View metadata, citation and similar papers at core.ac.uk

-
brought to you by .{ CORE

provided by CiteSeerX

A Collaboration-based Approach to Service Specification
and Detection of Implied Scenarios

Humberto Nicolas Castejon and Rolv Braek
Department of Telematics
Norwegian University of Science and Technology
N-7491 - Trondheim, Norway

{humberto.castejon, rolv.braek}@item.ntnu.no

ABSTRACT

Methods for service specification should be simple and in-
tuitive. At the same time they should be precise and allow
early validations to be performed, in order to detect incon-
sistencies as early as possible in the service development
cycle. In this paper we present a service specification ap-
proach based on UML 2.0 collaborations. It aims to be a
constructive approach, rather than a corrective one, as it
is intended to promote understanding and help reducing the
number of specification errors. We also address the detection
of implied scenarios from collaboration-based service speci-
fications, and propose an approach that limits the state ex-
plosion problem. This is possible since the detection analysis
is modular and it is performed at a high-level of abstraction.

Categories and Subject Descriptors: D.2.1 [Software
Engineering]: Requirements/Specifications - Methodolo-
gies; D.2.4 [Software Engineering]: Software/Program
Verification - Validation

General Terms: Design, Verification

Keywords: Service specification, UML 2.0 collaborations,
roles, goals, goal sequences, implied scenarios.

1. INTRODUCTION

One of the challenges of service engineering lies in service
specifications and the mapping from specifications to design
components. It is desirable to specify services in ways that
are as simple and intuitive as possible. At the same time
specifications should be as precise and complete as possi-
ble, without unduly binding the design and implementation
issues. It is also important that service specifications can
be analysed and refined towards components that can be
dynamically discovered and composed.

Many authors have identified the cross-cutting nature of
services (e.g. [8, 4]) and the need to specify and analyse
services using interaction diagrams (e.g. UML sequence
diagrams or MSCs). We have found UML 2.0 collabora-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SCESM’06, May 27, 2006, Shanghai, China.

Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

37

tions' [7] useful to structure and analyse service specifica-
tions. UML 2.0 collaborations are intended to describe par-
tial functionalities involving interactions among participat-
ing roles played by objects. Therefore, they fit well with
an understanding of services as collaborations between ser-
vice roles played by objects that deliver functionality to the
service users. A service can be specified as a collaboration
defining a structure of collaborating roles with associated
behaviour. Collaborations can, in turn, be used in the de-
finition of larger collaborations, by means of collaboration
uses. This feature enables a compositional and incremental
specification of services. Moreover, collaboration uses pro-
vide the desired flexibility to bind service roles to different
classifiers, and provide a means to structure complex collab-
orations and give an overview of the service, while at the
same time being precise.

Most approaches to service specification using interac-
tion diagrams are based on scenarios describing interactions
among a set of components/agents involved in a service.
While this provides the desired cross-cutting overview, the
result is frequently too detailed to be easily understood. An
alternative approach is to organise interaction diagrams ac-
cording to service goals [9] and interfaces, so that they ac-
tually describe interface behaviour. This will often result in
a larger set of smaller diagrams and a reduced cross-cutting
overview, which must be compensated by alternative means
to precisely relate (i.e. compose) the interface behaviours
involved in the service. This might be considered as a draw-
back. However, we believe the benefits of this approach
outweigh its disadvantages. In the first place, although de-
composition of the service does not eliminate the complex-
ity of its specification, it undoubtedly helps to better un-
derstand the different service sub-problems [3]. Moreover,
treating explicitly the composition of interface behaviours
contributes to the comprehension and explicit documenta-
tion of their dependencies, which in turns helps with the
understanding and discovery of potential conflicts. Finally,
smaller diagrams describing service features on interfaces are
more reusable and support an easier evolution of the service.
We will see how collaborations, in conjunction with goal se-
quences 9, 11], provide an opportunity to structure services
into features and to specify their dependencies, and at the
same time provide the desired cross-cutting overview.

! Collaborations in UML 2.0 are considerably different from
their predecessors in UML 1.x, which are now called com-
munication diagrams in UML 2.0.

https://core.ac.uk/display/357402234?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A second challenge of service engineering lies on early
validation. Analysis of service descriptions in search of in-
consistencies and conflicts should be performed as earlier
as possible, in order to reduce the cost in time and effort
needed to eliminate the problems. In this paper we show how
collaboration-based specifications can be easily analysed to
find implied scenarios [1], which are unexpected scenarios
that have not been captured in the specification, but that
will be present in any service implementation.

1.1 Contributions and outline

The contributions of this paper are mainly two. We present
a constructive approach to the specification of services based
on UML 2.0 collaborations, and show how specifications cre-
ated in this way open interesting opportunities for the de-
tection of implied scenarios.

The paper is structured as follows. In section 2 we briefly
discuss the use of UML collaborations for service engineer-
ing. We then detail their use for the specification of services
in section 3. The proposed approach for the detection of im-
plied scenarios is presented in section 4, before we end with
related work and some discussion in sections 5 and 6.

2. UNDERSTANDING COLLABORATIONS

According to the UML 2.0 standard [7], collaborations
describe a structure of roles that collaborate to collectively
accomplish some task. Rather than describing specific ob-
ject instances, roles specify the properties that any object
instance must have in order to participate in the collabora-
tion. Collaborations can be bound to specific contexts by
means of collaboration uses, which specify the binding of
sub-roles to (composite) roles or classifiers.

In [11] we discussed the suitability of UML collaborations
for service engineering. When used in this context, collab-
orations describe the structure of the service in terms of a
structure of roles, and describe the interactions of these roles
as part of the service. Service goals [9], expressed in terms
of service predicates, can be associated to collaborations as
a means to express liveness properties. Two types of service
goals can be described: event goals, denoting desired events;
and state goals, which are properties of global collaboration
states that we wish to reach, and which entail combinations
of role goals. A service collaboration may be decomposed
into a number of two-way collaborations defining semantic
interfaces in terms of visible interface behaviour and goals
[11]. These semantic interfaces may be further decomposed
into sub-collaborations corresponding to phases or features
provided across the interface. This kind of decomposition
lends itself to behaviour analysis and refinement towards
design classes having well defined interfaces, which can be
used for dynamic discovery and compatibility validation us-
ing semantic interfaces as explained in [10].

A positive side-effect of decomposing the behaviour of a
service into small collaborations is that the dependencies
between the resulting collaborations must be explicitly cap-
tured in order to address their composition. Note that the
behaviour of an atomic collaboration (i.e. without sub-
collaborations) can be directly described by means of a set
of interaction diagrams, while the behaviour of a composite
collaboration follows from the composition of the behaviours
specified for its sub-collaborations. Therefore, only if sub-
collaboration composition relationships are well described,
the service behaviour will be well specified.

38

Collaborations can be inter-related in a number of dif-
ferent ways. They can be independent, so their executions
interleave, they can enable each other (i.e. sequential de-
pendency), or they can interrupt each other. Finally, col-
laborations can maintain goal dependencies, as we discussed
in [2]. This happens when the outcome of a collaboration
(i.e. its goal) depends on the outcome of other collabora-
tion(s). A goal dependency normally implies a dependency
between interfaces, such that the interactions happening on
one interface ¢ (as part of collaboration C1) are temporar-
ily suspended to perform interactions on another interface
j (as part of collaboration C2). Upon completion of the
operations on interface j, collaboration CI on interface i is
resumed.

We use collaboration goal sequences to describe collabora-
tion dependencies. They show the evolution of services in
terms of sub-collaborations and their goals. That is, they
capture the liveness aspects of services by describing the
intended ordering of sub-collaborations at runtime, and by
showing at which points these sub-collaborations interact.
Goal achievement is used to specify interaction points be-
tween collaborations, hence the name collaboration goal se-
quences. These sequences were first introduced in [9, 11]. In
this paper we modify and extend their original notation and
semantics in order to describe suspend /resume relationships
between sub-collaborations.

3. SERVICE SPECIFICATION WITH COL-
LABORATIONS

In this section we describe an approach to the specifica-
tion of services from early requirements, by means of UML
collaborations. It consists of five steps that take the designer
gradually from a more abstract specification to a more de-
tailed one. A direct consequence of this is that the under-
standing of the service increases at each step, so that when
some aspects of it have become clearer, it may be necessary
to take a step back and modify the previous specification.
The proposed approach is therefore iterative in nature.

We will explain and demonstrate the approach using a
transportation case study that originally appeared in [12],
and whose requirements are detailed in the next section.

3.1 Case Study: A Transportation Service

The transportation service consists of one high-speed ve-
hicle transporting one passenger at a time between two ter-
minals. In order to travel, a passenger must buy a ticket
at one of the terminals. If the vehicle is at that terminal,
the departure gate is indicated and the passenger can enter
the vehicle. The terminal then initiates the departure proce-
dure by communicating to the vehicle its destination. When
this procedure is finished, the vehicle starts the journey and,
when it is 100 meters away from the destination terminal, it
initiates the arrival procedure by sending an alert to the ter-
minal. Once the vehicle is at the destination, the passenger
disembarks.

If the vehicle is not initially at the terminal where the pas-
senger buys the ticket, the terminal requests the vehicle from
the control center. The center then relays the request to the
other terminal, which sends the vehicle using the departure
procedure. Once the vehicle arrives at the requesting ter-
minal, the departure gate is communicated to the passenger
and the service continues as explained above.

3.2 The Specification Approach in Detail

Our methodology for service specification has five steps.

Step 1: identify the main roles of the service under spec-
ification. These roles follow from the problem domain. For
example, for the transportation case study we can identify
four service roles: Passenger (P), Terminal (T), Vehicle
(V) and Control-Centre (CC).

Step 2: define the collaborations that each service role
have with any of the other roles. We are interested in two-
party collaborations (any multi-party collaboration can be
decomposed in several two-party collaborations), where the
roles describe interface behaviour. The identified collabo-
rations should have (at least) one concrete and meaningful
goal, that we could express in terms of predicates over prop-
erties of the collaboration. In our case study, we realize that
the Passenger role can be involved in three collaborations:
it has to interact with Terminal, in order to buy a ticket
and get the gate displayed; and with Vehicle, in order to
enter to and exit from the physical vehicle. We name these
collaborations BuyTicket, EnterVehicle and ExitVehicle, re-
spectively. Note that each of them has two roles, which can
be understood as sub-roles played by Passenger, Terminal
and Vehicle (e.g. in the BuyTicket collaboration, Passenger
plays Py, while Terminal plays Tv). If we continue ana-
lyzing the requirements, we can identify four other collab-
orations: ReqVehicle and OrderVehicle, between Terminal
and Control-Center; and VehDeparture and VehArrival, be-
tween Terminal and Vehicle. Note that we can associate a
well-defined goal with each of the identified collaborations.
In the case of BuyTicket, for example, the main (state)
goal is for Passenger to obtain a ticket and for Terminal
to sell it. This can be expressed as an OCL predicate of the
form: ticketBought = Py.ticketBought AND Ty.ticketSold.
In addition, we know that BuyTicket may need to be sus-
pended, after the ticket is requested and before the gate is
displayed, in order to request the vehicle from the control
center. We therefore define a ticketReged event goal associ-
ated with the ticket requesting message, which will be used
as an interaction point between BuyTicket and ReqVehicle.

Step 3: specify the service as a single composite collab-
oration. In this step we represent the sub-collaborations
defined in Step 2 as collaboration uses and bind them to the
service roles that were identified in Step 1. Figure 1 presents
the UML 2.0 collaboration diagram for our transportation
service. This diagram shows the structure of the service
(i.e. the main roles, their multiplicity and their interconnec-
tions) and its decomposition into smaller service features. It
also states how the binding of sub-roles (i.e. roles of sub-
collaborations) to main service roles is performed. For ex-
ample, it specifies that BuyTicket’s role Ty is bound to the
service role Terminal (1) (i.e. Ty is a sub-role of Terminal).

Step 4: describe dependencies by means of a collaboration
goal sequence. Describing the service as a collaboration (cf.
Step 3) enables a high level overview of the service, but
the specification is still incomplete. We miss a description
of the dependencies between the sub-collaborations of the
service, which determine their composition and execution
order. In this step we describe these dependencies by means
of a collaboration goal sequence, as illustrated in Figure 2
for the transportation service.

Goal sequences, as presented in this paper, are inspired
by UML activity diagrams. Each activity (round-cornered
rectangle) represents a phase in the execution of the service

39

- ==~
-~ -
- ~.
- ~
bt ~.,

<,

e TransportService AN
/4————————————————————\\
d — \\
4
/ :RegVehicl N
// Treger /K I 6\\ \OCreqed \\

/ — , -~ "N \
/T \
/ / 'eqed — /| \
/ / _ < ‘T N\ \KoderVehud\/oc, \
| /Pw (ehDepartu \ |

7
\\ ~ —\— |
PP -~ \ K:VehArrival\ /
~KEnteNeh|d(§\ - /
\ Pexv\ AN =7 /
N\ — \ Vg, \Vd / /
\ N\~ AN / /
\ EXIf\/ehICIe\ o\ //
Sl
\\ Vex ////

~. -
~. -
~ -
N -
~ -

Figure 1: Transport service specified as a UML 2.0
collaboration (Step 3 of the specification approach)

collaboration the goal sequence is associated with. Each ac-
tivity is annotated with a collaboration use that is enabled
during the service phase that the activity represents. We
refer to this collaboration use as the active collaboration of
the activity. Optionally, activities may be annotated with
collaboration uses that are temporarily suspended and/or
waiting for inputs from the active one. In order to differ-
entiate between these two kinds of collaboration uses, we
draw the active one in black and the passive one in grey.
We also adorn suspended collaboration uses with a round-
cornered rectangle showing the state the collaboration use
is suspended in (see, for example, the activity on the upper
right corner of Figure 2, where r:Req Vehicle is the active col-
laboration use and b:BuyTicket is a collaboration use that
is suspended at state ticketReged). Annotating activities in
this way helps to see the sub-roles that a given service role
plays at each service phase, as well as the execution order of
these sub-roles.

As in UML activity diagrams, we use a token-passing se-
mantics to describe the flow of control among activities.
That is, when an activity receives an input token, its ac-
tive collaboration is enabled. Thereafter the collaboration
can begin or resume execution, when one of its roles takes
the appropriate initiative, and evolve until an interaction
point with other collaborations is eventually reached. This
could imply that the collaboration has finished its execu-
tion, or that it needs to be suspended (e.g. due to a goal
dependency with another collaboration). For the sake of dif-
ferentiating these two cases, we represent interaction points
with exit points of two different types. A crossed-circle exit
point (®) is used for interaction points representing end of
execution (e.g. as in the last activity of the goal sequence in
Figure 2), while an empty-circle exit point () is used for
interactions points representing suspension (e.g. as in the
first activity of the goal sequence in Figure 2). Exits points
have are annotated with conditions expressed in terms of
predicates describing event/state goals. According to our
semantics, an activity passes on the control token to a sub-
sequent activity when the condition of one of its exit points
is satisfied. As we have already mentioned, when an activity

? v N
(PR
[_/;B" T‘ DAY o [P _(/ b:.BuyTicket\’_ To| _ Tt
: NS uyTticket —~ — == Tl (ticketReqged '), TuticketReged
~N—_— N —
r\) —— Treqer
b.ticketReqed b.ticketReqged _ ccreqed_/ / =~ /
AND AND :CC [— — \r.Rquehche/
T1.vehAtTerminal NOT T1.vehAtTerminal q ~e——
S
r.vehicleReged
g8 f \
b.ticketReged Ccreqer T T~ Treqed
(~ B :.CC - — — ~f0:0rderVehicle ¥ — —>| T2:T
p “T ST N -
P - —/\b:BuyTicket/— —2TLT _ ~ Y,
~—— to.vehOrdered
- J - N
b.ticketBought ~ -~ T T T ‘
. reqed B
- - ~ e E%L\ﬂ(0:OrderVeh. A L T2h_Td .
= / P e ‘l\ Veoy \(vehOrdered) / Treqea-ve€hOrdere
P — ev:EnterVehmIe)— -3 1V - Y,
N -~ —_———— Ta
NS —_—— — Vy - ~/
\ J v |&—(vd1:vehDeparture)
ev.passengerEntered ~ - - 7
~ ~ . J
——— = vdl.vehicleLeft
T1.T | = =(vd2:VehDeparture = = :v o.vehOrdered
To '~ __~-7V e N
-) CCreqer -~ - ‘_\ Treqed
vd2.vehicleLeft :CC fe — — —{0:0rdervehicle - — — 4 T2:T
4 ~N N SN —_— -
Vv -7 T~ T - . J
VAN —\/vaZ:VehArrivaI/\— = T2T o.vehicleSent
SNS—— = (—p— ™\
.) / -
?vaz.vehicleArrived = | Por b:BuyTicket\ Tt T1.T
) \ticketReqged ’l_ TyticketReged
Pexv 7 X ‘\ “ Vexv ——— a/
P |— — — exv:ExitVehicle = —3>{ :V Va - -~
~N— 0 _ - 7 Vo \va1:VehArr|valy
~ -
.) —_——
\ 8 S

exv.passengerLeft

\?’val.vehicleArrived

Figure 2: Goal sequence for TransportService

receives the control token its active collaboration can either
begin execution or resume it, if it had been previously sus-
pended. In order to differentiate between these two cases,
we use, or do not use, entry points. When an activity does
not have an entry point, its active collaboration starts ex-
ecution from the initial state. However, if an entry point
(i.e. an empty circle: () is used, the active collaboration
resumes execution from the state represented by the entry
point’s condition. Edges (i.e. directed connections between
activities) and control nodes (i.e. decision/merge, fork/join,
initial and activity final nodes) are respectively used to allow
and coordinate the flow of control among activities. An ac-
tivity may have several outgoing edges, while we restrict the
number of incoming edges to only one (so multiple incoming
edges must be AND- or OR~joined).

Step 5: detailing the behavior of the collaborations. This
is the final step of our methodology and consists on describ-
ing the behaviour of the sub-collaborations by means of se-
quence diagrams. These diagrams are adorned with goal
information contained in continuations. Note that contin-

40

uations in the sequence diagrams correspond to interaction
points (i.e. entry/exit points) in the goal sequence. Figure
3 shows some of the sequence diagrams for the case study.

After Step 5 the specification of the service is finished,
and we can use it as input for the design process, where
state machines for the roles will be built. This could be
done automatically by using the synthesis algorithm that
we presented in [2]>. However, the specification may con-
tain inconsistencies and implied scenarios arising from the
concurrency of role executions. It is preferable to detect
those inconsistencies and implied scenarios at the specifica-
tion level, before the design starts, since the earlier we do
it, the smaller the cost of eliminating them is. In the next
section we discuss how this can be performed.

2A simple modification to work with collaboration goal se-
quences, instead of Use Case Maps, would be necessary.

sd BuyTicket J sd EnterVehicle) sd ExitVehicle) sd VehDeparture) sd VehArrival)
:Pbt Tbt Pev Vev :Pexv Vexv Td vd Ta Va
. L alert100
! S— > [entervehicle ! [exitvehicle] I _setDestination [' : '
. | | | | | departureReq | arriveReq
{tickectReqged} | arriveAck |
| i 0 {passengerEntered = {passengerLeft = L departureAck _; -
displayGate Pev.atVehicle AND Pexv.outOfVehicle AND | arrived |
e — | S
Vev.passengerin} Vexv.passengerOut} {vehicleLeft =
{tickectBought = Td.vehLeft AND {vehicleArrived =
Pbt.tickectBought Vd.departureDone} Ta.vehArrived AND
AND Tht.ticketSold} Va.atTerminal}
. . .)

Figure 3: Interaction diagrams for the TransportService’s sub-collaborations

4. SERVICE SPECIFICATION VALIDATION:

DETECTION OF IMPLIED SCENARIOS

In this section we show how the use of collaborations, goals
and goal sequences open some interesting possibilities for the
validation of service specifications in search of implied sce-
narios. These scenarios correspond to service behaviour that
has not been explicitly described in the service specification,
but that will be present in any implementation of it [1]. Im-
plied scenarios are a direct consequence of concurrency in
systems. Having this in mind, we propose to search for im-
plied scenarios by analysing concurrency in the service’s goal
sequence.

An important aspect in our analysis methodology is the
classification of (sub-)roles as either initiating or offered®.
In a collaboration the initiating role is the one taking the
initiative to start the collaboration, while the offered role is
the one accepting the initiative. In collaboration diagrams
and goal sequences we distinguish offered sub-roles by means
of an arrow-head pointing to the bound role (note that this
is not standard UML). This can be appreciated, for example,
in Figure 1, where: Ty, To and Tregeq are offered sub-roles
played by Vehicle; Vey, Verw, Va are offered sub-roles played
by Terminal; and CCregeq is the only offered role played by
Control-Center.

We base our detection approach on two facts: (i) a role
cannot control when it will be requested to play an offered
sub-role (although it is its decision to play or not to play the
requested sub-role); and (ii) the execution of offered sub-
roles will normally trigger the execution of other sub-roles,
that is, a sequence of sub-roles will normally be played fol-
lowing the request of an offered sub-role. With this in mind
we can easily realise that unexpected scenarios can arise if
a role is requested to play a certain offered sub-role, while
already “busy” serving a previous request. In order to de-
tect these unexpected scenarios we analyse the sub-role se-
quences that service roles execute as part of the service.

Sub-role sequences can be directly derived from the col-
laboration goal sequence by projecting it onto one specific
(instance of a) service role. This is done by traversing each
possible path of the goal sequence looking for occurrences
of the same role. Once all occurrences are localized, the
sequence of sub-roles played by that role is extracted, to-

3The classification of roles into “initiating” and “offered” is
due to Richard Sanders.

41

gether with entry/exit points conditions expressed in terms
of role goals. Note, however, that in collaboration goal se-
quences the conditions on entry/exit points are expressed in
terms of collaboration goals. Therefore, we need to some-
how extract role goal information from collaboration goals.
For this purpose we look at the sequence diagrams built on
Step 5 of the specification approach. The continuations in
these diagrams specify how the collaboration goals are de-
composed in role goals (e.g. the last continuation in the
BuyTicket sequence diagram specifies that the ticketBought
collaboration goal is decomposed in role goals ticketBought
and ticketSold). Figure 4 shows a selection of sub-role se-
quences for our case study. Figure 4a shows the two sub-role
sequences that Vehicle can play. The first one corresponds to
the case where T'1.vehAtTerminal is true, while the second
corresponds to the case where T1.vehAtTerminal is false.
Figure 4b shows two of the sub-role sequences that Termi-
nal can play. The first one represents the sub-roles played
by T1:T when T1.vehAtTerminal is true, while the sec-
ond sequence considers the sub-roles played by T2:T when
T1.vehAtTerminal is false.

Sub-role sequences are subject to two separate analyses.
First we consider them in isolation (i.e. each of them indi-
vidually) and, thereafter, we turn our attention to how they
interact with each other.

In the isolated analysis we consider each sub-role sequence
separately, and search for possible inconsistencies due to
concurrency aspects and/or non-determinism. In this pa-
per we just focus on concurrency conflicts, which can appear
when the sub-role sequence contains two or more consecutive
offered roles. In this case, a conflict may exist if the offered
roles are played in collaborations with different parties, and
these collaborations maintain some kind of dependency (e.g.
one collaboration should not finish before the other does). In
such a situation it might not be possible to ensure that the
dependency between the collaborations is respected, since
the initiatives to start them are taken by different parties.
For example, a conflict of this type can be detected in the
two sub-role sequences of Vehicle. According to them, role
Vev is to be played before role V4. This corresponds to
the initial requirement that the vehicle departs (i.e. Veh-
Departure is executed) after the passenger has embarked
(i.e. after EnterVehicle is executed). This behaviour cannot
be ensured since Terminal, which takes the initiative in Veh-
Departure, cannot know if Passenger has taken the initiative

VehEmpt;

passengerin AND
NOT VehEmpty

®

passengerin AND!
NOT VehEmpty

(Ve
passengerout &
AND VehEmpty,

vehLeft AND _
NOT vehAtTerminal

) AND VehEmpty,) (1)

@)

Tou ticketRegedd, & reqeaz-vehOrdered D
,

3% ®
O O O

~
Tpu.ticketSold AND
Tg2.vehLeft AND
NOT VehAtTerminal

Tou.ticketSold AND
Tao.vehLeft AND
VehAtTerminal

(@ (b)

©

Figure 4: Sub-role sequences for (a) Vehicle and (b) Terminal; (c) Cross-product of Terminal’s sequences

to start EnterVehicle, and when this has finished (i.e. the
condition ev.passEntered is not visible for Terminal). Thus
Terminal may initiate VehDeparture before Passenger has
initiated EnterVehicle. This conflict may be solved by mod-
ifying the service specification (e.g. by changing the behav-
iour of VehDeparture). Alternatively, we may postpone its
resolution to the design phase. Note that it might be tempt-
ing to design Vehicle in such a way that, when involved in
a VehDeparture collaboration, it would wait for EnterVehi-
cle to start (if not yet started) and finish. However, this
would be a wrong decision, since the collaboration goal se-
quence tells us that VehDeparture does not only occur in
conjunction with FEnterVehicle, but it also maintains a se-
quential dependency with OrderVehicle. This dependency
might easily have passed unnoticed without the dependency
information and overview provided by the collaboration goal
sequence.

After analysing sub-role sequences individually, we study
how they interact if executed concurrently. For that pur-
pose, we first impose extra constraints on the execution
of roles. These constraints follow from the requirements
and the service domain, and help to further specify when
roles can be executed. For example, in our case study we
have further restricted the execution of role 7y by includ-
ing VehAtTerminal and NOT VehAtTerminal as part of its
pre-condition and post-condition, respectively (see Figure
4b, with added constraints in bold). After this assignment
of constraints, we build the cross-product of the sub-role
sequences, and search for points where constraints are vio-
lated. These points correspond to arcs in the cross-product
that connect an exit point and an entry point with non-
matching conditions.

Cross-product construction is done on a role basis. That
is, for each service role we build the cross-product of its
sub-role sequences, without taking into account sub-role se-
quences of other roles. Note, however, that not all the sub-
role sequences of a service role need to be used in the cross-
product. From our understanding of the service we can dis-
card sequences that cannot happen concurrently with others.

Figure 4c shows an example of cross-product construction
and conflict detection for our transportation service. This
cross-product has been built from the two Terminal’s sub-

42

role sequences presented in Figure 4b*. We can see that
a conflict between the executions of role Ty as part of the
“buying” sequence and as part of the “requesting” sequence
((1) and (2), respectively, in Figure 4b) has been discovered
(see bottom of Figure 4c). This conflict happens because af-
ter the occurrence of Ty as part of the requesting sequence,
VehAtTerminal is set to false, which prevents Ty from being
executed, next, as part of the buying sequence. Now we can
use the path leading to the conflict to build a scenario show-
ing the high-level reason and/or consequence of the conflict.
With this scenario we realise that the terminal may get a re-
quest for the vehicle from the control center (i.e. requesting
sequence) while a passenger is buying a ticket (i.e. buying
sequence). If this happens, the passenger may miss the vehi-
cle, which would depart empty obeying the request from the
control center. Further analysis of the cross-product would
reveal the possibility of the opposite case, that is, that the
vehicle may depart with the passenger before the control
center’s request had been completely processed.

Following the same procedure with Vehicle as with Ter-
minal, we may detect an implied scenario where a requested
vehicle arrives at the requesting terminal already carrying a
passenger, and the new passenger tries to enter the vehicle
before the occupying passenger has disembarked.

S. RELATED WORK

Service-oriented specification has been addressed in sev-
eral works. RoBler et al. [8] suggested collaboration based
design with a tighter integration between interaction and
state diagram models, and created a specific language, CoSDL,
to define collaborations. CoSDL is inspired by SDL, so
it fails at providing the high-level service vision offered by
UML collaborations and goal sequences. Kriiger et al. [4]
propose an approach to service engineering that has many
commonalities with our own. They consider, as we do, ser-
vices as collaborations between roles played by components,
and use a combination of Use Cases and an extended MSC
language to describe them. Liveness is expressed by means
of the operators provided by their MSC language, while ser-
vice structure and role binding are described with, so-called,
role and deployment domain models. In our approach UML

4For the sake of clarity only the conditions associated to
some of the entry and exit points are depicted.

collaboration diagrams are used to provide a unified way of
describing service structure and role bindings, and to pro-
vide a framework for expressing liveness with goal sequences.
Goal sequences provide interesting opportunities for analy-
sis, as we have discussed.

Goals have been extensively used in the requirements en-
gineering domain [5]. However, to the best of our knowledge,
no one has used goals before to drive the decomposition of
services into smaller services or features, and to express de-
pendencies between them.

The concept of implied scenarios was first introduced by
Alur et al. in [1], where they presented an algorithm to de-
tect this kind of scenarios from MSC specifications. This
work was later extended by Uchitel et al. [12], who pro-
posed an approach for the incremental specification (using
both MSCs and HMSCs) of systems, driven by the detec-
tion of implied scenarios. The main drawback of Uchitel et
al.’s work is, however, that it is subject to the state explo-
sion problem (although they limit it by applying heuris-
tics). Munccini [6] has proposed an approach for the de-
tection of implied scenarios based on the analysis of HM-
SCs. This work builds over a previous work of Uchitel et
al., and avoids the state explosion problem. Our method
also limits the state explosion problem and it is applicable
to UML collaboration-based specifications, while Munccini’s
approach applies to HMSC-based specifications.

6. DISCUSSION AND CONCLUSIONS

We have presented a service specification approach based
on UML 2.0 collaborations. It aims to be a constructive ap-
proach, rather than a corrective one, where feature depen-
dencies are explicitly documented. To achieve this we pro-
pose a goal-oriented understanding of the service, and a sub-
sequent decomposition of the service into features with con-
crete goals. We have suggested the use of goal sequences to
describe dependencies between these service features. Goal
sequences provide an intuitive understanding of the dynam-
ics (i.e. liveness) of the service.

We have also addressed the detection of implied scenar-
ios from collaboration-based service specifications. The de-
tection is done by static analysis of individual sub-role se-
quences, as well as by constructing their cross-product. In
spite of that, the proposed analysis is not significantly af-
fected by the state explosion problem. The main reason is
that the sub-role sequences of each service role are analysed
separately, so the complexity is linear with the number of
service roles. In addition, we work at a high-level of ab-
straction (i.e. we analyse role sequences and not message
sequences). Moreover, not all the sub-role sequences of a
service role need to be used in the cross-product, as we have
previously explained. In the case study we have presented,
we needed to construct two cross-products: one for Termi-
nal, with only 20 states after discarding some sub-role se-
quences (or 240 states considering all sequences); and the
other for Vehicle, with 35 states. As a comparison, the de-
tection method by Uchitel et al. [12], which is of exponential
complexity with the number of service roles, needs to build
a safety property for the presented case study of 4414 states,
if heuristics are used.

The proposed implied scenario detection approach demon-
strates, in addition, that we have much to gain from the
explicit description of features dependencies, and from the
analysis and understanding of concurrency on interfaces.

There is still much work to do before we can consider the
proposed approaches as complete solutions. We are working
on the formalization of goal sequences, as well as on the
formalization of the implied scenario detection algorithm.
This will allow us to provide tool-support for goal sequences
and automatic analysis of service specifications. Another
interesting issue we plan to address is how to address the
elimination of the implied scenarios. One possibility might
be to specify negative goal sequences (as the the negative
scenarios in [12]), but we need to study this more carefully.

7. ACKNOWLEDGEMENTS

We would like to thank our colleagues Cyril Carrez, Frank
Kramer and Richard Sanders for helpful comments and dis-
cussions. We would also like to thank the anonymous re-
viewers for their interesting suggestions.

. REFERENCES
[1] R. Alur, K. Etessami, and M. Yannakakis. Inference of

message sequence charts. In 22nd Intl. Conf. on
Software Engineering (ICSE’00), pages 304-313, 2000.

[2] H. N. Castejoén. Synthesizing state-machine behaviour
from UML collaborations and use case maps. In 12th
Intl. SDL Forum, LNCS 3530, pages 339-359, 2005.

[3] M. Jackson. Problems, subproblems and concerns. In
Early Aspects 2004: Aspect-Oriented Requirements
Engineering and Architecture Design, 2004.

[4] I. H. Kriiger, D. Gupta, R. Mathew, P. Moorthy,

W. Phillips, S. Rittmann, and J. Ahluwalia. Towards
a process and tool-chain for service-oriented
automotive software engineering. In ICSE’04
Workshop on Software Engineering for Automotive
Systems (SEAS), 2004.

[5] A. van Lamsweerde. Goal-oriented requirements
engineering: A guided tour. In 5th IEEE Intl.
Symposium on Requirements Engineering (RE’01),
page 249, 2001.

[6] H. Muccini. Detecting implied scenarios analyzing
non-local branching choices. In 6th Intl. Conf.
Fundamental Approaches to Software Engineering
(FASE’03), LNCS 3530, pages 372-386, 2003.

[7] Object Management Group. UML 2.0 Superstructure
Specification, August 2005.

[8] F. RoBler, B. Geppert, and R. Gotzhein.
Collaboration-based design of SDL systems. In 10th
Intl. SDL Forum, LNCS 2078, pages 72—-89, 2001.

[9] R. T. Sanders and R. Braek. Modeling peer-to-peer
service goals in UML. In 2nd IEEE Intl. Conf. on
Software Engineering and Formal Methods, 2004.

[10] R. T. Sanders, R. Braek, G. von Bochmann, and
D. Amyot. Service discovery and component reuse
with semantic interfaces. In 12th Intl. SDL Forum,
LNCS 3530, pages 85-102, 2005.

[11] R. T. Sanders, H. N. Castején, F. A. Kraemer, and
R. Brak. Using UML 2.0 collaborations for
compositional service specification. In ACM/IEEE 8th
Intl. Conf. on Model Driven Eng. Languages and
Systems (MoDELS), LNCS 8713, pages 460-475, 2005.

[12] S. Uchitel, J. Kramer, and J. Magee. Incremental
elaboration of scenario-based specifications and
behavior models using implied scenarios. ACM Trans.
Softw. Eng. Methodol., 13(1):37-85, 2004.

