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Bayesian Estimation of CIR Model
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Abstract: This article concerns the Bayesian estimation of interest rate mod-
els based on Euler-Maruyama approximation. Assume the short term inter-
est rate follows the CIR model, an iterative method of Bayesian estimation
is proposed. Markov Chain Monte Carlo simulation based on Gibbs sam-
pler is used for the posterior estimation of the parameters. The maximum
A-posteriori estimation using the genetic algorithm is employed for finding
the Bayesian estimates of the parameters. The method and the algorithm
are calibrated with the historical data of US Treasury bills.
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1. Introduction

The short-term interest rate is one of the key variables in economy. It is
not only the main factor impacting the macro economic growth, but also an im-
portant financial instrument in the option and derivative market. For instance,
bond prices and values of mortgage contracts are largely determined by the term
structure of interest rates (see, for example, Hürlimann, 2011; Xie et al., 2007;
Duffie and Singleton, 1999). Due to its non-negativity and relative tractability
in nature, Cox-Ingersoll-Ross model (Cox et al., 1985; CIR hereafter) is one of
the most employed interest rate models in literature. Accordingly, there exist
considerable studies concerning the parameter estimation for the model. Imple-
mentation of analytical methods such as maximum likelihood estimation will be
encountered with difficulties, particularly in the estimation of the drift parame-
ters. Essentially due to the complexity of the transitional density function of CIR
model, it is difficult to obtain computationally useful expressions for the unknown
parameters (e.g., Klad́ıvko, 2007). Thus previous literature has mainly focused
on approximation methods. This includes the discretization of the time contin-
uous model (e.g., Shoji and Ozaki, 1998; Yu and Phillips, 2001). However, the
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success of the discretization methods largely depends on the magnitude of obser-
vational interval, which is difficult to control from macroeconomic point of view.
Another approach is based on nonparametric techniques to approximate the drift
function, or the diffusion function, or the transitional density function itself (e.g.,
Aı̈t-Sahalia, 1996; Jiang and Knight, 1997). These approximation methods, while
theoretically feasible, can pose great challenges in implementation, as pointed by
Robert and Stramer (2001), for instance.

Our work intends to use the Bayesian approach for the parameter estimation.
To this end, we need algorithms for choosing both latent data and posteriori prob-
ability. Here we use the Gibbs sampler algorithm (Sorensen and Gianola, 2002)
to create latent data for the Treasury bills yields. Gibbs sampler algorithm but
not Metropolis-Hasting algorithm is embraced with the following considerations.
First, it allows us to accept a candidate point without worry of the acceptance
probability. Second, it generates the fully conditional posterior distribution of
the parameters and the latent data. And we use the algorithm in Tanner and
Wong (1987) to calculate the posteriori probability density of the three parame-
ters appearing in the CIR model. A genetic algorithm is implemented to achieve
the maximum A-posteriori (MAP hereafter) estimation of the parameters.

The paper will proceed as follows. Section 2 contains the derivation of the fully
conditional posterior distribution of the parameters and the latent data. Section
3 describes the sampling algorithm and the MAP estimates of the parameters.
Weekly data of 6-month US Treasury bills will be used in Section 4 to estimate
the CIR process. Concluding remarks and future research directions are provided
in Section 5.

2. The Derivation of the Fully Conditional Posterior Distribution

The CIR process is defined by the stochastic differential equation

dy(t) = {α− βy(t)}dt+ σ
√
y(t)dB(t), (2.1)

where {B(t), t ≥ 0} is a standard Brownian motion and α, β, σ > 0 are the
constant model parameters. Traditional methods such as maximum likelihood
method attempt to estimate the parameters directly. Here we first apply the
Euler-Maruyama scheme to approximate the model itself. Under the Euler-
Maruyama (or Euler) approximation, the model can be rewritten as

y(t+ ∆+) = y(t) + {α− βy(t)}∆+ + σ
√
y(t)εt (2.2)

where εt ∼ N(0,∆+). Suppose there are T observations, and M augmented data
between each pair of observations. Let Y = (y1, · · · , yT ) denote the set of all
observation data and Y ∗ = (y∗1, · · · , y∗T−1) the set of all augmented data, where
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y∗t = {y∗t,1, · · · , y∗t,M}. According to Jones (1998), because the drift term α−βy(t)

is linear in α, β and the diffusion term σ
√
y(t) is the product of the parameter

σ and a function of y(t), we can partition the parameter vector (α, β, σ2) as θ =
(ψ, σ2) where ψ = (α, β). And more importantly, we can assume that the priori
probability density of the parameters satisfies p(α, β, σ) ∝ 1/σ. Starting with the
priori probability density, we can determine, respectively, the fully conditional
posterior distributions of y∗t , ψ and σ2.

For each t > 0, define ∆ = ∆+

M+1 . Assume that y∗t,j is a Markov process for
j = 0, 1, · · · ,M , we have

f(y∗t |Y, θ) = f(y∗t,1, · · · , y∗t,M |Y, θ) =
M∏
j=1

f(y∗t,j | y∗t,j−1, θ), (2.3)

where y∗t,0 = yt and

y∗t,j+1|y∗t,j , θ ∼ N(y∗t,j + (α− βy∗t,j)4, σ2 4 y∗t,j), (2.4)

the fully conditional probability density of Y ∗.
Now consider the fully conditional posterior distribution of each parameter

appearing in the model. For ψ, we have

p(ψ|Y, Y ∗, σ2) = p(α, β|Y, Y ∗, σ) (2.5)

∝ p(Y ∗, Y |θ)p(θ)
∝ p(Y ∗, Y |θ)

∝
T−1∏
t=1

M∏
j=0

f(y∗t,j+1|y∗t,j , θ) (where y∗t,M+1 = yt+1)

∝ exp{
T−1∑
t=1

M∑
j=0

−{y∗t,j+1 − [y∗t,j + (α− βy∗t,j)4]}2

2σ2 4 y∗t,j
}

∝ exp{−
T−1∑
t=1

M∑
j=0

{[(α− βy∗t,j)4+y∗t,j ]
2 − 2y∗t,j+1(α− βy∗t,j)4)}

2σ2 4 y∗t,j
}

∝ exp{−
T−1∑
t=1

M∑
j=0

(α− βy∗t,j)2 42 +24 (y∗t,j − y∗t,j+1)(α− βy∗t,j)
2σ2 4 y∗t,j

}.

Since

(α− βy∗t,j)2 42 +24 (y∗t,j − y∗t,j+1)(α− βy∗t,j)
= 42α2 +42y∗t,j

2β2 − 242y∗t,jαβ + 24(y∗t,j − y∗t,j+1)α− 24(y∗t,j − y∗t,j+1)y∗t,jβ,
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we have

p(ψ|Y, Y ∗, σ2)

∝ exp{−4Aα
2 +4Bβ2 − 24(T − 1)(M + 1)αβ − 2Cα− 2Dβ

2σ2
}, (2.6)

where

A =
T−1∑
t=1

M∑
j=0

1

y∗t,j
,

B =

T−1∑
t=1

M∑
j=0

y∗t,j ,

C = −
T−1∑
t=1

M∑
j=0

y∗t,j − y∗t,j+1

y∗t,j
,

D =

T−1∑
t=1

M∑
j=0

(y∗t,j − y∗t,j+1).

This shows that ψ|Y, Y ∗, σ2 is distributed with some bivariate normal distri-
bution, which hints us to write ψ|Y, Y ∗, σ ∼ N(µ,Λ−1), where µ =

(
µ1
µ2

)
and

Λ =

(
a11 a12

a12 a22

)
, then

(
α− µ1, β − µ2

)(a11 a12

a12 a22

)(
α− µ1

β − µ2

)
= a11α

2 + a22β
2 + 2a12αβ

− 2(a11µ1 + a12µ2)α− 2(a22µ2 + a12µ1)β + (2a12µ1µ2 + a11µ
2
1 + a22µ

2
2). (2.7)

Comparing formula (2.6) and formula (2.7) yields
a11 =

4
σ2
A,

a22 =
4
σ2
B,

a12 = −4
σ2

(T − 1)(M + 1),

(2.8)

and {
a11µ1 + a12µ2 = C,

a22µ2 + a12µ1 = D.
(2.9)
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The solution of the (2.9) gives
µ1 =

a22C − a12D

a11a22 − a2
12

,

µ2 =
−a12C + a11D

a11a22 − a2
12

.

(2.10)

In summary of the above derivation, we now have the fully conditional posterior
distribution of ψ:

ψ|Y, Y ∗, σ2 ∼ N(µ,Λ−1) (2.11)

where µ1 and µ2 are given by (2.10) and

Λ =

( 4
σ2A −4

σ2 (T − 1)(M + 1)

−4
σ2 (T − 1)(M + 1) 4

σ2B

)
.

The fully conditional posterior distribution for σ2 is

p(σ2|Y, Y ∗, ψ)

∝ p(Y, Y ∗|α, β, σ2)p(α, β, σ2)

∝ p(Y, Y ∗|α, β, σ2)p(α, β, σ)(
dσ2

dσ
)−1

∝
T−1∏
t=1

M∏
j=0

1
√

2πσ
√
4
√
y∗t,j

exp{
−{y∗t,j+1 − [y∗t,j + (α− βy∗t,j)4]}2

2σ2 4 y∗t,j
} · 1

σ
· 1

σ

∝ (σ2)−
(T−1)(M+1)

2
−1 exp{−

∑T−1
t=1

∑M
j=0

{y∗t,j+1−[y∗t,j+(α−βy∗t,j)4]}2

2y∗t,j

σ2
}. (2.12)

Therefore,
σ|Y, Y ∗, ψ ∼ Inverse–Gamma(E,F ), (2.13)

where E = (T − 1)(M + 1)/2 and

F =

T−1∑
t=1

M∑
j=0

{
{y∗t,j+1 − [y∗t,j + (α− βy∗t,j)4]}2

2y∗t,j
}.

3. The Sampling Algorithm and the MAP Estimates of the Parameters

The major steps for the sampling process and algorithm are as follows:

Step 1: Initialize y0, θ and generate the original values of y∗1, · · · , y∗T−1 using
Gibbs sampler.
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Step 2: Use Gibbs sampler to
(a) update α, β from f(ψ|Y ∗, Y, σ2), where y∗1, · · · , y∗T−1 are from the

previous iteration,
(b) update σ2 from f(σ2|Y ∗, Y, α, β), where y∗1, · · · , y∗T−1 are from the

previous iteration and α, β are from (a).

Step 3: Update y∗1, · · · , y∗T−1 from f(y∗t |yt, α, β, σ2).

Step 4: Repeat Step 2 until the prescribed sampling size N is reached.

After the sampling of N (in this paper, N = 1500) values for each parameter
from the fully conditional posterior distribution, using the method of Tanner and
Wong (1987), we obtain the posterior density of the parameters as

p(σ2|Y ) =
1

N − 500

N∑
j=501

p(σ2|Y, Y ∗(j), α(j), β(j))

=
1

N − 500

N∑
j=501

β
α(j)

(j)

Γ(α(j))
(σ2)−α(j)−1 exp(−

β(j)

σ2
), (3.1)

and

p(α, β|Y )

=
1

N − 500

N∑
j=501

p(σ2|Y, Y ∗(j), σ
2
(j))

=
1

N − 500

N∑
j=501

1

2π
|Λ(j)|

1
2 exp{−1

2
(α− µ1(j), β − µ2(j))Λ(j)

(
α− µ1(j)

β − µ2(j)

)
}, (3.2)

where the subscript j refers to the jth iteration. In order to negate the effects of
initial conditions, the first 500 iterations were thrown out.

The MAP estimates of the parameters are the points where p(α, β|Y ) and
p(σ2|Y ), respectively, achieve the maximum values. The genetic algorithm tool-
box in MATLAB will help to realize the optimization process.

4. Estimating the CIR Process for US Treasury Bills

We present the estimating results for the CIR process using the time series
of weekly observations of US 6-month Treasury bills. Because the data were
observed weekly, we set the time interval as 4† = 1/52 (years). The number of
latent points between each consecutive pair of observations is M = 20, which has
been, to the best of our knowledge, tested by and widely used in literature. The
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following Figure 1 gives the time series of historical yields of the US 6-month
Treasury bills over a duration of 10 years, starting from November 17, 2000 to
October 29, 2010. An example of the iteration results for parameter estimations
is plotted in Figure 2.
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Figure 1: Time series of US 6-month Treasury bills over a duration of 10 years
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Figure 2: The sampled values of the parameters α, β, σ2 from the fully condi-
tional posterior distribution in each iteration with 6 years of observations from
November 12, 2004 to October, 29, 2010. Here M = 20, N = 1500

In order to obtain the maximum values of (3.1) and (3.2), we take advantage of the
genetic algorithm toolbox in MATLAB. The MAP estimates of the parameters
using 2, 4, 6, 8, and 10 years of US Treasury bills are provided in Table 1.
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Table 1: Bayesian estimates of CIR model using historical weekly data of US
Treasury bills. Here the closing date is October 29, 2010. The starting dates
are November 7, 2008, November 10, 2006, November 12, 2004, November 15,
2002, November 17, 2000, respectively

Year α β σ2 α/β ȳ

2 1.586×10−3 6.944×10−3 0.0398 0.2284 0.2618

4 1.378×10−3 8.541×10−4 0.0019 1.6130 1.8207

6 1.486×10−3 6.437×10−4 0.0018 2.3085 2.5161

8 1.831×10−4 8.633×10−5 0.0019 2.1209 2.1948

10 1.641×10−3 7.619×10−4 0.0014 2.1538 2.3198

From Table 1, we see that the estimates of long term means with different
durations are all close to the means of the historical data themselves. For exam-
ple, the estimated long term mean for 2 years is 2.1209, which has a deviation
only about 0.07, or 3%, from the mean of the observed data, 2.1948. And the
estimates of volatility parameter for the periods with 4, 6, and 8 years are all
about

√
0.002, almost the same with each other. However, for the parameter β,

which measures the speed of adjustment for the process, the estimates with dif-
ferent periods are different. This also explains why it is more difficult to estimate
the drift parameters than the diffusion parameters. In addition, the estimates
for the model are not always consistent for different durations of observations.
For instance, the long term means are different for 4 year and 6 years data sets.
In the meantime, the relative bias in estimation of the drift parameter β is ap-
parent. This suggests that there may exist regime changes in the evolution of
interest rates or the efficacy of affine term structure for describing the interest
evolution over large time is questionable. We would like to remark that partial
empirical evidence leading to similar conjecture can be found in, say, Tang and
Chen (2009).

5. Conclusion

The current work concerns the Bayesian estimation of the parameters for the
CIR model. The Gibbs sampler and MCMC algorithm are adopted to simulate
the fully conditional posterior distribution. The MAP estimation is implemented
for finding the Bayesian estimates of the parameters. The optimal solution is
sought with a genetic algorithm. The effectiveness and robustness of the method
are calibrated with historical data of US 6-month Treasury bills. The experimen-
tal results tend to support the existence of regime changes in the evolution of US
Treasury bills over the past 20 years. One of our future research directions would
be to further investigate this hypothesis.
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