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ABSTRACT

In this paper we compare different policies to select indi-
viduals to migrate in an island model. Our thesis is that
choosing individuals in a way that exploits genotypic differ-
ences between populations can enhance diversity, and im-
prove the system performance. This has lead us to pro-
pose a family of policies that we call multikulti, in which
nodes exchange individuals different “enough” among them.
In this paper we present a policy according to which the re-
ceiver node chooses the most different individual among the
sample received from the sending node. This sample is ran-
domly built but only using individuals with a fitness above
a threshold. This threshold is previously established by the
receiving node. We have tested our system in two problems
previously used in the evaluation of parallel systems, pre-
senting different degree of difficulty. The multikulti policy
presented herein has been proved to be more robust than
other usual migration policies, such as sending the best or a
random individual.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed
Systems— Distributed applications; 1.2.8 [Artificial Intel-
ligence]: Problem solving, control methods and search—
Heuristic methods

General Terms

Algorithms, Performance
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Genetic algorithms, Parallelism, Island model, Migration
policy, Diversity
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1. INTRODUCTION AND STATE OF THE

ART

Any easily decomposable algorithm can improve its per-
formance by distribution in different computing nodes; Evo-
lutionary algorithms (EAs) [10] are such kind of algorithms:
since they are population-based algorithms, computation
can be divided in many different ways: by farming out eval-
uation of members of the population to other computing
nodes (in an approach usually called farming [24]), or by
letting every node carry out its own evolutionary algorithm,
with frequent interchange of information among them via
migration of individuals from one node to the others; this is
usually called an island model [29, 25] (a mention should also
be done to diffusion EAs [9, 23, 26, 2], in which the popula-
tion is endowed with a spatial structure that restricts selec-
tion, mating and replacement; some early works on memetic
algorithms were actually conducted following this approach
[20, 19]. Note that this model lends itself naturally to par-
allelization on massively parallel systems and —as the island
model— can be also used from an algorithmic point of view
without relying on physical parallelization. The focus of this
work is on the island model though.)

In these initial papers, linear speedups' with the num-
ber of nodes were easily achieved. However, since the pre-
vention of inbreeding is one of the keys in maintaining a
healthily diverse population that can efficiently explore the
search space, and distributed computing partially isolates
populations from each other leading them to explore dif-
ferent portions of the search space, it has been frequently
proved that distributed evolutionary algorithms can improve
the results of the sequential version at the same computa-
tional effort measured in number of fitness evaluations (see,
for instance, [3]).

In these parallel evolutionary algorithms, there is an addi-
tional factor that contributes to this increased performance:
the effect that an incoming immigrant have on the popula-
tion they are incorporated to. Different choices for the immi-
grant selection method will yield different performance. And
this immigrant selection method presents different facets
that can be studied:

1. the number of individuals undergoing migration,

Lratio of the sequential execution time to the parallel one



. the frequency of migration, i.e. the number of genera-
tions or evaluations between migrations,

the policy for selecting immigrants,
the immigrant replacement policy,

the topology of the communication among subpopula-
tions, and

the synchronous or asynchronous nature of the connec-
tion among subpopulations.

Some of them have been studied in the literature: for in-
stance, Alba et al. [5] look at the last one, concluding that
asynchrony does not have a negative effect on performance,
and can even outperform synchronous ones; one of the au-
thors [18] also looked at what would be the degree of asyn-
chrony that would achieve the best algorithmic performance,
applying also the above mentioned theory of intermediate
disturbances.

The most exhaustive studies have been made on points
3 and 4 by Canti-Paz: selection of outgoing immigrants
and their incorporation into the population [7, 8]. Canti-
Paz studied the four possible combinations of random and
fitness-based emigration and replacement of existing indi-
viduals. He found that the migration policy that causes
the greatest reduction in work (measured as takeover time,
that is, the number of generations required to converge to
the best individual from the initial population, by applying
selection only) is to choose both the immigrants and the
replacements according to their fitness, because this policy
increases the selection pressure and may cause the algorithm
to converge significantly faster. However, if convergence is
too fast it can lead to algorithm failure, as Cantd-Paz [§]
states referring to parallel EAs:

Rapid convergence is desirable, but an exces-
sively fast convergence may cause the EA to con-
verge prematurely to a suboptimal solution.

However, as stated by Denzinger and Kidney in [11], the
effect of this high-fitness immigrant in the population will
usually be to reduce diversity via combination with other
high-fitness individuals, which will eventually lead to a di-
versity collapse, as high-fitness individuals are circulated
from one node to others. In fact, it is usually observed that
after a few rounds of immigration, populations no longer
behave as isolated islands, and their composition is very
similar. And, curiously enough, this is in accordance with
the biological theory called the intermediate disturbance hy-
pothesis, [28], which states that diversity is affected by dis-
turbances depending on their magnitude: it will produce a
collapse on diversity if it is too big, no effect if it is too small,
and a maximum increase in diversity if it is in the interme-
diate region. In fact, this hypothesis explains some results
[18] found in evolutionary algorithms.

There should, then, be a way of designing evolutionary
algorithms so that diversity is preserved, if not enhanced.
Some authors [1] have proposed a model that differs from
the island model, and which follows an approach of segrega-
tion and reunification. In this case, subpopulations evolve
independently until detecting local premature convergence,
which is indicated by a selection pressure value computed in
each subpopulation. If stagnation is detected the operations
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for this subpopulation are stopped until the next reunifica-
tion phase is reached. Such a reunification phase is initiated,
if all subpopulations have converged prematurely.

On the other hand, authors such as Alba and Troya [4]
found that in the island model, the migration of a random
string prevents the “conquest” effect in the target island for
small or medium sized subpopulations; this could be ex-
plained by the immigrant individual behaving as an interme-
diate disturbance, as opposed to the strong disturbance ini-
tially provoked by the high-fitness individual. Finally, Noda
et al. [21] proposed choosing which individuals to migrate
and/or replace adaptively depending on some knowledge-
oriented rules. To do this, each agent receives information
about the fitness function from its peers. Besides, it con-
siders, among other policies, one in which the individuals
sent are chosen to be quite different from others previously
sent. The tested adaptive policies have been proved use-
ful, providing best solutions than the sequential execution.
A later paper by Yang et al. [30] proposes selecting immi-
grants from an elite set, instead of random ones, and using
them and their bit-wise complements as a pool for creat-
ing a set of immigrants; this yields good results in dynamic
environments, which are known to need a high population
diversity.

However, even as these mentioned policies having the ef-
fect of increased diversity and thus performance, diversity,
by itself, is not acknowledged as one of the factors that
should be dealt with explicitly. And one of the first papers to
do so is the one mentioned above by Denzinger and Kidney
in [11]. Their approach derives from sequential evolution-
ary algorithms that take into account diversity (in the form
of difference to the rest of the member of the population)
explicitly when selecting an individual like the algorithm
proposed by de Jong and coauthors in [16], which converts a
single-objective evolutionary algorithm in a multiobjective
one that considers diversity as the second objective to op-
timize; and also the diversity-guided evolutionary algorithm
[27], which alternates phases of exploration and exploitation
depending on the concentration of individuals around a sin-
gle point in search space. Denzinger et al. aggregate the
difference of every individual to its fitness for a quality value
that is then used to select the individuals that are going
to be sent to other nodes. They test different weights for
fitness and quality, concluding that a 70:30 proportion (fit-
ness:difference) or 50:50 is a better choice that just fitness
by itself, of using the difference in a larger proportion.

It should be noticed that so far, all policies of immigrant
selection concern just the emitting node, not the receiving
node. However, as remarked by Eldos in [12], the receiv-
ing node can also play a role in the selection of immigrants.
Eldos uses a fitness threshold in the receiving node as the
criteria for accepting or not an immigrant, without taking
into account diversity, but other, earlier paper by Power et
al. [22] considered it not only to select for migration a rep-
resentative of the population (along with others, if the mi-
gration rate is high), but also to select which individual in
the receiving population is going to be eliminated: the first
criteria for replacement is the closeness to other members
of the population, so as not to reduce diversity, eliminating
members of the population which contain unique informa-
tion.

The authors previously proposed the multikulti algorithm
[6], which applied diversity considerations to the receiving



population, such as the algorithms described above. It was
tested on some discrete optimization problems, finding that
it yields better results than random or best-individual mi-
gration policies in some cases. The multikulti algorithm
selects individuals to send to other populations based on
its difference with a representative chromosome of the re-
ceiving population. By sending strings that are different
enough, it ultimately tries to increase performance via the
diversity-boosting effect that an incoming multicultural im-
migrant might have.

However, in the previous instance of the algorithm (let’s
call it multikulti1) the receiving population did not have a
choice; in some cases, even if the received individual was the
most different to the representative of the population (be it
the best individual or the consensus sequence), it might ac-
tually be very similar to some individuals in the population,
having thus no influence on diversity. That is why the mul-
tikulti policy described in this work (let’s call it multikultiz)
also aims at exploiting genotypic differences in the various
subpopulation by putting more emphasis on the receiving
population than the emitting one. Our thesis is that mi-
grating individuals different enough to the destination sub-
population instead of the best (or random) individuals can
result in a better performance through the enhancement of
diversity it produces. Instead of sending a single individ-
ual selected by the emitting population, we propose to send
several individuals b1, - - ,bm, in order to allow the receiving
population to choose the most different one to promote its
own diversity. In general, it can lead to explore new areas of
the search space where the global optimum may be placed.
In order to combine diversity and quality, the random sam-
ple selected to be sent is constrained to be above a threshold
fitness value, which is previously given by the receiver node.

In this paper we will perform systematic experimentation
of the selection of immigrants on two functions, and parallel
environments with different number of nodes; the number of
nodes has an impact on performance, but also on diversity,
with more nodes usually meaning better performance (in
average number of evaluations), but also a higher chance of
premature convergence.

The rest of the paper is organized as follows: section 2 de-
scribes the model details, the evolutionary algorithm imple-
mented and the problems to solve using it; section 3 presents
and discusses the experimental results, and section 4 draws
the main conclusions of this work.

2. MATERIALSAND METHODS

Before detailing the algorithms and problems considered,
let us firstly describe more in depth how the multikulti prin-
ciple is put at work and the problems used to test it.

2.1 Multikulti Policy

Without losing generality, we have considered a ring topol-
ogy (Figure 1), in which each node can only send or receive
information to/from the next and previous nodes in the ring.
The node P; receives from node P;+1 a message with a fitness
value below which the immigrant (or any other individual,
for that matter) would not be selected for reproduction; for
instance, if 20% of the population is going to be eliminated
in the rank-based selection scheme, the fitness of the first
individual over that threshold is sent.

Once node P; has got this information, it sends to node
Piy1 a set of random individuals whose fitness is above that
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limit. The number of individuals is an adjustable param-
eter; in this work it is equivalent to the number of gener-
ations between migrations; that is, if every node waits for
k generations before communicating with the others, k& in-
dividuals are sent. The only rationale for doing this is to
reduce the number of free parameters of the system, but ob-
viously a more thorough investigation of these values should
be done. Node Pi41 then uses some distance measure (in
this work, the Hamming distance) to compute the average
distance from the population to each immigrant, and picks
the immigrant with the higher average distance. Please note
that this model, while keeping the multicultural spirit of the
former multikulti algorithm [6], is different in the sense that
previously the most different individual was picked by the
emitting node, while now it is done by the receiving node
from a selected sample of immigrants, thus enabling more
flexible strategies for immigrant management.

2.2 Experimental Setup

We use a traditional binary representation in this evo-
lutionary algorithm; the selection mechanism used is lin-
ear ranking, population replacement follows a steady state
policy (which substitutes only a part of the population in
every generation; the number of individuals substituted is
computed multiplying the selection rate by the population
size); two-point crossover operator (except in some cases)
and single-bit-flip mutation are used.

Two problems have been considered, namely P-Peaks and
the massively multimodal deceptive problem (MMDP), which
are discrete combinatorial optimization problems presented
by Giacobini et al. in [13]. These problems, while being both
multimodal, represent different degrees of difficulty for dis-
tributed evolutionary optimization. They will be described
in next subsection.

The problems have been implemented and integrated in
the Algorithm: :Evolutionary library, which is freely avail-
able under the GPL license at http://fon.gs/ae-perl/.
In order to simulate a parallel algorithm, the cooperative
multitasking Perl module POE has been used; each node is
represented by a POE session. The rest of the evolution-
ary algorithm has been implemented using the same Algo-
rithm: :Evolutionary Perl module [15]. This module can
be used to simulate a parallel execution via a sequential
program; since this paper was not concerned with running
times, but algorithmic efficiency, the way it is implemented
at a low level (parallel or sequential) is not important. The
program, along with the parameter sets used, is also avail-
able under an open source license in the same site.

Tests were initially made for 2, 4 and 8 nodes, to see
how the different migration methods fared under different
initial diversity conditions. The total population was kept
constant independently of the number of nodes, dividing it
among the nodes. In this simulated distributed scenario,
each node runs a deterministic rank-based substitution (the
worst are always eliminated and substituted by descendants
of the rest), steady state algorithm. At the end of a preset
number of generations, each one sends a single individual to
the other node according to the policy being tested. These
problems, and the specific issues of their implementation,
will be explained below.

2.3 Problems Considered

P-Peaks is a multimodal problem generator proposed by
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Figure 1: Scheme of the multikulti algorithm. A
node, such as P>, sends to the previous node P;
the threshold fitness value 75 above which the re-
ceived immigrant’s fitness must be. Then P; sends
to the node P a set S of individuals randomly cho-
sen among those with a fitness above the threshold.

Table 1: Evolutionary algorithm parameters used
in the P-Peaks and MMDP experiments. Operator
rates have been selected heuristically, by testing sev-
eral values, with the objective of maximizing success
rate.

P-Peaks MMDP
Parameter xOver GBX
Chromosome length 100 128 90 120
Total population 512 256 2048
Selection rate 20% 60%  20%
Migration period 10 20
Mutation rate 1 40%  20%
2-point crossover rate 9 60% 80%
Max number of evaluations 100000 200000

De Jong in [17], and is created by generating P random
N — bit strings p;, 1 < i < P, where the fitness value of a
string Z is the number of bits that & has in common with
the nearest peak divided by N, i.e.,

maxigicp{N — H(7,
N

Pi)}

(1)

fP—pPears(T) =
where H(Z,y
Z and 7.

We consider an instance of P = 100 and 100 and 128 bits
where the optimum fitness is 1.0. The parameters used in the
EA are shown in Table 1. As mentioned above, the source for
the experiments as well as the parameter files are available
from our group’s CVS server http://fon.gs/ae-perl.

On the other hand, MMDP [14] is a deceptive problem
composed of k subproblems of 6 bits each one (s;, 1 < 1 < k).

) is the Hamming distance between binary strings
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The fitness of a 6k—bit string is computed as:

k-1 6
fumpp(Z) = Z o) <Z $ik+j>
i—0  \y=1

where function ¢(u) is defined on the unitation of any 6—bit
segment as

(2)

1 u € {0,6}
B 0 ue{1,5}
$(W) =19 0360384 u e (2.4} (3)
0.640576  u =3

The number of local optima is quite large (22%), while
there are only 2% globally optimal solutions. In this paper,
we have considered an instance with k = 20 subproblems,
whose maximum is then fararpp(8) = 20; this will be repre-
sented in a chromosome of length 120. Due to the nature of
this problem, and the fact that in the initial tests the algo-
rithm was not able to find the solution in many cases, we hy-
pothesized that it might be due to the fact that the crossover
was acting as a macromutation operator, thus disrupting
the subproblems already solved by the EA. That is why, be-
sides the traditional one point crossover, we used another
crossover operator that respects gene boundaries (which we
have called GBX), that is, only interchanges whole genes
(whole subproblems, in this case) between parents, leaving
the mutation function to the bit-flip mutation operator. Be-
sides, these initial tests showed that results obtained by the
4- and 8-node system were much worse than for two nodes,
possibly due to the lack of initial diversity in the smaller
populations. The parameters used in the EA are shown in
Table 1.

3. EXPERIMENTAL RESULTS

Each combination was run 30 times, with termination con-
dition being success or a maximum of evaluations. Figures
2 and 3 show the results for the P-Peaks problem with 100
and 128 bits respectively.

There are several conclusions, which are tangential to the
target of this paper. Firstly, the highest influence on the
number of evaluations (algorithmic performance) is the num-
ber of nodes, with more nodes meaning less evaluations. As
has been indicated in the state of the art, EAs profit from
division in islands, achieving a double benefit: more evalua-
tions happening at the same time, and also less evaluations
needed to reach target. From two to eight nodes, P-Peaks
needs half as many evaluations for all lengths (100 and 128).

Next conclusion is that while differences are not too big
for the easiest problem (I = 100), on average, the multikulti
method is better than non-adaptive random or best strategies
for [ =100, 128. Multikulti algorithm is generally better on
average (except for n = 8 nodes, when it is worse than the
random strategy), and much better in median than the other
methods for [ = 100. A Mann-Whitney U test indicates that
these differences are statistically significant at 0.15 level for
four nodes. This difference does not follow a clear trend
with the increasing number of nodes (and thus decreasing
population in each node). Please note also that the other two
methods, best and random do not have a clear advantage over
each other, and the decreasing number of evaluations needed
to reach optimum when the number of nodes increases. We
think that the multikulti policy could be more advantageous
for smaller populations where diversity is usually depleted
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Figure 2: Boxplot of the number of evaluations

needed to find the solution for P-Peaks with 100 bits for 2,

4 and 8 nodes. Averages are represented as red rhombs.
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Figure 3: Boxplot of the number of evaluations

after few generations. This behavior can be observed in
the experiments, in which multikulti obtains better results
for 4 nodes than for 2. However in the case of 8 nodes,
the population of each node, 64 for P-peaks with 100 peaks
and 32 for P-peaks with 128 peaks, may be too small to
provide samples that are different enough from the target
population.

The same pattern appears with | = 128 (Figure 3), except
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needed to find the solution for P-Peaks with 128 bits for 2,
4 and 8 nodes. Averages are represented as red rhombs.

that the initial population is smaller. Medians are better,
once again except for n = 2, which is the second best. Statis-
tical significance is achieved just for eight nodes, against the
random strategy. In this case, the behavior of the multikulti
algorithm seems to be better for small initial populations.
The conclusion from these experiments is that while trad-
ing immigrants that are different enough does have a definite
effect on the performance, it is relatively easy to overshoot
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evaluations. These results use the GBX crossover

the difference, or else being too similar to have any effect.
It is easy to imagine, for instance, that at the end of the
run all solutions are close to each other, and the difference
between emitting and receiving population are not so big.
In any case, sending the best or a random one might achieve
good or bad results, depending on many factors (number of

1336

nodes, the problem length); using a multiculturalism policy
is always close to the best or, in some cases, better than the
rest.

In any case, we have used a more difficult problem, MMDP,
to test the hypothesis of validity of multikulti policies, and
how they become increasingly relevant with the difficulty of



the problem. Experiments made on MMDP were, as above,
performed with 30 runs for every parameter setting, and
with two, four and eight nodes.

Figure 4 shows the results obtained for the MMDP prob-
lem. Multikulti is better on average for two and four nodes,
and in median for two nodes but only slightly worse for
four nodes than the others. Note however that statistical
significance is achieved precisely on two nodes, against the
best strategy. Once again, there are good results and they
are apparently better when there is enough initial diversity
available; the MMDP algorithm obtains worse results when
initial diversity is less (the population is smaller), so the
fact that multikulti is better in this situation probably in-
dicates that it helps in keeping diversity (in the shape of
entropy) high, but fails to increase diversity via exploration
when whatever is available is small to start with.

The same problem tested with the GBX crossover opera-
tor yields the results shown in Figure 5. Please note that,
in this case, crossover is set to a 80% rate, as opposed to
the last graph; besides, this crossover respects gene bound-
aries, avoiding the introduction of additional mutations. As
the graph shows clearly, average number of evaluations is
much better for the multikulti policy, although the median
is slightly worse for two nodes than the one for the random
policy. At any rate, there is no statistical significance in
this latter case. This significance is achieved on two nodes
(against best), on four nodes (against both best and random),
and on eight nodes (against random). This shows that, since
the higher priority of crossover increases the degree of mix-
ture with the incoming population, the impact of incoming
immigrants is much bigger, and since they have been se-
lected to have a difference as big as possible, they have a
noticeable impact in the performance, decreasing the aver-
age number of evaluations by a few percentage points for two
nodes, and almost halving it for four nodes. This improve-
ment arises from the fact that the number of unsuccessful
runs is much lower (just two for multikulti, closer to ten for
the other methods); and this, in turn, means that the multi-
kulti is able to successfully keep diversity high and prevent
the populations inhabiting the nodes to fall into inbreeding.

4. CONCLUSIONS

This paper has explored a new alternative to promote di-
versity in an island model based on the concept of multi-
culturalism, and which we have called multikulti. This is
achieved by selecting as immigrant individuals with a geno-
type different enough to the destination population.

Results in several problems show that, in most cases, the
multikulti policies are able to outperform non-adaptive ran-
dom and best-individual migration policies. While these
policies do not show a clear trend of being the one better
than the other, the version of multikulti presented in this
paper is consistently better (or equal at the very least) than
them in most circumstances, independently of the number
of nodes (that is, diversity present in the initial population)
and the problem tested, showing a clear advantage for the
P-Peaks problem with 100 bits and 20-subproblem MMDP
with the GBX (gene-boundary respecting crossover) oper-
ator, and slight advantages or disadvantages in the case of
the 128-bit P-Peaks. However, the parameters used in ev-
ery problem have been different, which is bound to have an
impact in the results.

There is clearly also a trade-off between the different sources

1337

of diversity. Interchanging individuals is more an exploita-
tion than exploration method, and thus is very limited for
the creation of diversity. However, it can increase it locally
and during some time in the receiving node, but mechanisms
must be in place to make sure that it enters the reproductive
tool, or at least that it has got a high probability of doing
it; this provision applies to every migration method. That
is why the combination of a high crossover (high degree of
exploration) with big populations (higher initial diversity)
often makes the multikulti method obtain better results.

This is probably one of the avenues of research we should
use in the future: try to choose the method that best repre-
sents the whole population (consensus chromosome, such as
the one used in [6], or others), and the method that better
ensures that there is going to be a difference. The number
of candidates to be sent is also an issue. It has been kept
constant in this paper, but there is a trade-off between the
amount of information that can be sent between nodes and
what performance increases that can be obtained from it, so
algorithmic performance will have to be analyzed along with
(simulated or real) network traffic to obtain the best results.
Past experiments by the authors [18] also show that starting
populations at different time will have a positive impact on
performance by decreasing the number of evaluations; we
will study how late start and migration policies interact.

We also intend to develop a parallel implementation of the
system, which will allow us to measure execution times too.
In addition, we are working on alternative mechanisms to
characterize the destination population, and thus select the
more appropriate immigrants. We will also test results ob-
tained by changing other algorithm parameter such as num-
ber of immigrants.
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