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ABSTRACT

Weinvestigate the nonlinear forced vibrations of a thermally
loaded annular plate with clamped-clamped immovable bound-
ary conditions in the presence of a three-to-one internal reso-
nance between the first and second axisymmetric modes. We
consider the in-plane thermal |oad to be axisymmetric and excite
the plate externally by a harmonic force near primary resonance
of the second mode. We then use the nonlinear von Karman
plate equations to model the behavior of the system and apply
the method of multiple scales to investigate its responses. \We
found that the response can be periodic oscillations consisting of
both modes, with a large component from the first mode. More-
over, the periodic solutions may undergo Hopf bifurcationswhich
lead to aperiodic oscillations of the plate.

Keywords: Annular plates, thermal load, three-to-one in-
ternal resonance, modal interactions, nonlinear vibrations.

INTRODUCTION

Sridhar, Mook, and Nayfeh [2,3] considered the response of
a circular plate under a primary resonance excitafd®: uyg
in the presence of a combination internal resonance of the type
wij + 20 ~ wm. They considered in Ref. [2] interactions
between axisymmetric modes only and in Ref. [3] interac-
tions between axisymmetric and asymmetric modes. In the lat-
ter case, they found that a traveling-wave response may occur
whenQ ~ wm. Hadian and Nayfeh [4] analyzed a plate having
the internal resonanagy; + 2wz ~ o3 and found that, when
Q ~ wp3, the multimode responses found in Ref. [2] may un-
dergo a Hopf bifurcation, resulting in a quasiperiodic multimodal
motion. Moreover, this motion could develop into a chaotic one
as a result of undergoing a sequence of period-doubling bifurca-
tions. Lee and Kim [5] also considered a plate having the internal
resonancevp; + 202 ~ W3, but they excited it by the external
combination resonande ~ 2wyp1 + wpz. They found interactions
among the modes. Yeo and Lee [6] introduced a correction to the
evolution equations derived in Ref. [3] and then considered the
response due to a primary resonance of the asymmetric mode

The influence of modal interactions in systems is of great ¢y, (i.e., Q ~ wi1). They found that, even without considering
interest to engineers because they can lead to unexpected an@ny internal resonances, the response of the plate can consist of
unwanted large and complex responses [1]. In particular, modal 3 traveling wave for a certain range of parameters.

interactions in circular plates are important because the nature
of the response can also be affected. That is, the response may

consist of standing waves, traveling waves, or both.
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Plates are key components in many structural and machinery
applications. Some examples include flight-vehicle power plants,
tanks, brake systems in automotive vehicles, and, more recently,
microelectromechanical (MEMS) devices, such as sensors and
micropumps. In many of these applications, the plates are sub-
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unexpected dynamic responses [7]. Consequently, the responseshree-to-one internal resonance between the first and second ax-
of plates to thermal loadings are the subject of much research isymmetric modes (i.ety2 ~ 3wp1). We excite the plate exter-
[8,9]. Next, we review the research done on annular and circu- nally by a harmonic force near primary resonance of the second
lar plates in this field and separate it into linear and nonlinear mode (i.e.,Q =~ wp2) and consider the in-plane thermal load to
analyses. be axisymmetric. We use the nonlinear voariKan plate equa-

Fedorov [10] examined the linear thermostability problem tions to model the behavior of the system and apply the method
of elastically clamped variable-stiffness annular plates under ax- of multiple scales [21] to investigate its responses.
isymmetric radial nonuniform thermal loads. He found that, in
certain cases, variation of the Young modulus and Poisson ratio
with temperature cannot be neglected. Irie and Yamada [11] in- (@) s
vestigated the linear free vibrations of elastically supported cir-
cular and annular plates, with one edge exposed to an axisym- Clomped Edes
metric sinusoidal heat flux and the other edge thermally insu-
lated. Buckens [12] investigated the linear free pre- and post-

Q(?)I

=

buckling vibrations of a circular plate under in-plane thermal
stresses.

Using Berger’s approximation, Pal [13-15] investigated the T =,
nonlinear responses of isotropic and orthotropic circular heated
plates under different thermal conditions. He compared his re- ®)
sults with the solution of the von &man equations and con- 1) 1(7)
cluded that Berger’s approximation yields valid results. Biswas 7,
and Kapoor [16] used the vonafman equations to study the o
nonlinear vibrations of polar orthotropic clamped circular plates [ )
at elevated temperatures. They concluded that the effect of the in- gz
plane thermal stress is to decrease the period of oscillations. Li,
Zhou, and Song [17] used the vorainan equations to study the
nonlinear free vibrations of isotropic and polar orthotropic annu- *
lar plates carrying a concentric rigid mass and subject to thermal "™
loads. They then applied the Kantorovich averaging method and
examined the nonlinear natural frequencies and thermal buck- PROBLEM FORMULATION
ling loads for hinged and clamped immovable boundary condi- Because the temperature distribution, external excitation,
tions. The nonlinear vibrations of a simply-supported circular and the modes excited, either directly or indirectly, are axisym-
plate under a thermally induced principal parametric excitation metric, the stress function and in-plane displacements are also
of an axisymmetric mode (i.eQ ~ 2uok) was investigated by axisymmetric, and henc = 0. Accordingly, the nonlinear ax-
Nayfeh and Faris [18]. They [19] also investigated the nonlinear jsymmetric vibrations of an annular plate under an axisymmetric
vibrations of a clamped circular plate under a thermally induced thermal load are governed by
combination parametric excitation of two axisymmetric modes
(i.e.,Q ~ 0o} + WoK)-

In the aforementioned works on thermally loaded circular  pj4y -+ ph

Figure 1. A schematic of (@) an annular plate and (b) a cross-sectional
view illustrating a typical steady-state axisymmetric temperature distribu-

@“v éa_w }azwaF 10%F aw
= <

plates, the influence of internal resonances on the response was ot2 of of2 of ~ f of2 of

never investigated. In studying the linear free vibration prob- __1 QZMTJFQ(Q (1)

lem of circular and annular plates under an axisymmetric ther- (1-v)

mal loading, as shown in Fig. 1, Arafat et al. [20] found that, 5 N aT  EaTy de

as the thermal load is increased, the natural frequencies can be- kDT +Q= pcpﬁ 1—2v ot (2)

come near-commensurate with each other, possibly giving rise to

internal resonances. For example, one-to-one, three-to-one, and ~ ~

combination internal resonances could be activated among dif- g(t) = Geog Q) ©)
h

ferent axisymmetric and asymmetric modes at different levels of
the thermal load.

In this work, we investigate the nonlinear forced vibrations ) )
of a thermally loaded annular plate (see Fig. 1) with clamped- 4 — (212 = (a_ + }3) (6_ }2) (5)
clamped immovable boundary conditions in the presence of a fof)\of? fof
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Here,r"and® are polar coordinate§js time;wis the plate trans-
verse displacemenE is the stress functiony &ndv are the ra-
dial and hoop displacements, respectivalys the axisymmetric
temperature distributionly is the initial stress-free temperature;
G and Q are the amplitude and frequency of the external har-
monic excitatiorg; € is the damping coefficienfy is the material
density;h is the plate thicknes® s the dilatational strain due to
the thermal effecte, is the heat-capacity coefficient at constant
pressureq is the coefficient of thermal expansidkis the ther-
mal conductivity;E is the modulus of elasticity is Poisson’s

ratio, andD = % is the bending rigidity. In this paper, we

consider the case in which the heat f[@x: 0.
For the compatibility relation, we note that

& = or (N —vRg) +a(T - To) (6)
1 -

€9 = ﬁ(Ng—VNr)—FG(T—To) (7)

-~ 10F -~  0%F

Nr == F_I”\ and Ne = W (8)
o0 1 /0w\? a

Sr == ﬁ E (E) and Ee = F (9)

Therefore, it follows from Eqgs. (6)-(9) that

ad oW 1 [10F 02F
_f:"(ar> +ﬁ(rar ar2)+°‘(T To) (10)
G 1 [(0°F VvoF

?Zﬁ(ﬁ‘ ar)“’(T R -

Then, after eliminating from Egs. (10) and (11), we obtain the

compatibility equation

22 2 = AN 2

OF 1P epar?l  len (W
2 orf

o2 Faf o

LO%F

f e (12)

The associated boundary conditions for a clamped-clamped

annular plate are as follows:

Ww=20 and¥:0 atr=Ry,R (13)
T=Tpatr=R, (14)
T=Th atr=R (15)

whereR; andR; are the inner and outer radii, respectively, and

T1 andT, are constant temperatures. In addition, because both of

3

the inner and outer boundaries are assumed to be immovable, the

radial deflectioru’must vanish at = R; andr"= R,. Hence, it
follows from Eq. (11) that

°F  voF .

o + EhG(T To)=0 atr=R,R; (16)

SOLUTION PROCEDURE

The terms on the right-hand side of Eq. (2) represent, re-
spectively, the diffusion of heat and thermoelastic coupling [22].
As discussed by Boley and Weiner [23], the thermoelastic cou-
pling term is typically relevant to problems where the response
is affected by heat dissipation through the body. In this case, the
heat dissipation occurs at a much slower rate compared to the vi-
brations of the plate, and hence the effects of these terms may be
neglected. Moreover, in the absence of a heat flux (Re=, 0),
the temperature of the plate will be steady. Therefore, Eq. (2)
reduces to

2T =0 (17)

The solution of Egs. (14), (15), and (17) yields the following
temperature distribution over the plate:

~ (T1|nR2—T2|n Rl)—

T(F) = (T

(In R, — In Rl)

—Tp)Int

(18)

Next, we substitute Eq. (18) into Eq. (12) and obtain the
equation governing the stress functieras:

O3F  9%F  10F oW
rﬁ‘i‘w—Fﬁ—EhG/\ _Eh(al’) (19)
whereA = 2=l The solution of Egs. (16) and (19) is
F(F,f) =Cif2+Colnf +Ca+ %Eha/\fz(lnr“— 1) + d(f,f)
(20)
» _ Eha [4R5(T,—To) 4RE(Ti—To)
Tal-v |l R R RR
ARS[1+Vv+2(1—V)InRy]
RI-RS
ARZ[1+Vv+2(1—V)InRy]
— 21
R R3 } @)
A 1_ RR}(Ti—Ty)
C,=—-ZEha123 -~ 22
2 2 o} RE— R% ( )
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The coefficienCs is arbitrary and the functiof(F, f) is the so-
lution of the boundary-value problem:
3D 2d 19 1_ [ow)?
IF T o 2Eh(ar) (23)
Pd  vod
W - a,\ O at r == R_‘]_7 RZ (24)
We then substitute Eq. (20) into Eq. (1) and obtain the

following equation governing the nonlinear axisymmetric vibra-
tions of a thermally loaded annular plate:

~ 10 [, . 0W 2w 10%Wod  10°Pow
4.~ -v b _ -7 v -Y ¥ YW
DUW+ & 5¢ [K( )af] PG = Farrar T ar o
LOW
_CE +4(f) (25)
R(F) = —2CiF —%—Ehf/\r”(zmr‘—l) (26)

subject to the boundary conditions in Eq. (13).

NONDIMENSIONAL PROBLEM

To better understand the problem at hand and ascertain the

critical parameters influencing the response behavior, we intro-
duce the following nondimensional variables and parameters:

r—i ¢ i Ds T_Tl_TO . T-To
TR R\ph T R-T T T-To
W:&A, (D:i&), b:&, = R% év Z:E7

h2 Eh R \/phD h
R . R & ph..
o(t) = 5500, G=556 Q=R 50 27)

Of particular importance are the parametgrthe ratio of the ab-

Bd 2> 190 1/ ow\?
" W‘FE“E(W) (30)
2P voD

where the external forcing is given lgt) = GcogQt), pis a
measure of the thermal loading defined as

12(1+v)a(T,— To)R3

= . , (32)
ande is a small scaling parameter defined as
12(1—v?)h?
e=—————x1 33
R < (33)

Typical values for the parameterfor thin metallic ¢ = 0.3)
plates havindy/R, = 1/25, 1/50, and 2100 are 00175, 00044,
and 00011, respectively. Moreover, the spatial functkofr) is
given by

K(r ):—ZCr—%—%r(ZInr—l) (34)
{1+ - -2} (1+v)(1-1)

G= A1) ~ 7 8inb (35)
_ PA(1-v)(1-71)

N %)

In Eq. (28),0%is given by Eq. (5) after dropping the hat “*”. In
addition, from Egs. (18) and (27), the nondimensional tempera-
ture distribution is given by

Inr

Inb

AT(r)=1+(1-1) (37)

so thatAT (b) =T andAT (1) = 1.

solute temperature at the inner radius to the absolute temperature

at the outer radius, arlg) the ratio of the inner radius to the outer
radius of the annulus. Then, Egs. (13) and (23)-(25) reduce to

the following:
pr or or ot2  “\ror2ar ror2 or
ow
_CE +g(t) (28)
=0, Z—Vrvzo, at r=5b1 (29)

RESPONSE ANALYSIS

Equations (28)-(31) are a nonlinear partial-differential sys-
tem with variable coefficients. Therefore, we propose to use a
combination of perturbation and numerical methods to determine
approximate solutions. To this end, we apply the method of mul-
tiple scales [21] to Egs. (28)-(31) and introduges t andt; = et
as the fast and slow time scales. The first and second derivatives
with time become

2
al

7 = D%+ 2¢DgD1+---  (38)

0
— =Dg+¢eD1+--- an
ot o+E&D1+

Copyright (© 2003 by ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



whereD,, = at . Then, we order the excitation and damping as
G—¢G andc—> €¢, so that they balance the nonlinearities. Next,
we expand the solutions in power serieg @fs

W(I’7t) :WQ(LTo,Tl) -‘rSWl(I‘,TQ,T]_) +--- (39)
CD()(I’, To,Tl) + e (40)

©
—~
-
—
~—

Il

and obtain from Egs. (28)-(31) the following hierarchy of prob-

lems:
Order 1:
10 oW
2 -v 0 4. _
Dgwo + pr R {K( )— ar }+D Wo =0 (41)
Wo =0, %:o at r=b1 (42)
Bdy 2Dy 10Dy 1 /0wo\?
rar3+ar2rar<ar) (43)
aszo Vano
2 v or =0 at r=b1l (44
Orders:

10 ow 102w 0P
D3w; + pr 5 [K(f)—l} + 0% = <——°—°

l a (O] aW()
o o ) — 2DgD1wWo — cDowp + Gcog Qtp) (45)
Wy =0, %:0 at r=b1 (46)

The solution of Egs. (41) and (42) has the form

(o)

wo(r,to,ta) = % Qom(r) [Am(t1)€90m0 4 An(t7)e7190omo] - (47)

m=1

where theA,, are complex-valued functions of the slow time
scalet;, the Ay are their complex conjugates, and thg(r) and

asymmetric modes. In general, unless the temperature gradient
is zero across the plate (i.e.= 1), analytical solutions are not
available. Therefore, a shooting method was used to numerically
determine the natural frequencies and mode shapes, which are
normalized such thaﬁbl r@dr = 1. In Fig. 2, we show an ex-
ample of the first and second axisymmetric mode shapes.

P (r)

b r 15 r I

Figure 2. The first and second axisymmetric mode shapes of heated
annular plate.
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Figure 3. Variation of the first two axisymmetric natural frequencies (p1

wom are the axisymmetric mode shapes and natural frequenciesand wp2 with pwhenb=0.1: @ T=2, (b)) T=1,and (c) T = 0.5.

defined by the eigenvalue problem:

1 i)
O*Qom+ P { %m} W Pom =

rdr
dgom

@m=0 and ar

=0 at r=5b1 (48)

The linear free vibration problem for the heated annular
plate was solved by Arafat et al. [20] for both axisymmetric and

5

Among other internal resonances, Arafat et al. [20] found
that, as the thermal loag is increased, a three-to-one internal
resonance between the first and second axisymmetric modes is
possible; that isgp2 &~ 3wp1. This is illustrated in Fig. 3 for a
plate havingb = 0.1 and in Fig. 4 for a plate having = 0.5,
where we plot variation ofy1 andwyp, with the thermal loac.

In each figure, we show three casegef 2,1 =1, andt =0.5.
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ForT = 2, the temperature at the inner boundary is greater than Table 1. Values of the coefficients in the evolution equations.

the temperature at the outer boundary;tfer 1, the temperatures \ b=o01 | b=05 |
at both boundaries are equal and there is no temperature gradient [ =2 [ =1 [ v=05 || =2 [ =1 [ t-05 |
across the radius; and for= 0.5, the temperature at the inner P 10963 13987 16122 20985 42697 54180
. wp1 23323 23345 23362 76.580 76.610 76.636
boundary is less t_han the temperature at th_e _outer boundary. In o . . Hooes il soasz0 s2a006
all six cases, we find that as the thermal Igaid increasedy; o 720740 | 718852 | 717493 || 10840408 | 10831674 | 10823664
approachescBOl. The Corresponding values pr pr), Wo1, and ap -2200116 | -2193962 | -2189732 —27787998 | -27768494 | -—27753133
. az —195908 —192442 —189876 —1332518 —1325807 —1319506
sz are presented n Table 1 B1 11560882 11544578 11535053 152400435 152332814 152288869
B2 —2200114 —2193964 —2189725 —27787166 —27768564 —27753279
B3 —65.303 —64.147 —63.292 —444180 —441939 —439829
300 r/G 0.056 0.056 0.056 0.019 0.019 0.019

o

200 —

100 ¢ Because damping is present in the system, it is assumed that,
after some time, the contribution from all of the modes other than
those directly or indirectly excited will vanish. Therefore, the

long-time response of the plate is given by

300

200 —|

Wo = @1 (A0 4 Ajem191l0) 4 @ (Ape 20 4 ApeI20) (51)

100 4

Substituting Eg. (51) into Eq. (43) and solving the resulting
problem, we obtain

300 7«:) . by = UJl(r) (A%ezm)lto JrA_\%e_ZimltO 4 2A1A_\1)
™ alr) (RGP + e 207 + 2o
+3(r) [AlAZeZi(w1+wz>to + AgAge2lerten)ty

200 —

107 + AlA_292i<w17u)2)to + A_\lAgeiZi (w17W)t0} (52)
R R S A where the spatial functiong;(r) are defined by the following
? boundary-value problems:
Figure 4. Variation of the first two axisymmetric natural frequencies (o1
and o with pwhenb=0.5: (@) T=2, () T=1, and (c) T = 0.5. @2 1d 1\ , .
d v
- - | (g7 )wi=0 at r=b1 (54)
From this point on, as we are only considering here axisym- dr r

metric modes and for the sake of minimizing clutter, we will drop
the zero from the subscript imm andwom. Thus, to describe the  Here, the prime denotes differentiation with respect amd
internal resonance condition, we introduce the detuning parame-

ter o such that 1

() = 5@, i) = 5@, Tal1) = —Ghth  (55)

wp = 3w + €0 (49)

Since we have a third-order equation for thewith only two
boundary conditions, we can only obtain a unique solution for
;. One approach is to express the solution in a series of Bessel
functions of the first and second kind of order 1. This analytical
approach is further explained in [4] for circular plates. How-
Q=wp+¢d (50) ever, since the mode shapes were obtained numerically [20], we

Moreover, for primary resonance of the second mode, we intro-
duce the detuning parametesuch that
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(a) wi(r) (b) wi(r)
x—// 52
T
v, (r) - wi(r)
30 7/_/ 195

Figure 5. The spatial functions J)f for T = 2 and (a) b = 0.1 and (b)

b=0.5

choose to determine the functiop§r) numerically by a shoot-

ing method as well. As an example, we show in Fig. 5 the func-

tionsyi(r) fort =2 and (a)p = 0.1 and (b)b = 0.5.

Next, we substitute Eqgs. (51) and (52) into Eq. (45), use
Egs. (49) and (50), eliminate the terms that produce secular terms

[21], and obtain the equations that govern the behavidy @nd
Ao with t; as:

. dA;
2ion ( at; + H1A1> + GlAlAl = GzAlAzAz + G3A1Aze'0t1
(56)

) dA,
2oy < at + u2A2> + B1A3A; = BoAL AL A + BaASe 101

L rd (57)
where
:_3/ (Ghus) dr, a2_2/ () + )’ dr,
as= / 1 (GWr + G ws) dr (58)
:_3/ (@)’ dr, [32—2/ (oW + G s) dr,
AR (59
= “Grodr, - / " erqfar (60)

Introducing the polar transformation

Al(tl) = %al(tl)el [yl(tl>+ % (6-‘1—0’)'[1] (61)

Pota) = %az (ty)elvet) ¥l (62)

into Egs. (56) and (57), we obtain the equations governing the
evolution of the amplitudes and phases of vibrations as

a .
d = —may + ﬁaiaz sin(y2 — 3y1) (63)
az
alyl —— 5+ O')al + 8—a1 80y alaz
a
= 8—u)1alaz cogyz — 3y1) (64)
. r .
a, = —phay — SB—Qe)’za%sm(yz —3y1) — o siny, (65)
az\/z = —63.2 + 8?3).2 a2 - SB—Qizala
r
B3 al cogy2 — 3y1) — o, OS2 (66)

where the prime here indicates the derivative with respett to

The fixed points of the evolution equations are obtained by
setting theal = 0 andy] = 0 in Egs. (63)-(66) and then solv-
ing for the roots. The stability of the solutions is ascertained by
examining the eigenvalues of the Jacobian matrix obtained from
the evolution equations. There are two possible casesy )0
anda; = &, # 0 and (2)a; # 0 anday # 0. The first case corre-
sponds to single-frequencwy) periodic vibrations of the plate
and the second case corresponds to two-frequengyaiid wy)
periodic vibrations of the plate. In the first case, the single-mode
solutionsa; can obtained in closed-form from

. . r2
Gs(iéag—dfiag%—(uﬁéz)az—gzo (67)

In addition, dynamic solutions of the evolution equations are
possible and, depending on their nature, they correspond to either
guasiperiodic or chaotic vibrations of the plate. Such solutions

The values of the coefficients in the evolution equations for are calculated numerically through long-time integration and a

b=0.1 and 05 andt = 2, 1, and (6 are presented in Table 1.

shooting method and the stability of limit cycles is ascertained

Using integration by parts on Egs. (58) and (59) and making use using Floquet theory [24].

of Egs. (53)-(55), one can show that thg and Bk satisfy the
symmetry conditionso, = 3, andasz = 3f3. Such symmetries

In Fig. 6, we present typical force-response curves for a plate
withb=0.1,1=0.5,0 = 50, andd = 50. As the forcing ampli-

are a characteristic of systems which are conservative in the ab-tuderl is increased from zero, a stable single-mode solutpn ~
sence of damping and external forces. Therefore, one can derivedevelops. This solution then loses stability through a saddle-node
the modulation equations from a time-averaged Lagrangian and bifurcation, resulting in a jump to a higher-amplitude single-

a virtual work term. mode solution. Decreasing the valueloto a relatively small
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Figure 6. Force-response curves for a plate with b = 0.1 and T = 0.5
when 0 = 50 and & = 50 4, denotes single-mode responses and
aj — ap denotes two-mode responses; HF1 and HF2 denote Hopf bi-
furcations and SN denotes a saddle-node bifurcation. Solid lines (——)
denote stable equilibrium solutions, dashed lines (— — —) denote unstable
equilibrium solutions, and dotted lines (- - - - - - ) denote unstable foci.

value & 11), we find thata; loses stability through another

saddle-node bifurcation. Depending on the initial conditions, the

response could jump down to the lower-amplitudedfanch or
to a coexisting two-moda; — ay solution.

The two-mode equilibrium solutions are found to be isolated
from &, and do not come about as a result of a pitchfork bifur-
cation. For a certain range 6fc [40,186], two stablea; — a,

(a) (b)

© (d)

Figure 7. Two-dimensional projections of the limit cycles, born out of a
supercritical Hopf bifurcation at 'y, = 1684, onto the a1 — ay plane
foraplate of b=0.5and T=0.5when 0 =50and d=50: T3 =170
(P1), Yb = 200(P1), 'c = 202(P2), and 'y = 203 (P4).

0 T T

0 100 200 300

time

Figure 8. Time histories for a3 and a2 showing the period-4 limit cycle
in Fig. 5d undergoing a boundary crisis and the solution tending to the
stable single-mode equilibrium solution.

for ' = 200. It then goes through a period-doubling bifurcation

branches coexist. The longer stable branch has relatively close-(Fig. 7c) and, quickly thereafter, a second period-doubling bifur-

matching values of the amplitudas anday, with a; decreasing

cations (Fig. 7d). However, this sequence does not continue, but

with increasing". In contrast, the shorter stable branch has very rather the resulting period-four limit cycle is destroyed through

small values ofy and quite large values @. That is, on this

a boundary crisis. Depending on the initial conditions, the so-

branch, even though the second mode is excited near primary|ution then tends to one of three co-existing stable equilibrium

resonance, most of the response consists of the first mode.
Moreover, as we increagepast 1684, this equilibrium so-

lution goes through a supercritical Hopf bifurcation H&nd a

limit cycle is born, corresponding to quasiperiodic oscillations of

the plate. A projection of the limit cycle onto tlee — a; plane

is shown in Fig. 7a soon after the bifurcation. Rsncreases,

this limit cycle persists and grows in size as shown in Fig. 7b

8

solutions. In Fig. 8, we present the time historiesapfand a,

for the period-four limit cycle before and after the crisis. In this
case, the solution tends to the lower branch of single-mode equi-
librium solutions. A second supercritical Hopf bifurcation HF
exists neaf” = 6553, which is also very close to a saddle-node
bifurcation. However, in this case, the resulting limit cycle al-
most immediately disappears through a boundary crisis &s
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very slightly decreased from the bifurcation point. bifurcations, giving rise to limit cycles (i.e., quasiperiodic oscil-
lations of the plate).
In Fig. 10, we show the influence of detuning the internal
4 resonance on the fixed points. From Eq. (67), it is clear that the

values (but not stability) of the single-mode solutmrafe inde-
pendent of the internal resonance deturgngvhich is reflected
in Fig. 10a. The two-moda; — a; fixed points are projected as
a single island, which extends well beyomé= 100. Once more,
we find that these fixed points undergo Hopf bifurcations.

1) J(@

Figure 9. Frequency-response curves for a plate with b = 0.1and T =

0.5 when 0 = 50and ' = 250 & denotes single-mode responses a,
and a1 — ap denotes two-mode responses; HF1 and HF2 denote Hopf

bifurcations and SN denotes a saddle-node bifurcation. Solid lines (——)

denote stable equilibrium solutions, dashed lines (- — —) denote unstable

equilibrium solutions, and dotted lines (- - - - - - ) denote unstable foci.

Figure 10. Frequency-response curves for a plate withb=0.1and T =
0.5 when 8 =50and ' = 250 & denotes single-mode responses
and a; — Ao denotes two-mode responses; HF1 and HF2 denote Hopf
bifurcations and SN denotes a saddle-node bifurcation. Solid lines (—)
denote stable equilibrium solutions, dashed lines (— — —) denote unstable
equilibrium solutions, and dotted lines (- - - - - - ) denote unstable foci.

To explore the influence of detuning the excitation frequency
on the response, we show in Fig. 9 typical frequency-response
curves for the case df = 0.1, T = 0.5, 0 = 50, andl" = 250.
From Table 1, we note that the values of the cofficient of the
effective nonlinearity for both the first and second modes (i.e.,
oy and ;) are positive for different values afandb. Hence,
generally, both modes exhibit a hardening-spring behavior. This
is illustrated in Fig. 9a, where the single-mode response curves Lastly, considering a plate with= 0.5, we also found that
& are bent to the right, an indication of a hardening-spring be- the general character of the response curves is qualitatively sim-
havior. In addition, in this projection of the fixed points, the ilar to those in Figs. 6-10.
two-mode solutiong; — ay are confined to two isolated “island”
branches. The island to the left is comprised of two branches,
one stable and one unstable, which connect at two saddle-nodeSUMMARY
bifurcations. While on the island to the right, which extends well The nonlinear responses of a thermally loaded isotropic an-
beyondd = 100, the stable; — a fixed points undergo Hopf nular plate were investigated by solving the voarkan equa-
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tions. From the linear free-vibration problem, it was found that, Thermoelastic Problems in Nonlinear Dynamics of Shells.
as the thermal load is increased, a three-to-one internal resonance Springer, Berlin.
between the first and second modes could occur. Therefore, we[10] Fedorov, V. A., 1976. “Thermostability of Elastically
set to investigate the behavior of the plate around this internal Clamped Variable-Stiffness Annular PlateSoviet Aero-
resonance when the second mode is directly excited near primary nautics 19, pp. 105-109.
resonance. To this end, we applied the method of multiple scales[11] Irie, T. and Yamada, G., 1978. “Thermally Induced Vibra-
to derive the evolution equations governing the amplitudes and tion of Circular Plate” Bulletin of the JSME 21, pp. 1703-
phases of the responses. In the process, a shooting method was  1709.
used to solve for the mode shapes and spatial stress functions. [12] Buckens, F., 1979. “Vibrations in a Thermally Stressed
We determined equilibrium solutions of the evolution equa- Thin Plate”.Journal of Thermal Stresses 2, pp. 367-385.
tions, corresponding to periodic oscillations of the plate, and [13] Pal, M. C., 1969. “Large Deflections of Heated Circular
demonstrated their behavior by way of force- and frequency- Plates”.Acta Mechanica 8, pp. 82-103.
response curves. We found two types of equilibrium solutions: [14] Pal, M. C., 1970. “Large Amplitude Free Vibration of Cir-
single-modea; and two-moden; — ap. Depending on their pro- cular Plates Subjected to Aerodynamic Heatirlgterna-
jection, the two-mode solutions are found to be limited to either tional Journal of Solids and Sructures 6, pp. 301-313.
a single or two islands; that is, they do not appear as a conse-[15] Pal, M. C., 1973. “Static and Dynamic Non-Linear Be-
guence of the single-mode solution undergoing a pitchfork bifur- haviour of Heated Orthotropic Circular Platedhterna-
cation. Moreover, the two-mode solutions lose stability through tional Journal of Non-Linear Mechanics 8, pp. 489-504.
Hopf bifurcations. The resulting limit cycles, which correspond [16] Biswas, P. and Kapoor, P., 1985. “Non-Linear Vibrations of
to quasiperiodic oscillations of the plate, then undergo period- Circular Plates at Elevated Temperature”. In Proceedings of
doubling bifurcations. However, we found that the higher-period the Fourth International Conference on Numerical Methods
limit cycles are destroyed through a crisis. in Thermal Problems, Part 2. Swansea, United Kingdom,
July 15- 18, pp. 1493-1501.
[17] Li, S.-R., Zhou, Y.-H., and Song, X., 2002. “Non-Linear
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