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ABSTRACT
We investigate the nonlinear forced vibrations of a thermally

loaded annular plate with clamped-clamped immovable bound-
ary conditions in the presence of a three-to-one internal reso-
nance between the first and second axisymmetric modes. We
consider the in-plane thermal load to be axisymmetric and excite
the plate externally by a harmonic force near primary resonance
of the second mode. We then use the nonlinear von Kármán
plate equations to model the behavior of the system and apply
the method of multiple scales to investigate its responses. We
found that the response can be periodic oscillations consisting of
both modes, with a large component from the first mode. More-
over, the periodic solutions may undergo Hopf bifurcations which
lead to aperiodic oscillations of the plate.

Keywords: Annular plates, thermal load, three-to-one in-
ternal resonance, modal interactions, nonlinear vibrations.

INTRODUCTION
The influence of modal interactions in systems is of grea

interest to engineers because they can lead to unexpected a
unwanted large and complex responses [1]. In particular, moda
interactions in circular plates are important because the natur
of the response can also be affected. That is, the response m
consist of standing waves, traveling waves, or both.
al Research Associate. ASME Member
Distinguished Professor. ASME Fellow. Address all correspon-
uthor.
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Sridhar, Mook, and Nayfeh [2,3] considered the response
a circular plate under a primary resonance excitationΩ ≈ ωrs

in the presence of a combination internal resonance of the ty
ωi j + 2ωkl ≈ ωmn. They considered in Ref. [2] interactions
between axisymmetric modes only and in Ref. [3] intera
tions between axisymmetric and asymmetric modes. In the l
ter case, they found that a traveling-wave response may oc
whenΩ ≈ ωmn. Hadian and Nayfeh [4] analyzed a plate havin
the internal resonanceω01 + 2ω02 ≈ ω03 and found that, when
Ω ≈ ω03, the multimode responses found in Ref. [2] may un
dergo a Hopf bifurcation, resulting in a quasiperiodic multimod
motion. Moreover, this motion could develop into a chaotic on
as a result of undergoing a sequence of period-doubling bifur
tions. Lee and Kim [5] also considered a plate having the intern
resonanceω01+ 2ω02 ≈ ω03, but they excited it by the external
combination resonanceΩ≈ 2ω01+ω02. They found interactions
among the modes. Yeo and Lee [6] introduced a correction to
evolution equations derived in Ref. [3] and then considered t
response due to a primary resonance of the asymmetric m
ω11 (i.e., Ω ≈ ω11). They found that, even without considering
any internal resonances, the response of the plate can consi
a traveling wave for a certain range of parameters.

Plates are key components in many structural and machin
applications. Some examples include flight-vehicle power plan
tanks, brake systems in automotive vehicles, and, more recen
microelectromechanical (MEMS) devices, such as sensors
micropumps. In many of these applications, the plates are s
jected to thermal loads, which may cause buckling and/or indu
Copyright c© 2003 by ASME
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unexpected dynamic responses [7]. Consequently, the respons
of plates to thermal loadings are the subject of much researc
[8,9]. Next, we review the research done on annular and circu
lar plates in this field and separate it into linear and nonlinea
analyses.

Fedorov [10] examined the linear thermostability problem
of elastically clamped variable-stiffness annular plates under ax
isymmetric radial nonuniform thermal loads. He found that, in
certain cases, variation of the Young modulus and Poisson rat
with temperature cannot be neglected. Irie and Yamada [11] in
vestigated the linear free vibrations of elastically supported cir
cular and annular plates, with one edge exposed to an axisym
metric sinusoidal heat flux and the other edge thermally insu
lated. Buckens [12] investigated the linear free pre- and post
buckling vibrations of a circular plate under in-plane thermal
stresses.

Using Berger’s approximation, Pal [13-15] investigated the
nonlinear responses of isotropic and orthotropic circular heate
plates under different thermal conditions. He compared his re
sults with the solution of the von Ḱarmán equations and con-
cluded that Berger’s approximation yields valid results. Biswas
and Kapoor [16] used the von Kármán equations to study the
nonlinear vibrations of polar orthotropic clamped circular plates
at elevated temperatures. They concluded that the effect of the i
plane thermal stress is to decrease the period of oscillations. L
Zhou, and Song [17] used the von Kármán equations to study the
nonlinear free vibrations of isotropic and polar orthotropic annu-
lar plates carrying a concentric rigid mass and subject to therma
loads. They then applied the Kantorovich averaging method an
examined the nonlinear natural frequencies and thermal buck
ling loads for hinged and clamped immovable boundary condi
tions. The nonlinear vibrations of a simply-supported circular
plate under a thermally induced principal parametric excitation
of an axisymmetric mode (i.e.,Ω ≈ 2ω0k) was investigated by
Nayfeh and Faris [18]. They [19] also investigated the nonlinea
vibrations of a clamped circular plate under a thermally induced
combination parametric excitation of two axisymmetric modes
(i.e.,Ω ≈ ω0 j +ω0k).

In the aforementioned works on thermally loaded circular
plates, the influence of internal resonances on the response w
never investigated. In studying the linear free vibration prob-
lem of circular and annular plates under an axisymmetric ther
mal loading, as shown in Fig. 1, Arafat et al. [20] found that,
as the thermal load is increased, the natural frequencies can b
come near-commensurate with each other, possibly giving rise t
internal resonances. For example, one-to-one, three-to-one, a
combination internal resonances could be activated among di
ferent axisymmetric and asymmetric modes at different levels o
the thermal load.

In this work, we investigate the nonlinear forced vibrations
of a thermally loaded annular plate (see Fig. 1) with clamped
clamped immovable boundary conditions in the presence of
2
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three-to-one internal resonance between the first and second
isymmetric modes (i.e.,ω02 ≈ 3ω01). We excite the plate exter-
nally by a harmonic force near primary resonance of the secon
mode (i.e.,Ω ≈ ω02) and consider the in-plane thermal load to
be axisymmetric. We use the nonlinear von Kármán plate equa-
tions to model the behavior of the system and apply the metho
of multiple scales [21] to investigate its responses.

�� ��

���

��

�� ��

��

��
��

��

��
����

������ ������

���

�

�

��

��

�		
����
���	�������

��

��

��

��

��

��������

Figure 1. A schematic of (a) an annular plate and (b) a cross-sectional

view illustrating a typical steady-state axisymmetric temperature distribu-

tion.

PROBLEM FORMULATION
Because the temperature distribution, external excitation

and the modes excited, either directly or indirectly, are axisym
metric, the stress function and in-plane displacements are al
axisymmetric, and hence∂∂θ = 0. Accordingly, the nonlinear ax-
isymmetric vibrations of an annular plate under an axisymmetri
thermal load are governed by

D∇̂ 4ŵ+ρh
∂2ŵ
∂t̂2 + ĉ

∂ŵ
∂t̂

=
1
r̂

∂2ŵ
∂r̂2

∂F̂
∂r̂

+
1
r̂

∂2F̂
∂r̂2

∂ŵ
∂r̂

− 1
(1−ν)

∇̂ 2M̂T + ĝ(t̂) (1)

k∇̂ 2T̂ + Q̂ = ρcp
∂T̂
∂t̂

+
EαT0

1−2ν
∂e
∂t̂

(2)

ĝ(t̂) = Ĝcos(Ω̂t̂) (3)

M̂T = Eα
∫ h

2

− h
2

[
T̂ (r̂, t̂)−T0

]
ẑdẑ = 0 (4)

∇̂ 4 = ∇̂ 2∇̂ 2 =
(

∂2

∂r̂2 +
1
r̂

∂
∂r̂

)(
∂2

∂r̂2 +
1
r̂

∂
∂r̂

)
(5)
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Here, ˆr andθ are polar coordinates;t̂ is time;ŵ is the plate trans-
verse displacement;̂F is the stress function; ˆu and v̂ are the ra-
dial and hoop displacements, respectively;T̂ is the axisymmetric
temperature distribution;T0 is the initial stress-free temperature;
Ĝ and Ω̂ are the amplitude and frequency of the external har
monic excitation ˆg; ĉ is the damping coefficient;ρ is the material
density;h is the plate thickness;e is the dilatational strain due to
the thermal effect;cp is the heat-capacity coefficient at constant
pressure;α is the coefficient of thermal expansion;k is the ther-
mal conductivity;E is the modulus of elasticity,ν is Poisson’s
ratio, andD = Eh3

12(1−ν2) is the bending rigidity. In this paper, we

consider the case in which the heat fluxQ̂ = 0.
For the compatibility relation, we note that

εr =
1

Eh

(
N̂r −νN̂θ

)
+α(T̂ −T0) (6)

εθ =
1

Eh

(
N̂θ−νN̂r

)
+α(T̂ −T0) (7)

N̂r =
1
r̂

∂F̂
∂r̂

and N̂θ =
∂2F̂
∂r̂2 (8)

εr =
∂û
∂r̂

+
1
2

(
∂ŵ
∂r̂

)2

and εθ =
û
r̂

(9)

Therefore, it follows from Eqs. (6)-(9) that

∂û
∂r̂

= −1
2

(
∂ŵ
∂r̂

)2

+
1

Eh

(
1
r̂

∂F̂
∂r̂

−ν
∂2F̂
∂r̂2

)
+α(T̂ −T0) (10)

û
r̂

=
1

Eh

(
∂2F̂
∂r̂2 − ν

r̂
∂F̂
∂r̂

)
+α(T̂ −T0) (11)

Then, after eliminating ˆu from Eqs. (10) and (11), we obtain the
compatibility equation

r̂
∂3F̂
∂r̂3 +

∂2F̂
∂r̂2 − 1

r̂
∂F̂
∂r̂

= −Ehαr̂
∂T̂
∂r̂

− 1
2

Eh

(
∂ŵ
∂r̂

)2

(12)

The associated boundary conditions for a clamped-clampe
annular plate are as follows:

ŵ = 0 and
∂ŵ
∂r̂

= 0 at r̂ = R1,R2 (13)

T̂ = T1 at r̂ = R1 (14)

T̂ = T2 at r̂ = R2 (15)

whereR1 andR2 are the inner and outer radii, respectively, and
T1 andT2 are constant temperatures. In addition, because both
3
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the inner and outer boundaries are assumed to be immovable,
radial deflection ˆu must vanish at ˆr = R1 and r̂ = R2. Hence, it
follows from Eq. (11) that

∂2F̂
∂r̂2 − ν

r̂
∂F̂
∂r̂

+Ehα(T̂ −T0) = 0 at r̂ = R1,R2 (16)

SOLUTION PROCEDURE
The terms on the right-hand side of Eq. (2) represent, re

spectively, the diffusion of heat and thermoelastic coupling [22
As discussed by Boley and Weiner [23], the thermoelastic co
pling term is typically relevant to problems where the respons
is affected by heat dissipation through the body. In this case, t
heat dissipation occurs at a much slower rate compared to the
brations of the plate, and hence the effects of these terms may
neglected. Moreover, in the absence of a heat flux (i.e.,Q̂ = 0),
the temperature of the plate will be steady. Therefore, Eq. (
reduces to

∇̂ 2T̂ = 0 (17)

The solution of Eqs. (14), (15), and (17) yields the following
temperature distribution over the plate:

T̂ (r̂) =
(T1 lnR2−T2 lnR1)− (T1−T2) ln r̂

(lnR2− lnR1)
(18)

Next, we substitute Eq. (18) into Eq. (12) and obtain th
equation governing the stress functionF̂ as:

r̂
∂3F̂
∂r̂3 +

∂2F̂
∂r̂2 − 1

r̂
∂F̂
∂r̂

= EhαΛ − 1
2

Eh

(
∂ŵ
∂r̂

)2

(19)

whereΛ = T2−T1
lnR1−lnR2

. The solution of Eqs. (16) and (19) is

F̂(r̂, t̂) = Ĉ1r̂2 +Ĉ2 ln r̂ +Ĉ3 +
1
4

EhαΛ r̂2(ln r̂−1)+ Φ̂(r̂, t̂)

(20)

Ĉ1 =
Ehα

8(1−ν)

{
4R2

2(T2−T0)
R2

1−R2
2

− 4R2
1(T1−T0)
R2

1−R2
2

+
ΛR2

2 [1+ν +2(1−ν) lnR2]
R2

1−R2
2

− ΛR2
1 [1+ν +2(1−ν) lnR1]

R2
1−R2

2

}
(21)

Ĉ2 = −1
2

Ehα
R2

1R2
2(T1−T2)

R2
1−R2

2

(22)
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The coefficientĈ3 is arbitrary and the function̂Φ(r̂, t̂) is the so-
lution of the boundary-value problem:

r̂
∂3Φ̂
∂r̂3 +

∂2Φ̂
∂r̂2 − 1

r̂
∂Φ̂
∂r̂

= −1
2

Eh

(
∂ŵ
∂r̂

)2

(23)

∂2Φ̂
∂r̂2 − ν

r̂
∂Φ̂
∂r̂

= 0 at r̂ = R1,R2 (24)

We then substitute Eq. (20) into Eq. (1) and obtain the
following equation governing the nonlinear axisymmetric vibra-
tions of a thermally loaded annular plate:

D∇̂ 4ŵ+
1
r̂

∂
∂r̂

[
K̂(r̂)

∂ŵ
∂r̂

]
+ρh

∂2ŵ
∂t̂2 =

1
r̂

∂2ŵ
∂r̂2

∂Φ̂
∂r̂

+
1
r̂

∂2Φ̂
∂r̂2

∂ŵ
∂r̂

− ĉ
∂ŵ
∂t̂

+ ĝ(t̂) (25)

K̂(r̂) = −2Ĉ1r̂− Ĉ2

r̂
−EhαΛ

4
r̂(2lnr̂−1) (26)

subject to the boundary conditions in Eq. (13).

NONDIMENSIONAL PROBLEM
To better understand the problem at hand and ascertain t

critical parameters influencing the response behavior, we intro
duce the following nondimensional variables and parameters:

r =
r̂

R2
, t =

1

R2
2

√
D
ρh

t̂, τ =
T1−T0

T2−T0
, ∆T =

T̂ −T0

T2−T0
,

w =
R2

h2 ŵ, Φ =
R2

2

Eh5 Φ̂, b =
R1

R2
, c =

R2
2√

ρhD
ĉ, z =

ẑ
h
,

g(t) =
R5

2

Dh2 ĝ(t̂), G =
R5

2

Dh2 Ĝ, Ω = R2
2

√
ρh
D

Ω̂ (27)

Of particular importance are the parametersτ, the ratio of the ab-
solute temperature at the inner radius to the absolute temperatu
at the outer radius, andb, the ratio of the inner radius to the outer
radius of the annulus. Then, Eqs. (13) and (23)-(25) reduce t
the following:

∇ 4w+ p
1
r

∂
∂r

[
K(r)

∂w
∂r

]
+

∂2w
∂t2 = ε

(
1
r

∂2w
∂r2

∂Φ
∂r

+
1
r

∂2Φ
∂r2

∂w
∂r

)

− c
∂w
∂t

+g(t) (28)

w = 0,
∂w
∂r

= 0, at r = b,1 (29)
4
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∂3Φ
∂r3 +

∂2Φ
∂r2 − 1

r
∂Φ
∂r

= −1
2

(
∂w
∂r

)2

(30)

∂2Φ
∂r2 − ν

r
∂Φ
∂r

= 0 at r = b,1 (31)

where the external forcing is given byg(t) = Gcos(Ωt), p is a
measure of the thermal loading defined as

p =
12(1+ν)α(T2−T0)R2

2

h2 , (32)

andε is a small scaling parameter defined as

ε =
12(1−ν2)h2

R2
2

� 1 (33)

Typical values for the parameterε for thin metallic (ν = 0.3)
plates havingh/R2 = 1/25, 1/50, and 1/100 are 0.0175, 0.0044,
and 0.0011, respectively. Moreover, the spatial functionK(r) is
given by

K(r) = −2C1r− C2

r
− (1− τ)(1−ν)

4lnb
r(2lnr−1) (34)

C1 =

{
b2 [(1+ τ)−ν(1− τ)]−2

}
4(1−b2)

− (1+ν)(1− τ)
8lnb

(35)

C2 = −b2(1−ν)(1− τ)
2(1−b2)

(36)

In Eq. (28),∇ 4 is given by Eq. (5) after dropping the hat “ˆ”. In
addition, from Eqs. (18) and (27), the nondimensional tempera-
ture distribution is given by

∆T (r) = 1+(τ−1)
lnr
lnb

(37)

so that∆T (b) = τ and∆T (1) = 1.

RESPONSE ANALYSIS
Equations (28)-(31) are a nonlinear partial-differential sys-

tem with variable coefficients. Therefore, we propose to use a
combination of perturbation and numerical methods to determine
approximate solutions. To this end, we apply the method of mul-
tiple scales [21] to Eqs. (28)-(31) and introducet0 ≡ t andt1 ≡ εt
as the fast and slow time scales. The first and second derivatives
with time become

∂
∂t

= D0 + εD1 + · · · and
∂2

∂t2 = D2
0 +2εD0D1 + · · · (38)
Copyright c© 2003 by ASME

: http://www.asme.org/about-asme/terms-of-use



nt

ly
re

is

Downlo
whereDn ≡ ∂
∂tn

. Then, we order the excitation and damping as
G→ εG andc→ εc, so that they balance the nonlinearities. Next,
we expand the solutions in power series ofε as

w(r, t) = w0(r,T0,T1)+ εw1(r,T0,T1)+ · · · (39)

Φ(r, t) = Φ0(r,T0,T1)+ · · · (40)

and obtain from Eqs. (28)-(31) the following hierarchy of prob-
lems:
Order 1:

D2
0w0 + p

1
r

∂
∂r

[
K(r)

∂w0

∂r

]
+ ∇ 4w0 = 0 (41)

w0 = 0,
∂w0

∂r
= 0 at r = b,1 (42)

r
∂3Φ0

∂r3 +
∂2Φ0

∂r2 − 1
r

∂Φ0

∂r
= −1

2

(
∂w0

∂r

)2

(43)

∂2Φ0

∂r2 − ν
r

∂Φ0

∂r
= 0 at r = b,1 (44)

Orderε:

D2
0w1 + p

1
r

∂
∂r

[
K(r)

∂w1

∂r

]
+ ∇ 4w1 =

(
1
r

∂2w0

∂r2

∂Φ0

∂r

+
1
r

∂2Φ0

∂r2

∂w0

∂r

)
−2D0D1w0− cD0w0 +Gcos(Ωt0) (45)

w1 = 0,
∂w1

∂r
= 0 at r = b,1 (46)

The solution of Eqs. (41) and (42) has the form

w0(r, t0, t1) =
∞

∑
m=1

φ0m(r)
[
Am(t1)eiω0mt0 + Ām(t1)e−iω0mt0

]
(47)

where theAm are complex-valued functions of the slow time
scalet1, theĀm are their complex conjugates, and theφ0m(r) and
ω0m are the axisymmetric mode shapes and natural frequenci
defined by the eigenvalue problem:

∇ 4φ0m + p
1
r

d
dr

[
K(r)

dφ0m

dr

]
−ω2

0mφ0m = 0

φ0m = 0 and
dφ0m

dr
= 0 at r = b,1 (48)

The linear free vibration problem for the heated annula
plate was solved by Arafat et al. [20] for both axisymmetric and
5
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asymmetric modes. In general, unless the temperature gradie
is zero across the plate (i.e.,τ = 1), analytical solutions are not
available. Therefore, a shooting method was used to numerical
determine the natural frequencies and mode shapes, which a
normalized such that

∫ 1
b rφ2

nmdr = 1. In Fig. 2, we show an ex-
ample of the first and second axisymmetric mode shapes.

-3

0

3

01( )rφ 02 ( )rφ

r rb b1 1

Figure 2. The first and second axisymmetric mode shapes of heated

annular plate.

0

20

40

60

80

0

20

40

60

80

0 40 80 120

0

20

40

60

80

10.9

14

16
p

nmω

nmω

nmω

01ω

01ω

01ω

02ω

02ω

02ω

02 013ω ω≈

02 013ω ω≈

02 013ω ω≈( )a

( )b

( )c

Figure 3. Variation of the first two axisymmetric natural frequencies ω01

and ω02 with p when b = 0.1: (a) τ = 2, (b) τ = 1, and (c) τ = 0.5.

Among other internal resonances, Arafat et al. [20] found
that, as the thermal loadp is increased, a three-to-one internal
resonance between the first and second axisymmetric modes
possible; that is,ω02 ≈ 3ω01. This is illustrated in Fig. 3 for a
plate havingb = 0.1 and in Fig. 4 for a plate havingb = 0.5,
where we plot variation ofω01 andω02 with the thermal loadp.
In each figure, we show three cases ofτ = 2, τ = 1, andτ = 0.5.
Copyright c© 2003 by ASME
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For τ = 2, the temperature at the inner boundary is greater th
the temperature at the outer boundary; forτ = 1, the temperatures
at both boundaries are equal and there is no temperature grad
across the radius; and forτ = 0.5, the temperature at the inne
boundary is less than the temperature at the outer boundary
all six cases, we find that as the thermal loadp is increased,ω02

approaches 3ω01. The corresponding values ofp(≡ pr), ω01, and
ω02 are presented in Table 1.
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Figure 4. Variation of the first two axisymmetric natural frequencies ω01

and ω02 with p when b = 0.5: (a) τ = 2, (b) τ = 1, and (c) τ = 0.5.

From this point on, as we are only considering here axisy
metric modes and for the sake of minimizing clutter, we will dro
the zero from the subscript inφ0m andω0m. Thus, to describe the
internal resonance condition, we introduce the detuning param
terσ such that

ω2 = 3ω1 + εσ (49)

Moreover, for primary resonance of the second mode, we int
duce the detuning parameterδ such that

Ω = ω2 + εδ (50)
6
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Table 1. Values of the coefficients in the evolution equations.

b = 0.1 b = 0.5

τ = 2 τ = 1 τ = 0.5 τ = 2 τ = 1 τ = 0.5

pr 10.963 13.937 16.122 29.985 42.697 54.180

ω01 23.323 23.345 23.362 76.580 76.610 76.636

ω02 69.968 70.036 70.086 229.741 229.829 229.909

α1 720.740 718.852 717.493 10840.408 10831.674 10823.664

α2 −2200.116 −2193.962 −2189.732 −27787.998 −27768.494 −27753.133

α3 −195.908 −192.442 −189.876 −1332.518 −1325.807 −1319.506

β1 11560.882 11544.578 11535.053 152400.435 152332.814 152288.869

β2 −2200.114 −2193.964 −2189.725 −27787.166 −27768.564 −27753.279

β3 −65.303 −64.147 −63.292 −444.180 −441.939 −439.829

Γ/G 0.056 0.056 0.056 0.019 0.019 0.019

Because damping is present in the system, it is assumed th
after some time, the contribution from all of the modes other tha
those directly or indirectly excited will vanish. Therefore, the
long-time response of the plate is given by

w0 = φ1
(
A1eiω1t0 + Ā1e−iω1t0

)
+φ2

(
A2eiω2t0 + Ā2e−iω2t0

)
(51)

Substituting Eq. (51) into Eq. (43) and solving the resulting
problem, we obtain

Φ0 = ψ1(r)
(
A2

1e2iω1t0 + Ā2
1e−2iω1t0 +2A1Ā1

)
+ψ2(r)

(
A2

2e2iω2t0 + Ā2
2e−2iω2t0 +2A2Ā2

)
+ψ3(r)

[
A1A2e2i(ω1+ω2)t0 + Ā1Ā2e−2i(ω1+ω2)t0

+A1Ā2e2i(ω1−ω2)t0 + Ā1A2e−2i(ω1−ω2)t0
]

(52)

where the spatial functionsψi(r) are defined by the following
boundary-value problems:

(
d2

dr2 +
1
r

d
dr

− 1
r2

)
ψ′

i = fi(r) for i = 1,2,3 (53)(
d
dr

− ν
r

)
ψ′

i = 0 at r = b,1 (54)

Here, the prime denotes differentiation with respect tor and

f1(r) = − 1
2r

φ′21 , f2(r) = − 1
2r

φ′22 , f3(r) = −1
r

φ′1φ′2 (55)

Since we have a third-order equation for theψi with only two
boundary conditions, we can only obtain a unique solution fo
ψ′

i. One approach is to express the solution in a series of Bes
functions of the first and second kind of order 1. This analytica
approach is further explained in [4] for circular plates. How
ever, since the mode shapes were obtained numerically [20], w
Copyright c© 2003 by ASME
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Figure 5. The spatial functions ψ′
i for τ = 2 and (a) b = 0.1 and (b)

b = 0.5.

choose to determine the functionsψ′
i(r) numerically by a shoot-

ing method as well. As an example, we show in Fig. 5 the func
tionsψ′

i(r) for τ = 2 and (a)b = 0.1 and (b)b = 0.5.
Next, we substitute Eqs. (51) and (52) into Eq. (45), us

Eqs. (49) and (50), eliminate the terms that produce secular term
[21], and obtain the equations that govern the behavior ofA1 and
A2 with t1 as:

2iω1

(
dA1

dt1
+µ1A1

)
+α1A2

1Ā1 = α2A1A2Ā2 +α3Ā2
1A2eiσt1

(56)

2iω2

(
dA2

dt1
+µ2A2

)
+β1A2

2Ā2 = β2A1Ā1A2 +β3A3
1e−iσt1

+Γeiδt1 (57)

where

α1 = −3
∫ 1

b
φ1

(
φ′1ψ′

1

)′
dr, α2 = 2

∫ 1

b
φ1

(
φ′1ψ′

2 +φ′2ψ′
3

)′
dr,

α3 =
∫ 1

b
φ1

(
φ′2ψ′

1 +φ′1ψ′
3

)′
dr (58)

β1 = −3
∫ 1

b
φ2

(
φ′2ψ′

2

)′
dr, β2 = 2

∫ 1

b
φ2

(
φ′2ψ′

1 +φ′1ψ′
3

)′
dr,

β3 =
∫ 1

b
φ2

(
φ′1ψ′

1

)′
dr (59)

Γ =
1
2

∫ 1

b
Grφ2dr, µk =

1
2

∫ 1

b
crφ2

kdr (60)

The values of the coefficients in the evolution equations fo
b = 0.1 and 0.5 andτ = 2, 1, and 0.5 are presented in Table 1.
Using integration by parts on Eqs. (58) and (59) and making us
of Eqs. (53)-(55), one can show that theαk andβk satisfy the
symmetry conditions:α2 = β2 andα3 = 3β3. Such symmetries
are a characteristic of systems which are conservative in the a
sence of damping and external forces. Therefore, one can der
the modulation equations from a time-averaged Lagrangian an
a virtual work term.
7
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Introducing the polar transformation

A1(t1) =
1
2

a1(t1)ei[γ1(t1)+ 1
3 (δ+σ)t1] (61)

A2(t1) =
1
2

a2(t1)ei[γ2(t1)+δt1] (62)

into Eqs. (56) and (57), we obtain the equations governing the
evolution of the amplitudes and phases of vibrations as

a′1 = −µ1a1 +
α3

8ω1
a2

1a2sin(γ2−3γ1) (63)

a1γ′1 = −1
3
(δ+σ)a1 +

α1

8ω1
a3

1−
α2

8ω1
a1a2

2

− α3

8ω1
a2

1a2cos(γ2−3γ1) (64)

a′2 = −µ2a2− β3

8ω2
a3

1sin(γ2−3γ1)− Γ
ω2

sinγ2 (65)

a2γ′2 = −δa2 +
β1

8ω2
a3

2−
β2

8ω2
a2

1a2

− β3

8ω2
a3

1cos(γ2−3γ1)− Γ
ω2

cosγ2 (66)

where the prime here indicates the derivative with respect tot1.
The fixed points of the evolution equations are obtained by

setting thea′i = 0 andγ′i = 0 in Eqs. (63)-(66) and then solv-
ing for the roots. The stability of the solutions is ascertained by
examining the eigenvalues of the Jacobian matrix obtained from
the evolution equations. There are two possible cases: (1)a1 = 0
anda2 ≡ â2 �= 0 and (2)a1 �= 0 anda2 �= 0. The first case corre-
sponds to single-frequency (ω2) periodic vibrations of the plate
and the second case corresponds to two-frequency (ω1 andω2)
periodic vibrations of the plate. In the first case, the single-mode
solutions ˆa2 can obtained in closed-form from

β2
1

64ω2
2

â6
2−

δβ1

4ω2
â4

2 +
(
µ2

2 +δ2) â2
2−

Γ2

ω2
2

= 0 (67)

In addition, dynamic solutions of the evolution equations are
possible and, depending on their nature, they correspond to eith
quasiperiodic or chaotic vibrations of the plate. Such solutions
are calculated numerically through long-time integration and a
shooting method and the stability of limit cycles is ascertained
using Floquet theory [24].

In Fig. 6, we present typical force-response curves for a plate
with b = 0.1, τ = 0.5, σ = 50, andδ = 50. As the forcing ampli-
tudeΓ is increased from zero, a stable single-mode solution ˆa2

develops. This solution then loses stability through a saddle-nod
bifurcation, resulting in a jump to a higher-amplitude single-
mode solution. Decreasing the value ofΓ to a relatively small
Copyright c© 2003 by ASME
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Figure 6. Force-response curves for a plate with b = 0.1 and τ = 0.5
when σ = 50 and δ = 50: â2 denotes single-mode responses and

a1 − a2 denotes two-mode responses; HF1 and HF2 denote Hopf bi-

furcations and SN denotes a saddle-node bifurcation. Solid lines (——)

denote stable equilibrium solutions, dashed lines (– – –) denote unstable

equilibrium solutions, and dotted lines (· · · · · ·) denote unstable foci.

value (≈ 11), we find that ˆa2 loses stability through another
saddle-node bifurcation. Depending on the initial conditions, th
response could jump down to the lower-amplitude ˆa2 branch or
to a coexisting two-modea1−a2 solution.

The two-mode equilibrium solutions are found to be isolated
from â2 and do not come about as a result of a pitchfork bifur-
cation. For a certain range ofΓ ∈ [40,186], two stablea1 − a2

branches coexist. The longer stable branch has relatively clos
matching values of the amplitudesa1 anda2, with a1 decreasing
with increasingΓ. In contrast, the shorter stable branch has very
small values ofa2 and quite large values ofa1. That is, on this
branch, even though the second mode is excited near prima
resonance, most of the response consists of the first mode.

Moreover, as we increaseΓ past 168.4, this equilibrium so-
lution goes through a supercritical Hopf bifurcation HF1 and a
limit cycle is born, corresponding to quasiperiodic oscillations of
the plate. A projection of the limit cycle onto thea1− a2 plane
is shown in Fig. 7a soon after the bifurcation. AsΓ increases,
this limit cycle persists and grows in size as shown in Fig. 7b
8
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for Γ = 200. It then goes through a period-doubling bifurcation
(Fig. 7c) and, quickly thereafter, a second period-doubling bifu
cations (Fig. 7d). However, this sequence does not continue, b
rather the resulting period-four limit cycle is destroyed throug
a boundary crisis. Depending on the initial conditions, the so
lution then tends to one of three co-existing stable equilibrium
solutions. In Fig. 8, we present the time histories ofa1 anda2

for the period-four limit cycle before and after the crisis. In this
case, the solution tends to the lower branch of single-mode eq
librium solutions. A second supercritical Hopf bifurcation HF2

exists nearΓ = 655.3, which is also very close to a saddle-node
bifurcation. However, in this case, the resulting limit cycle al
most immediately disappears through a boundary crisis asΓ is
Copyright c© 2003 by ASME
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0.5 when σ = 50 and Γ = 250: â2 denotes single-mode responses

and a1 − a2 denotes two-mode responses; HF1 and HF2 denote Hopf

bifurcations and SN denotes a saddle-node bifurcation. Solid lines (——)

denote stable equilibrium solutions, dashed lines (– – –) denote unstable

equilibrium solutions, and dotted lines (· · · · · ·) denote unstable foci.

To explore the influence of detuning the excitation frequency
on the response, we show in Fig. 9 typical frequency-respons
curves for the case ofb = 0.1, τ = 0.5, σ = 50, andΓ = 250.
From Table 1, we note that the values of the cofficient of the
effective nonlinearity for both the first and second modes (i.e.
α1 andβ1) are positive for different values ofτ andb. Hence,
generally, both modes exhibit a hardening-spring behavior. Th
is illustrated in Fig. 9a, where the single-mode response curve
â2 are bent to the right, an indication of a hardening-spring be
havior. In addition, in this projection of the fixed points, the
two-mode solutionsa1−a2 are confined to two isolated “island”
branches. The island to the left is comprised of two branche
one stable and one unstable, which connect at two saddle-no
bifurcations. While on the island to the right, which extends wel
beyondδ = 100, the stablea1 − a2 fixed points undergo Hopf
9
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bifurcations, giving rise to limit cycles (i.e., quasiperiodic oscil-
lations of the plate).

In Fig. 10, we show the influence of detuning the internal
resonance on the fixed points. From Eq. (67), it is clear that the
values (but not stability) of the single-mode solution ˆa2 are inde-
pendent of the internal resonance detuningσ, which is reflected
in Fig. 10a. The two-modea1− a2 fixed points are projected as
a single island, which extends well beyondσ = 100. Once more,
we find that these fixed points undergo Hopf bifurcations.
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Figure 10. Frequency-response curves for a plate with b = 0.1 and τ =
0.5 when δ = 50 and Γ = 250: â2 denotes single-mode responses

and a1 − a2 denotes two-mode responses; HF1 and HF2 denote Hopf

bifurcations and SN denotes a saddle-node bifurcation. Solid lines (——)

denote stable equilibrium solutions, dashed lines (– – –) denote unstable

equilibrium solutions, and dotted lines (· · · · · ·) denote unstable foci.

Lastly, considering a plate withb = 0.5, we also found that
the general character of the response curves is qualitatively sim
ilar to those in Figs. 6-10.

SUMMARY
The nonlinear responses of a thermally loaded isotropic an-

nular plate were investigated by solving the von Kármán equa-
Copyright c© 2003 by ASME
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tions. From the linear free-vibration problem, it was found that
as the thermal load is increased, a three-to-one internal resona
between the first and second modes could occur. Therefore,
set to investigate the behavior of the plate around this intern
resonance when the second mode is directly excited near prima
resonance. To this end, we applied the method of multiple scal
to derive the evolution equations governing the amplitudes an
phases of the responses. In the process, a shooting method
used to solve for the mode shapes and spatial stress functions

We determined equilibrium solutions of the evolution equa
tions, corresponding to periodic oscillations of the plate, an
demonstrated their behavior by way of force- and frequency
response curves. We found two types of equilibrium solutions
single-mode ˆa2 and two-modea1−a2. Depending on their pro-
jection, the two-mode solutions are found to be limited to eithe
a single or two islands; that is, they do not appear as a cons
quence of the single-mode solution undergoing a pitchfork bifu
cation. Moreover, the two-mode solutions lose stability throug
Hopf bifurcations. The resulting limit cycles, which correspond
to quasiperiodic oscillations of the plate, then undergo period
doubling bifurcations. However, we found that the higher-perio
limit cycles are destroyed through a crisis.
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