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A Method for Generating Desired 
Contact Pressure Distributions in 
Experimental Interfaoial Studies1 

fComputer simulation of the thermal deformation behavior of machine tools 
requires a priori knowledge of the correlation between the contact pressure 
distribution and the thermal contact resistance distribution along the structural 
joint. To establish this correlation experimentally, a method for generating dif­
ferent distributions of contact pressure has been devised in the present work. The 
method provides also a basic tool toward the satisfaction of the requirements of 
simulative wear testing. 

In this paper, the effect of the relative flexural rigidity of two solids in contact on 
the shape of the distribution of contact pressure is presented as a means for 
generating desired contact pressure distributions. The theoretical background of the 
concept is discussed considering two limiting cases: a rigid body on an elastic semi-
infinite mass, and an elastic layer on a rigid baseTtThrough a photoelastic analysis, 
the geometric parameters of contacting bodiesr^which allow us to generate the 
desired distributions, have been defined. The results of the analysis were verified by 
a two-dimensional, plane-stress finite element model. . 

The results indicated that a finite plate, whose dimensions are not less than three­
fold the contact length can simulate a two-dimensional rigid base or a semi-infinite 
elastic mass. A change in the height-to-contact length ratio of the contacting beam 
from 0.5 to 2.5, causes a significant change in its elastic response from a flexural to 
a rigid body. 

Introduction 

The nonuniformity in the distribution of the contact 
pressure between the components of a machine tool structure 
is inherent to its design and functional requirements. As the 
data available in the open literature demonstrate [1-5], the 
profile of this distribution reflects the influence of the 
mechanical and thermal load on the parameters which 
characterize the stiffness of contacting structural elements. 
These parameters are the geometric configuration, the 
mechanical properties, and the surface topography. 

It is a well-known fact that machining errors due to thermal 
deformation of machine tool structures are comparable in 
magnitude to those resulting from tool wear and mechanical 
deflection. The effect of the distribution of the contact 
pressure on the thermal deformation of machine tools was 
first recognized by the authors in [6]. Through the changes in 
the local values of the thermal contact resistance, the 
distribution of the contact pressure plays a significant role in 
controlling the temperature field in the structure [7]. Ac­
cording to the theory of nonlinear thermoelastic behavior of 
structural joints [8], thermal deformation resulting from the 
temperature field develops thermal contact stresses along the 
joint, which alter existing contact pressure distribution. This 
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activates a thermo-mechanical, closed-loop interaction at the 
joint, which proceeds until the state of equilibrium between 
all parameters taking part in the process has been reached. 

The significant effect of the interactions at the joint on the 
thermal deformation behavior of the structure, and con­
sequently the machining accuracy, has been demonstrated in 
[9, 10] and supported by experimental evidence [11]. 

To predict the thermal deformation of the machine tool 
structure, with the nonlinear thermoelastic behavior of the 
joint is taken into account, a computer simulation scheme has 
been developed [12]. A key element in this scheme is the pre-
knowledge of the correlation between the distributions of the 
contact pressure and the thermal contact resistance. This 
requirement called for the replacement of the existing method 
of measuring the thermal contact resistance as a mean value 
by a new method, in which the thermal contact resistance is 
measured as position-dependent for a known contact pressure 
distribution along the interface [13]. The concept of 
generating various distributions of contact pressure for that 
purpose, based on the theory of unbonded contact of beams 
on elastic foundation, has been outlined in [13] and is the 
subject of detailed analysis in the present paper. 

The concept and the results presented in this study are 
neither restricted to machine tool joints, nor confined to the 
problem of thermal contact resistance. In the area of 
tribology, the need for a method for generating desired 
contact pressure distributions for simulative wear testing has 
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Fig. 1 A concentrated line load (distributed along z-axis) acting on an 
elastic semi-infinite body - radial stress field (isochromatic lines) 

been recognized. This need stems from the established 
correlation between the distribution of the contact stresses 
and the wear process. The extent and the location of the 
fretting wear damage, for example, cannot be predicted 
without a priori knowledge of the distribution of the contact 
stresses. Supported by experimental evidence, examples for 
coupling the contact stress solution and the wear formulation 
were presented in [14-17]. 

Toward improving the applicability of laboratory wear 
tests in practice, the similarity theory dictates that the 
characteristic stress in the model and the original structure 
should be the same [18]. The characteristic stress, which 
decisively acts on the wear process, varies according to the 
wear mechanism. In the case of layer wear, e.g., it is the 
maximum contact pressure and not the mean value that 
should be reproduced. Therefore, there is a need to create the 
proper distribution of the contact pressure in the model to 
account for various types of loading which act on the actual 
structure (mechanical, thermal, and residual stresses) [18]. In 
the current tribological research programs in West Germany 
[19, 20], contact stresses have been recognized as one of the 
quantities to be measured in practice-oriented laboratory 
testing. 

The experimental study carried out by Rice [21], under 
sliding and impact wear conditions, concluded that the 
phenomenological wear behavior and the wear track profile 
depend not only on the nominal (average) contact stress, but 
also on the stiffness of the specimens. This indicates that it is 
the distribution of the contact pressure and not its average 
value that controls and characterizes the wear process. The 
theoretical analysis carried out by Fedotova [22] supports this 
conclusion. 

The interpretation of the wear process as a result of sub­
surface fracture, provided a theoretical background for the 
effect of the distribution of the contact pressure, which 
defines the local microscopic contact conditions, on the wear 
rate and the nature of particle detachment [23, 24]. 

The Concept of Generating Different Distributions of 
Contact Pressure - Theoretical Background 

The concept adopted in the present study, to generate 
different distributions of contact pressure, is based on the 
dependence of the latter on the relative flexural rigidity of the 
solids in contact. The external loading is confined to the case 
of a concentrated line load, due to the uncertainty associated 
with the practical application or measurement of any other 
type of loading. An appreciation of this concept can be gained 
by considering the following two limiting cases: a rigid body 
on an elastic semi-infinite mass and an elastic layer resting on 
a rigid base. 

A Rigid Body on an Elastic Semi-Infinite Mass. The 

RIGID BODY 

ELASTIC 
SEMI-INFINITE 
MASS 

Fig. 2 Contact pressure distribution at the interface of a rigid body on 
an elastic semi-infinite mass under the influence of a concentrated line 
load 

hT 
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!Pc{x} 
Fig. 3(a) An infinitely long rectangular oeam 

f pc/ pav 
Fig. 3(b) A rectangular beam of finite length 

Fig. 3 Contact pressure distribution at the interface of an elastic body 
(beam) resting on a rigid base under the influence of a concentrated 
line load 

response of the surface of a semi-infinite mass to contact 
pressure exerted by a rigid body can be constructed from 
Michell's classical analysis of a concentrated load acting on 
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Fig. 4 Contact pressure distribution along the centerline of a square 
plate on a semi-infinite mass under a central concentrated load P [11] 

the boundary of a mass. In two-dimensional configurations 
(Fig. 1), where the mass is substituted by a large plate of a unit 
thickness, the stresses acting on an infinitesimal element at a 
distance r from the applied concentrated line load P is a 
simple compressive radial stress 07.[25]: 

- 2Pcos0 
°r= (1) 

•wr 
"9 = Tr0 = 0 (2) 

where ae and rre are the tangential and shear stresses, 
respectively, and P is the load per unit thickness. 

Along any circle having its center on the .y-axis and passing 
through the point of load application 0, ar is constant except 
at point 0 where it becomes infinity. Knowing the stress field, 
the vertical displacement along the surface of the semi-infinite 
mass is expressed as: 

= ± 
IP d 

.log 
•KE r 

(1 + v) 
j 

•KE 
(3) 

where d is the depth of a point, located on the .y-axis, which 
does not move vertically. The principal superposition permits 
the use of the influence lines obtained from Michell's solution 
to determine the displacements at any point in the elastic body 
under any arbitrary load distribution. 

The displacement of the free boundary y = 0 due to a 
surface traction pf £) acting over a portion of the boundary 
a<x<bis: 

v\x 
TTE J?= 

( />miogl*-fW$ (4) 

where \x— £1 represents the positive distance between the 
load element p (£) at £ and the point of observation at x. 

When the concentrated load is transmitted to the elastic 
mass through a rigid body of a length /, the deflection along 
this portion of the boundary will be constant. Sadowsky's 
solution [26] for the contact pressure distribution/?c [x\ which 
produces this type of surface deflection is expressed as: 

IP 

" " ' " W / 2 - 4 x 2 ( 5 ) 

Equation (5) indicates that while the contact pressure ap­
proaches infinity underneath the edges at x= ± 1/2, it attains a 
minimum value of 2/7 TT/ at x = 0, as presented schematically 
in Fig. 2. 

An Elastic Layer on a Rigid Base. It is pertinent to 

Fig. 5 Two dimensional model composed of plates A and B-
element idealization 

finite 

consider the solution of the classical problem of a finite long 
beam, of a thickness 2 h, subjected to collinear equal and 
opposite concentrated line loads P acting on both edges. 

The middle plane of symmetry is free from shear stresses 
and vertical displacement, and therefore, the stress field 
within either half of the beam is equivalent to that produced 
in an elastic layer resting on a rigid base. The distribution of 
the vertical stresses oy along the middle plane y = 0 (or 
equivalently, the contact pressure distributionpc [x\) is given 
in [27-29]. 

Coker et al.'s solution [29] is presented schematically in 
Fig. 3(a). While attaining its maximum level underneath the 
point of application of the load x = 0, the contact pressure 
diminishes, however, very rapidly with x and becomes zero at 
x/h = l.35. 

At this point it is of interest to compare Figs. 2 and 3(a) to 
observe how the change in the relative rigidity of contacting 
solids would invert the shape of the contact pressure 
distribution. It seems, also, reasonable to predict that an 
increase in the rigidity of the elastic beam would bridge the 
transition between these two contact pressure profiles, passing 
through a critical value which corresponds to a uniform 
pressure distribution. This prediction is supported by the 
results reported by Goodier [27] and Theocaris [30], for the 
case of a rectangular block, and a semi-infinite strip subjected 
to a concentrated line load, respectively. The change in the 
distribution of [oyl^o a s the height of the beam h is increased 
with respect to the contact length / is presented schematically 
in Fig. 3(6) [27]. 

In the present study, an attempt is made to vary the relative 
rigidity of two contacting solids, made of the same material 
but of different cross-sections, by changing the height-to-
length ratio h/l of the smaller body while maintaining the 
dimensions of the second unchanged (Fig. 5). Cheung et al. 
[31] applied the finite element method to determine the 
contact pressure distribution, along the centerline of a square 
plate resting on a semi-infinite body, under the influence of a 
concentrated load acting at the center of the plate. This 
particular configuration, and the type of loading as well, 
differs from the model investigated in the present study. 
Nevertheless, Cheung's results (Fig. 4) provide an indication 
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Fig.6(a} H/J = 0.5 Fig.6(b) h/J = 1.0

Fig.6(c) h/J =1.5 Fig.6(d) hJI =2.5

Fig.6 Stress fringe pattern at the contact zone of two bodies (A and B)
of different flexural rigidity when the smaller body A has a height·to·
contact length ratio of

for the sensitivity of the system relative rigidity to the change
in the height-to-Iength ratio h/I of the plate. An expression
for the elastic response of such a system has been defined as:

"1= 1807f.(~)2.(~y) I-v~. Em (6)
h 1- Vm Ep

where Ep , Em' and vp , Vm are the moduli of elasticity and
Poisson's ratios of the plate and the elastic mass, respectively.
Ax, ~y are the dimensions of any of the rectangular finite
elements, from which the plate is assembled, while h stands
for the plate height. For this particular configuration, Fig. 4
shows that the two limiting cases (very flexible-, and ab­
solutely rigid-plate) were achieved, as the h/I ratio of the plate
varies only from 0.23 to 1.38, when both solids are made of
the same material.

Photoelastic Analysis

A photoelastic analysis has been carried out to determine
the dimensions of the two specimens in contact (A and B in
Fig. 5), which render the relative rigidity of the system in a
suitable range for generating different distributions of
contract pressure. Specifically, the analysis was aimed at
answering the following two questions:
- What are the minimum dimensions of the larger specimen
to simulate an elastic semi-infinite plate/a rigid base?, and
- What height-to-contact length ratios h/I are to be chosen
for the smaller specimen to behave as a rigid body/flexible
beam, respectively?

The solution of the contact problem by the photoelasticity
method, where plastic material is used, raises a question on
the effect of the material elastic constants on the stress field.
In other words, the validity of extrapolating the measurement
results to other materials. Michell's theorem [32, 33] asserts
that when a homogeneous and isotropic elastic body is in a
state of either plane strain or generalized plane stress induced
by prescribed surface tractions, the in-plane stresses do not

244/ Vol. 107, AUGUST 1985

depend on the elastic constants of the material, provided that
such a body is simply connected. For the plane contact
problem where the bodies are strained by mixed conditions at
the surface, Dundurs et al. [3] have indicated that Michell's
theorem is still valid, provided that certain conditions are met:
the bodies are made of the same material, the contact surfaces
are smooth, and the apparent contact area established by the
geometries before loading stay either the same, or contract
during loading. In the current study, these requirements were
fulfilled, as the experimental setup is restricted to stationary
contacts, in which the apparent contact area remains un­
changed during loading.

Experimental Setup. The typical model shown in Fig. 5
consists of two plates A and B in contact. Both plates were cut
to size from 1/4 in. (6.35 mm) thick photoelastic flat epoxy
sheet (PSM-5, manufactured by Photoelastic Inc.). Using
aluminum templates, the plastic models were first milled and
then ground to the nominal dimensions (±0.075 mm) in
accordance with the manufacturer's recommendations.
Before loading, all models were checked photoelastically to
ensure their freedom of residual stresses due to machining.

An optical bench-type transmission polariscope was used.
Through a dead weight and cantilever arrangement, the
model was subjected to a constant concentrated line load
(over a length 1=7.5 mm) along the plane of symmetry. The
material fringe constant was determined by averaging the
results obtained from a circular disc-calibration model [34].

Experimental Procedure. By arranging the polariscope to
produce a plane-polarized light field, the black bands of the
isoclinic lines were recorded for different angular positions of
the coupled polarizer-analyzer filter system. With the
polariscope set as a circular polariscope, the polarized light
from the stresses model produces the isochromatic fringe
patterns shown in Figs. 6(a) to 6(d). The interference bands
are proportional to the principal stress differences (ax - ay):
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Fig. 7 Effect of the h/l ratio on the distribution of the contact pressure 
generated at the interface of the model shown in Fig. 5-photoelastic 
results 

+ 1/2 
h/l = 0 . 5 ^ 

PHOTELASTICITY RESULTS 

F. ELEMENT RESULTS 

Fig. 8 Comparison of the contact pressure distribution results ob­
tained by photoelasticity and finite element analysis, for h/l = 0.5 

ax - °y = / * 
N 

(7) 

where/is the material fringe constant, t is the thickness of the 
model while TV stands for the number of the fringe order. The 
fringe order was established by comparing the isochromatic 
fringe pattern obtained as black and white, and as colored; 
the black line in both cases is the zero line. This was con­
firmed with the satisfaction of the condition of zero principle 
stresses, and consequently zero fringe order, at the external 
corners. Given the isoclinic parameter at the point under 
consideration, the Tardy method of compensation was used to 
determine the fractional fringe order to two decimal points. 

To obtain the distribution of the normal stresses at the 
interface, the principal stresses expressed in equation (7) are 
separated by the "shear difference method." This method is 
based upon expressing the integration of the differential 
equations of equilibrium in a difference form: 

(ox)B=(ox)A-t,J^^)i (8) 

(ay)B=(ay) 
(T„)I 

y)A ' (Ax),. (9) 
,=1 (AX); 

Since the values for rxy are obtained from the shear stresses 
along two lines drawn on either side of the line under con^ 
sideration, the contact pressure distributions were calculated 
along a line 0.040 in. from the interface. The shear stresses, 
substituted in equations (8) and (9) were obtained from the 
isoclinic and isochromatic data: 

Txy=(ax-ay)/2sm2d (10) 

Comparison of the applied load to the integration of the 

contact pressure distribution provided a check on the ex­
perimental results. 

Results and Discussion 

More than 50 sets of experiments were performed [35] in 
order to obtain a comprehensive description of the influence 
of the geometric parameters of contacting bodies on the 
contact pressure distribution. While maintaining a contact 
length / o f 1.0 in. (25.4 mm) and changing the height of the 
upper specimen h between 0.5 in. (12.7 mm) and 3.0 in. (76.2 
mm), the dimensions Wand Hof the lower specimen has been 
varied between 3 and 5 in. (76.2 and 127 mm). A parametric 
evaluation indicated that a lower specimen of 3 x 3 in. (76.2 x 
76.2 mm) can be used to simulate the sought-for effect. 

Some of the results obtained from the photoelastic analysis 
are given in Fig. 6. The isoclinic lines obtained for the case 
h/l-0.5 (Fig. 6(a)) are bending outwards indicating a stress 
concentration at the center of the contact. The change in the 
distribution of the contact pressure as the rigidity of the upper 
specimen is increased (by changing h/l from 0.5 to 2.5) is 
clearly visible in Fig. 6(d). The figure shows clearly the high 
stress concentration at the end points of the contact. These 
stress concentrations manifest themselves by the subsidiary 
loops originating at the end points. 

The different distributions of contact pressure pc{x} 
obtained for h/l ratios ranging from 0.5 to 2.5, normalized 
with respect to the average applied pressure, are compiled in 
Fig. 7. The graph shows the significant change in the elastic 
response behavior of the system, and consequently the 
distributionpc [x], with the variation in h/l. 

The contact pressure distribution obtained for h/l =2.0 is 
very close to the case h/l = 2.5 and is omitted from Fig. 7 for 
clarity. Therefore it can be concluded that the upper specimen 
behaves as a rigid body when h/l>2.0. In reference to Fig. 4, 
it seems that this result is not unexpected, as the conditions of 
plate rigidity for that particular configuration was obtained at 
h/l= 1.38. The same case of a square plate Ixl resisting on a 
semi-infinite mass and subjected to a central concentrated 
load has been studied by Gorbunov et al. [36]. It was con­
cluded that the plate can be considered as a rigid body if 

Tr/ 3£m<8£»(l- ,) (11) 

where D is the flexural rigidity of the plate, 

D=(Eph
i)/(l2(l-v2

p)) 

Equation (11) is satisfied when h/l> 1.68. 
To verify the results obtained by the photoelastic analysis, a 

two-dimensional plane-stress finite element analysis has been 
carried out, using SOLID SAP-A [37]. The mesh idealization 
and node arrangement, for the numerical model, are shown in 
Fig. 5. The model assumes linear elasticity and perfectly flat 
contacting surfaces. The contact interface has been idealized 
by a single row of nodes, and thus constraining the contacting 
surfaces from any relative movement. Due to symmetry, only 
half of the contacting plates A and B were considered. By 
definition, the nodes located along the line of symmetry are 
restricted from horizontal displacement 

u = 0 at x = 0 

At the base of the lower specimen, the nodes are restricted 
from horizontal and vertical displacements, u and v, 
respectively 

u = v = 0 at y = 0 

The finite element results were found to be in good 
agreement with the photoelastic predictions within ±8 
percent. The distribution of pc[x] obtained for h/l = 2 are 
very close to that of h/l = 2.5 in confirmation of the 
photoelastic observation. A sample comparison between the 
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photoelastic and the finite elements results for h/l = 0.5 is 
shown in Fig. 8. 

The photoelastic results suggest that a uniformity in the 
distribution pc \x] could be obtained at a particular value of 
h/l falling within the range 1.0</i//< 1.5. Preliminary in­
vestigation of this range shows the critical role of the corners 
of the upper specimens' contact surface. This effect has been 
known for a long time since the original work of Mesmer [38, 
39]. A slight rounding off at the corners was found to be a 
successful way of controlling the steep stress gradient un­
derneath the edges of a rigid body pressing an elastic mass [40, 
41]. Galin [40] indicated that the theoretically infinite contact 
pressures drop to zero if the corners are rounded off. 

Conclusions 

From the present study, the following conclusions can be 
drawn: 

1. Contact pressure distributions pc{x) of distinctively 
different shapes can practically be generated by controlling 
the geometric parameters of the contacting solids; i.e., their 
relative flexural rigidity. 

2. A finite plate, whose dimensions are not less than 
three-fold the contact length can simulate a two-dimensional 
rigid base or semi-infinite elastic mass (in contact with a 
flexible- or rigid-beam, respectively). 

3. A variation of the beam height-to-contact length ratio 
in the range 0 .5</ i / /<2.0 causes a significant change in its 
elastic response behavior - from a flexible to a rigid body. For 
h/l>2.0, the changes in the distribution pc\x) are not 
significant, and as such, a ratio of hi7 = 2.0 can be taken as 
the limit for attaining a rigid strip. 
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