERATIONS

MuD Number of Operations
Literal 16 users 32 users

OMuD 2K(K2+ 3K) + K(4K2+6K+ 3) 2 × 107 4.8 × 1012

EP-C pg
(
K2 + 6K + K/IC

)
242912 1557824

+K
(
4K2 + (6 + p)K + 4p + gIC + 2

)

GA pg
(
K2 + 7K

)
+ 126432 1180480

K
(
4K2 + (p + 6)K + 3p + 2

)

PSO pg
(
K2 + 12K + 2

)
+ p + g+ 176109 1424254

K
[
4K2 + K(p + 6) + (4p + 3)

]

QPSO pg
(
K2 + 8K + 2

)
+ p + g+ 155997 1315006

K
[
4K2 + (p + 6)K + (5p + 3g + 3)

]

@EbN0 = 12dB

channel shows that the algorithms reach very closely the
optimum ML performance and are stable for many different
system’s operation point (load, near-far effect andEb/N0),
considering the optimized parameters as constant. The two
swarm algorithms are robust converging in a fast mode, even
with high load condition, in spite of a slow initial convergence.
The four Heur-MuD suffer similar performance degradation
in the presence of errors in the channel coefficient estimates,
being more sensitive to the phase errors.

The four Heur-MuD algorithms have a complexity of the
same order,O(pgK2), with the GA-MuD resulting the smaller
number of operations for the two analyzed loading (K = 16
andK = 32 users).

For the MuD problem the swarm technique results in a
good complexity× performance tradeoff, having the QPSO-
MuD a smaller computational complexity than the PSO-MuD;
however this complexity difference tends to be marginal as
loading increases.

REFERENCES

[1] J. Kennedy and R. Eberhart, “Particle Swarm Optimization”, IEEE
International Conference on Neural Networks, pp. 1942-1948, 1995.

[2] J. Kennedy and R. Eberhart, “A Discrete Binary Version ofthe Particle
Swarm Algorithm”, IEEE International Conference on Systems, pp.
4104-4108, 1997.

[3] Z. Lu and S. Yan, “Multiuser Detector Based on Particle Swarm
Algorithm”, Proc. of the IEEE 6th Circuits and Systems Symposium
on Emerging Technologies, vol.2, pp. 783-786, 2004.

[4] Y. Zhao and J. Zeng, “Particle Swarm Optimization Algorithm in
Signal Detection and Blind Extraction”,7th International Symposium
on Parallel Architectures, Algorithms and Networks (ISPAN’04), 2004.

[5] S. Yang, M. Wang and L. Jiao, “A Quantum Particle Swarm Optimiza-
tion”, IEEE Congress on Evolutionary Computation, CEC’04, vol. 1,
pp. 320-324, June 2004.

[6] F. Ciriaco, T. Abr̃ao and P. Jeszensky, “DS/CDMA Multiuser Detection
with Evolutionary Algorithms”,Journal of Universal Computer Science,
vol.12, no.4, pg. 450-480, May, 2006.

[7] T. Abrão, F. Ciriaco and P. J. Jeszensky. “Evolutionary Programming
with Cloning and Adaptive Cost Function Applied To Multi-User DS-
CDMA Systems”.IEEE ISSSTA’04, Sydney, Australia, pp. 160-163, Sep.
2004.

[8] J. Proakis.Digital Communications. McGraw-Hill, 1989.
[9] S. Verd́u, Multiuser Detection, New York: Cambridge University Press,

1998.
[10] S. Verdu, “Optimum Multiuser Signal Detection”, PhD Thesis, Univer-

sity of Illinois at Urbana, Champaign,1984.
[11] C. W. Ahn and R. S. Ramakrishna, “A Genetic Algorithm for Shortest

Path Routing Problem and the Sizing of Populations”,IEEE Transac-
tions on Evolutionary Computation, vol. 6(6), pp. 566-578, 2002.


