

Tech-X Corporation www.txcorp.com

5621 Arapahoe Ave, Suite A
Boulder, CO 80303

phone: 303-448-0727
fax: 303-448-7756

User-Centric Job Monitoring (UCM)

Final Report
November 6, 2009

Contract: DE-FG02-05ER84170

David A. Alexander, Principle Investigator

alexanda@txcorp.com

303-448-7751

 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357401430?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TABLE OF CONTENTS

Section Page

I. Executive Summary... 3

II. OVERALL Project Activities for Entire Period .. 3

TASK 1. Determine UCM Properties ... 6

TASK 2. Design Dispatching Database and Tracking Database Structures........... 7

TASK 3. Design UCM Tracking Library API ... 9

TASK 4. Implement the UCM Tracking Library ... 11

TASK 5. Apply UCM Tracking Library in Reference Implementation 12

TASK 6. Develop Site Tracking Agent ... 18

TASK 7. Define UCM Service Interface... 19

TASK 8. Construct UCM Service ... 20

TASK 9. Develop UCM Portal for Reference Implementation.............................. 20

IV. Appendix (UCM Grid Portal paper) ... 27

 2

I. EXECUTIVE SUMMARY

The User Centric Monitoring (UCM) project was aimed at developing a toolkit

that provides the Virtual Organization (VO) with tools to build systems that serve a rich

set of intuitive job and application monitoring information to the VO’s scientists so that

they can be more productive. The tools help collect and serve the status and error

information through a Web interface. The proposed UCM toolkit is composed of a set of

library functions, a database schema, and a Web portal that will collect and filter

available job monitoring information from various resources and present it to users in a

user-centric view rather than and administrative-centric point of view.

The goal is to create a set of tools that can be used to augment grid job scheduling

systems, meta-schedulers, applications, and script sets in order to provide the UCM

information. The system provides various levels of an application programming interface

that is useful through out the Grid environment and at the application level for logging

messages, which are combined with the other user-centric monitoring information in a

abstracted “data store”. A planned monitoring portal will also dynamically present the

information to users in their web browser in a secure manor, which is also easily

integrated into any JSR-compliant portal deployment that a VO might employ. The

UCM is meant to be flexible and modular in the ways that it can be adopted to give the

VO many choices to build a solution that works for them with special attention to the

smaller VOs that do not have the resources to implement home-grown solutions.

II. OVERALL PROJECT ACTIVITIES FOR ENTIRE PERIOD

The UCM project was success in that it resulted in a system that is functionally

for the STAR group and represents an example for the Open Science Grid for systems for

smaller Virtual Organization (VO) to implement in order to give their users monitoring

information. The STAR computing team was heavily involved in the design so that the

system would best serve their needs, which was our first priority on the way to a general

small-VO solution. Therefore, even though we have shown the generality of the

solutions they end up in the reference implementation a tailored solution for the STAR

research group.

 3

At the end of the project, we believe that we accomplished the goal of creating a

set of tools that can be used to augment grid job scheduling systems, meta-schedulers,

applications, and script sets in order to provide the UCM information. The system does

provide the intended flexible levels of application programming interfacing that are

useful through out the Grid environment and at the application level for logging

messages. The user-centric monitoring information in a abstracted in a “data store” and

we have provided a very general messaging transfer system to get the monitoring

information from the grid sites to a portal server. These features make the system a great

start for the smaller VO to build the system that suits their needs.

We have tested the UCM system in practice at BNL and at PDSF at Nersc. This

has been invaluable in ironing out some of the implementation details and some usability

improvements. We did not quite reach the ultimate goal of getting all STAR scientists

using a system that reduces their work flow load, but the system has benefited the data

production teams at STAR.

On the technical side, we have produced an end-to-end UCM system where the

broker is one host, jobs are submitted to an Open Science Grid site on another host, and

finally have messages from the application that composes the jobs send information to

the data store located on a yet another host. This has been a successful collaboration with

the “Center for Enabling Distributed Petascale Science” project (see

http://www.cedps.net) where our work was synergistic with and based-on what they learn

from their investigations into the troubleshooting information needs of Grid such as the

Open Science Grid. In this collaboration, we have also investigated making links

between UCM information and CEDPS information that is collected from the GRAM and

local scheduler systems. So for example, in our portal we have shown case studies where

had a link from the UCM jobs to the corresponding CEDPS information about that job.

In this case study, we ran a grid job at PDSF that is composed of a simple application that

sends a few messages to the UCM store which was a database running at one host

machine (osp.nersc.gov) that was local at Nersc, but external to the grid cluster (pdsf-

grid.nersc.gov). This host also had a CEDPS database, where grid scheduler software

(GRAM) and cluster scheduler software (SGE) were collected from jobs run on the grid

cluster. Our portal then could connect to both databases and first show the UCM

 4

information and then if the user was interested (for example, if there was a job that

failed), then they could click on a “show CEDPS” link to display the information from

the CEDPS database that corresponds to that specific job. This exercise forced us to find

a common identifier to connect the information in the two databases. We found a

convenient identifier to be the ID returned from the GRAM server. This could be

collected in the UCM system by the broker and is also in the CEDPS information because

it is collected directly from the GRAM server.

The final architecture the UCM system is shown in Figure 1.

Portal

Broker Gateway

Figure 1. The architectural reference for the design of the UCM toolkit. Our prototype BNL

implementation of the UCM architecture will have a central database located at the same site as the
application run site, but in a Grid environment we must take into account a “forwarding”

mechanism that will collect the information to a centralized database (or federation of databases).

In the target architecture, which is admittedly from the Open Science Grid point

of view, there are three main information production points: the broker, the site grid

scheduler (or combination Grid & local scheduler), and the application. At the broker

point, we envision the broker using the Tracking Library directly to populate task and job

Grid Site
Fire Wall

Resource Broker

Worker

Submit Task

Tracking
Library

Local
Scheduler

Site
Gateway

Forwarding

Service

GRAM

Tracking Library

Tracking Library

Job Wrapper

Tracking Library

UCM Portlet

GRAM Updator

Tracking Library

Archiver

Purger

 UCM

Databases

Submit Job

Log

Query

Run

Local
Database

Deamon
Script

Forward

Browser
Access

Worker

Application

Requested
Info

 5

related information to the system. At the site level, there are some options in getting job

submission status information from the GRAM scheduler, but we are currently focusing

on daemon-style parsing the logging of the GRAM in the latest Globus source that is

being written in the CEDPS format. Thirdly, at the application level, the library can be

used directly by the application or by a job wrapper or by a pilot job script. Finally, once

the data is collected into the store, the idea is to also provide tools to display and view the

information from a web portal.

The following sections of this report discuss our progress in two areas: (1)

implementation of the Tracking Library including nailing down a minimal interface for

collection in the three main points of the architecture; and (2) implementation of the basic

Web portlet for accessing the UCM information.

TASK 1. Determine UCM Properties

Objective

Continue prototype work with partners to determine the best collection of UCM

information. Determine how it should be structured based on the way it will be accessed,

and how and when it is collected. This will include properties from dispatchers, resource

management systems, applications, and external sources.

Accomplishments, Results, and Analysis

The work on UCM properties was for the most part finished early on in the

project and done in collaboration with our subcontracting partners at STAR/BNL. We

have made minor refinements in the taxonomy of UCM properties of interest and this in

large part has come recently in the form of indentify two crucial properties that are

carried through the Grid system similar to as a traveler would carry a passport to identify

themselves. The two properties (broker job ID, and broker task ID) have been dubbed

the “magic two” because as monitoring messages are generated by the broker and

application the carry this information so that the data store can sort messages to the right

user/job/task collections. As a review from our previous report, we have categorized the

UCM properties into three categories: user task level, job level, and job event level.

Figure 2 shows a list of the prototype properties that we currently using.

 6

DATA STORE COLLECTIONS

 Tasks
- Task ID (assigned by Broker)
- Broker Task ID (assigned by Broker)
- Broker ID
- Requester ID
- Name
- Description
- Size (number of jobs)
- Remaining size (number of jobs left)
- Submit Time
- Update Time (last time size was updated)

 Jobs
- Job ID (assigned by Broker)
- Job ID (assigned by Grid)
- Job ID (assigned by Local Scheduler)
- Task ID (for task that holds this job)
- Grid Submit Time
- Local Scheduler Submit Time
- Site Location
- Queue
- Queue Position
- Node Location
- Start Time
- Update Time (execution state last updated)
- Execution User (local system user)
- State ID (current execution state, 9 defined states)

 Job Events
- Job ID (job which generated message)
- Level ID (info, warning, error, etc. 9 defined states)
- Context (bulk category description of event)
- Stage ID (start, status, or end)
- Content (long string of message)
- Event Time

OTHER DICTIONARY COLLECTIONS

 Broker, Requester, Stage, Level, State

Figure 2. The current UCM properties that have been identified as being important to collect in the
data store collections (which correspond to tables in a database configuration). The properties are

broken down into three categories and auxiliary categories hold more detailed properties for
performance during access.

TASK 2. Design Dispatching Database and Tracking Database Structures

Objective

Create schemas for the Tracking Database(s). Focus is on organizing and

archiving the UCM information efficiently. We believe that the best way to proceed is to

have one database schema even if more than one database ends up in the final design.

Accomplishments, Results, and Analysis

As reported previously, we have identified database schema. This schema is

shown in Figure 3.

 7

Figure 3. A three level DB schema coinciding with the three-level structure of the UCM properties
has been developed. The three main tables are “Tasks”, “Jobs”, & “JobEvents”. Each entry in the

Jobs table has a task ID and each entry in the JobEvents table has a job ID. Auxiliary table provide
“Dictionary” lookups and allow for integer references to be used in the main tables for performance.

During our last workshop with our BNL collaborators (see

https://ice.txcorp.com/trac/ucm/wiki/BoulderWorkshop), we have indentified some of the

remaining changes in the schema that were to be done to address the scaling issues that

will inevitably be present in a VO-wide implementation of the UCM system. The

important table structure changes were implemented which include:

 8

• JobEvents should be changed to Events

• jobID in Events needs to be indexed key

• NEW TABLE NAMES

• Task

• Jobs_requesterID_brokerTaskID

• Events_requesterID_brokerTaskID

o drop RequesterDictionary? tables

o keep "requesterID" as varchar, but change to (32)

o remove requsterID from Tasks_requesterID table

TASK 3. Design UCM Tracking Library API

Objective

Define the Interface UCM Tracking Library. Determine the best ways to write

UCM information into databases from applications and meta-scheduler.

Accomplishments, Results, and Analysis

After complete the initial version of the Tracking Library as detailed in the

previous report, we started testing it in real-world grid submission. This gave us the

opportunity to investigate potential problems with firewalls and scaling. With these tests,

we concluded that the original design was too difficult to implement in practice because

of the communication required from outside (the portal running at Tech-X) to the inside

of the grid site (the database running at osp.nersc.gov). We did set up a secure shell

tunnel to make a demo work for the SuperComputing (SC08) conference; however, in

general the tunnel is not stable and robust. The redesign discussed in the introduction

should solve this problem by limiting the communication to “syslog-ng” messages in an

outward bound manner. This does require firewall rules adjustment, but they are on the

portal host and not the grid site, so they are logically more in the control of the VO and

not as large of a hurdle to overcome. In our testing case, the portal is running at Tech-X

and we have already adjusted the firewall to allow these log messages from Nersc.

 9

This redesign has prompted a corresponding refactoring of the Tracking Library.

While the API has not changed drastically, the implementation has been broken into two

parts so that we can incorporate the syslog-ng logging.

We have a current implementation of the Logging Library recently completed.

Figure 5 shows the details of the methods and method arguments to the Logging Library

API portion. There are basically two important methods: the constructor of a

TxLogEvent object and a set of methods to log events called logEvent. This API is

intended to be used by both the broker and the application.

Syslog-NG

Files

Modularized Data Store Types

Interface Tier

Data Tier

Data Store
(Database Module)

e

(File Module)

Data Stor

Logging Interface Tier

File Writing Tier

Previous
Tracking
Library
Broken

into Two
New

New Logging
Library

New Store Library (contain
all store related parts)

Interface Tier

Handles the calls to the application
programming interface (API) and has logic to
relate them to the data structures in the Data
Tier. Three API sections are provided for
Science Applications, Resource Monitoring
Programs, or Job Submission Brokers.

Data Tier
Handles the calls from the Interface Tier and
holds a particular data store module
implementation

Modularized Data Store Types

Data Store

(File Module)
Data Store

(Database Module)

Figure 4. The Tracking Library has been refactored into two
libraries: The Logging Library and the Store Library.

 10

Figure 5. The Tracking Library API is broken down into three parts for each of the broker, resource

monitor, and application parts of the data production points in the architecture.

TASK 4. Implement the UCM Tracking Library

Objective

Code the Interface UCM Tracking Library. Determine the best way to create and

maintain multi-language versions of the library.

Accomplishments, Results, and Analysis

The implementation of Logging Library was completed, so that there is syslog-ng

file writing code in addition to the API detailed in Task 3 above. We are now in the

process of testing the implementation and will be moving onto the Store Library

implementation. The Store Library, re-uses much of what was previous the full Tracking

Library, but will has some new methods to process the messages coming from the syslog-

 11

ng pipeline. On the UCM host, we will also wrote a collector that uses the Store Library

to pack the information of the messages into the store.

The full Logging plus Store library class list is shown in Figure 6 below.

Figure 6. The class list for the UCM Tracking Library includes the API Tier (TxTrackingAPI

namespace classes like TxTask, TxJob, & TxEventLog) along with other Data Tier classes
(TxCollectionHandler, TxRecord, & TxField).

TASK 5. Apply UCM Tracking Library in Reference Implementation

Objective

Apply the UCM tracking library in root4star and the SUMS system to log UCM

data.

Accomplishments, Results, and Analysis

To be able to use the UCM Tracking Library implementation within the STAR-

BNL community the original implementation was adjusted. First, the C++ class

 12

TxEventLog was converted to a pure abstract interface (i.e. all of its methods were made

purely virtual, see: Figure 7)

Figure 7. TxEventLog C++ abstract interface

 13

Secondly, the implementations of the former concrete methods of the class

TxEventLog were moved to the new class TxEventLogFile that is derived from the

TxEventLog interface. (see: Figure 8)

TxEventLog

TxEventLogCollectTxEventLogFilTxEventLogWeb

TxEventLogFactory

class TxEventLogFactory {
 public:
 static
 TxEventLog*
 create(const char *technology);
};

Figure 8. The C++ class diagram: TxEventLog C++ interface and its implementations via

TxEventLogFactory

Finally, to provide the concrete implementations for the different run-time

environments the UCM library were complemented by the TxEventLogFactory class.

This allows to adjust the job tracking facility to the job current run-time

environment, for example, GRID mode, cloud node, local UNIX farm, remote Unix farm

etc. (see: Figure 9). Since the class name exposed to the end-user code (TxEventLog) and

its interface remained intact, no correction of the existing STAR offline code was

required to deploy the new version of the UCM library.

 14

Application Broker (SUMS)

logging (tx)

log

collector (tx)

Db
MySQL

heston.star.bnl.gov

Portal (tx)
fc2.star.bnl.gov

UCMQuery (tx)

collector (tx)

logging (tx)

Figure 9. Interaction of the different components of UCM library within STAR run-time

environment (green color shows another implementation of TxEventLog interface) (tx) is to mark
the original developed code.

To be able to use the UCM C++ library from java-based code, the final

implementation stayed away from the initial java wrapper approach (based on Babel) and

reverted to a much lighter approach SWIG based wrapper . The C++ TxEventLog

abstract interface was converted automatically to the Java code using the SWIG

converter. To accomplish this automation, a simple SWIG interface descriptor (see

Figure 10 & 11) was created and a simple make file was used (see Figure 12). This

allowed the user jobs and SUMS to share one and the same C++ implementation via the

common shared library. The initial Babel wrapping was composed of a 3x20 MB shared

libraries and a 6 MB JAR file (which exceeded by far the size of the SUMS package as a

whole) while the size of the SWIG wrapper is not significant. Since the SWIG approach

was automated and made part of the STAR library build, all platform dependencies for

the shared library portion are taken care off during STAR software package deployment.

 15

 /* logging.i */
%module logging
%{
#include "TxEventLog.h"
#include "TxEventLogFactory.h"
%}

%include "TxEventLog.h"
%include "TxEventLogFactory.h"

%pragma(java) jniclasscode=%{
 static {
 try {
 System.loadLibrary("logging");
 } catch (UnsatisfiedLinkError e) {
 System.err.println
 ("Native code library failed to load. \n" + e);
 System.exit(1);
 }
 }
%}

Figure 10. SWIG definition of the TxEventLog C++ interface

C++ header
 files (.h)

SWIG
 interface
473 bytes

SWIG

TxEventLog.jar
6 KB

JNI C++
interface

Java application
 (SUMS)

*.so
28KB

g++

Figure 11. Using
SWIG to generate

the Java UCM
logging interface

from the C++ header
file (time to

complete 0.25 sec)

 16

 .SUFFIXES: .cxx

INCDIRS = . StRoot/StStarLogger/logging $(OPTSTAR)/include

CFLAGS = -Wall -c $(INCDIRS:%=-I%)
CXXFLAGS = $(CFLAGS)

MYMOD = logging
MYJAR = tx-ucm

UCMINC = $(STAR_USM_MODULE_DIR)/TxEventLog.h
STAR_USM_BASE_DIR = StRoot/StStarLogger/logging

SRCCPPS +=TxEventLog.cpp TxEventLogFactory.cxx
SRCS += $(SRCCPPS:%=$(STAR_USM_BASE_DIR)/%)

INCS = $(STAR_USM_BASE_DIR)/TxEventLogFactory.h (STAR_USM_BASE_DIR)/TxEventLog.h
INCSI = $(STAR_USM_BASE_DIR)/TxEventLogFactory.h $(STAR_USM_BASE_DIR)/TxEventLog.h

SWIGI = $(STAR_USM_BASE_DIR)/$(MYMOD).i

OBJS = $(filter-out %.cxx,$(SRCS:%.cpp=%.o))
OBJS += $(filter-out %.cpp,$(SRCS:%.cxx=%.o))

JAVAS= $(MYMOD).java
JDEPS= $(MYMOD)_java_wrap.cxx
JOBJS= $(MYMOD)_java_wrap.o $(JSRCS:%.cxx=%.o)

all: $(MYJAR).jar

$(MYJAR).jar: lib$(MYMOD)_java.$(SOEXT)
 javac -d ./ *.java
 jar -cf $@ com

$(MYMOD)_java_wrap.cxx: $(SWIGI) $(INCSI)
 swig $(INCDIRS:%=-I%) -package "com.txLogging" -java -c++ -o $@ $<

$(MYMOD)_java_wrap.o: $(JDEPS)
 $(CC) -c $(INCDIRS:%=-I%) $(JINC) $<

$(MYMOD)_main.class: $(JAVAS) $(UCMINC:%.h=%.java)
 $(JAVAC) $?

Figure 12. Fragment of Makefile to use SWIG to generate the Java UCM logging interface from the

C++ header file.

The SUMS job description language was complemented with one additional

option to allow users to activate / de-activate the tracking library and require its concrete

implementation at run-time.

The dedicated log4cxx-based UCM logger was added to the STAR run-time

environment as the top level user interface. To send the custom message to the UCM

tracking DB, the end-user code should forward the message to the UCM logger (for

example with LOG_UCM macro). The STAR logger documentation linked from

http://drupal.star.bnl.gov/STAR/comp/ was adjusted to reflect this fact.

 17

All UCM tracking components were committed to the STAR CVS repository and

deployed as the standard components of the STAR production environment. In the other

words it is available for all STAR users. All nightly tests do use the new DB schema with

the dedicated tables for each job/task. Scalability testing beyond data production (user

jobs especially) was not carried out at the time of this report. However, the STAR UCM

job tracking infrastructure has been exercised for a period of 3 months un-interrupted, i.e.

there was no interruption of service. During this period, the MySQL “logger” DB has

accumulated about 40.000 tracking tables with the total volume of 4Gb. Disruption of the

neither the DB server nor the job processing has been recorded.

The Tomcat based portal was installed on the dedicated fc2.star.bnl.gov PC and

tested. However, the service was shutdown by Cyber Security due to insecure version of

the Tomcat portal provided as a part of UCM portal distribution. The portal could be

made to be compliant with security standard by an upgrade in the Tomcat container

version, which would need to be tested with the GridSphere code. We anticipate that this

would be straightforward and leave it up to partners at BNL to do.

TASK 6. Develop Site Tracking Agent

Objective

Develop an agent to serve information from the Tracking Database that is

populated by the scripts and applications running at the job execution site where the Site

Tracking Agent is located. This agent will run on any OSG site as an edge service. This

agent could parse scheduler logs for job status information if there is GRAM servers do

not provide such information properly.

Accomplishments, Results, and Analysis

After many discussions and research in solutions to funnel application tracking

information out of a grid site and into a VO-centric store, we have reached some basic

conclusions about the appropriate technology and that has been to move towards syslog-

ng messaging. This also integrates our project well with the CEDPS troubleshooting

project and makes going back and forth between the types of information and connecting

the two sources will be easy and straightforward, which is valuable.

 18

In this light, the basic architecture has shifted. Instead of writing our own “Site

Agent” we settled on using syslog-ng to act as the forwarding agent. Figure 7 shows the

message pipe line between the broker host submitting the job or the grid site running the

jobs and the final message destination host, which we call the portal or UCM host since it

holds the UCM data store and portal.

Figure 7. The new architecture using syslog-ng as a message forwarder from an “edge node” that

shares disk space with the grid site worker nodes.

TASK 7. Define UCM Service Interface

Objective

To determine the best interface for client applications to get monitoring

information and then develop it.

Accomplishments, Results, and Analysis

One of the original interpretations of security was that a Grid Service would be

needed to serve the UCM information. However, after the bulk of the Phase II

 19

investigations, we have found that security can be handled by the portal and that a Grid

Service is not needed. We have therefore put much of the effort that was budgeted for

Task 7 into the portal work described in Task 9. Also, security is described in a recent

paper on our portal given at the Grid Computing Environment Workshop at SC08 (see

paper included in appendix).

TASK 8. Construct UCM Service

Objective

Extend prototype to implement UCM Access Interface defined in previous task.

The UCM Service will access the Dispatching Database and Site Tracking Agent as well

as external services to collect UCM data.

Accomplishments, Results, and Analysis

As was written above in Task 7, a Grid Service is not needed to serve UCM data

to the users and in terms of getting information from the Site Tracking Agent, we now

have in the design syslog-ng so the messages are received on the portal/UCM host by a

syslog-ng receiver, which is software we do not need to write. In the last period of

performance, we wrote a “collector” or “parser” to read the message on the UCM host

and pack them into the data store. These were tested by submitting jobs at NERSC and

collecting the monitoring information on the portal located at Tech-X. This worked as

planned and the portal was also able to get CEPDS troubleshooting information from the

NERSC database as well.

TASK 9. Develop UCM Portal for Reference Implementation

Objective

Develop client library in Java (e.g. base class) for accessing the UCM Service.

The library later can be used by various client applications (e.g. Web portal and

command line tools) to retrieve UCM information. Implement JSR168 compliant portlet

based on GridSphere for UCM information presentation. Construct UCM Web portal for

the reference implementation.

 20

Accomplishments, Results, and Analysis

Efforts originally planned for Task 7 were applied to the portal and the increased

effort resulted in a very well implemented portal that exceeded our expectations and what

we promised in the proposal for the project. The result is that we implemented a fully

functional Web Portlet within the GridSphere Portal framework. We have published a

paper detailing the work that address this task in a portal specific workshop at the last

SC08 (Super Computing) Conference. A copy of the paper is attached in the appendix of

this report.

One of the most important hurdles accomplished was to add a security mechanism

to the portal that would work with DOE certificates. Figure 8 shows how this is

displayed to the user and the details of the information are in the paper in the appendix.

User prompted
to choice

certificate to
present to portal

Portal automatically recognizes
user with out additional

account password

Figure 8. New certificate-based security added to the portlet. Login mechanisms gather DOE

certificate from the browser and uses it to connect to portal, so that the portal can subsequently use
the certificate subject information to identify user with the virtual organization.

 21

The bulk of the remaining work for Task 9 can be divided into two basic parts of

code: a database reader and a combination of JavaScript and Java Server Page code that

displays the UCM information. Further work was necessary to integrate the resulting

Portlet into a test Portal that we built so that we could test it in a full Portal environment

where a user would get a proxy and submit a job to a Grid site.

Figures 9-12 show the current state of the UCM information service Portlet. The

main view is a list type view with lines at the top level being tasks. Each line with a “+”

or “-“ symbol on the left is clickable to expand and collapse the level of information

presented. So task lines can be expanded to see the contained jobs and each job line can

be expanded to see the contained messages. In this manor the user can drill down into the

information as needed.

A few other features are important to note. One is that only the tasks/jobs/events

that are identified as coming from the user are shown to begin with. This greatly

simplifies the organization of the information for the user and reduces the complexity of

the noise that they have to search through to get the information that they need. Another

is that tasks lines have overall progress bars. This is a built-in functionality in where the

“progress” is simply the number of the jobs that are not done over the total number of

jobs defined in the task. Yet another feature is that each line along the thread that

contains a job that has an error status is color coded red so that at a glance the user can

determine the gross failure status.

 22

Figure 9. The UCM Portlet. There and task information lines, job information lines, and event

information lines.

 23

Figure 10. The Tracking Library has been integrated with root4star and has been tested in place

with the UCM database at BNL along with the portal shown in this figure.

 24

Idea is to show Task and Job
information in dynamic way

so user can drill down to
job and message details

Figure 11. The users are first presented with a list of their tasks or jobs.

 25

Click on
Task

Task Info

Job List

Job Info

Click on
Task

Message
Link

Figure 12. User’s can click on specific jobs or tasks to drill down into monitoring information

about their grid submissions.

Figure 13 below illustrates that as the portlet is implemented, it can be integrated

easily into a number of portals with various portlets of choosing by any VO. Tabs can be

created and then portlets can be added to the tab layout. The UCM and CEDPS portlets

 26

are one of a number of portlets that could potentially be used. For example, the Vine

Toolkit provides a number of job submission portlets for use with Globus based grids.

Client Browser

Portal Tab

Portlet
Window A

Portlet
Window B

Portlet
Window

C Portlet
Window D

Portal
Server

Portlet
Container

Portlet A

Portlet B

Portlet C

Portlet D

response

• Login
• Monitoring
• CEDPS
• Vine Toolkit
• Performance

Figure 13. The portal solution was chosen because of its extensive nature where the UCM portlet

can be contained in a portal along with other portlets.

IV. APPENDIX (UCM GRID PORTAL PAPER)

Below is a copy of the paper titled, “Automatic Certificate Based Account

Generation and Secure AJAX Calls in a Grid Portal” with authors Mark L. Green, David

A. Alexander, Roopa Pundaleeka, and James Matykiewicz all from Tech-X. This paper

was refereed and published in conjunction with the Grid Computing Environment

Workshop at SC08.

 27

Automatic Certificate Based Account Generation and
Secure AJAX Calls in a Grid Portal

Mark L. Green, David A. Alexander, Roopa Pundaleeka, James Matykiewicz

Tech-X Corporation
5621 Arapahoe Avenue Suite A

Boulder, CO 80301
+1 (303) 448-7751

mlgreen@txcorp.com, alexanda@txcorp.com, roopa@txcorp.com, james@txcorp.com

Abstract
Virtual organizations are interested in providing secure grid-
related services to individual scientist users through portals
and invest significant time and effort in managing them.
Systems are often in place for users to request and receive
Grid certificates in many grid infrastructures as a basis for
their identity in the grid. These identities are, however,
typically disconnected from web portal accounts and this
presents an administrative maintenance problem.
Furthermore, integrating certificate identities with grid portal
identities is complicated when dynamic AJAX technology is
used in the portal to connect to services outside the portal.
The User Centric Monitoring project has developed a
solution for automatic generation of web portal accounts that
can be synchronized to a pre-existing list of grid certificate
identities.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online Information
Services – web-based services. C.2.4 [Computer-
Communication Networks]: Distributed Systems – Distributed
applications, Distributed databases. H.5.2 [Information
Interfaces and Presentation]: User Interfaces – User-centered
design

General Terms
Management, Design, Experimentation

Keywords
Grid computing, Web 2.0, Java Portal, AJAX.

1. Introduction
With the advent of Web 2.0, virtual communities and

organizations are growing at a large rate. In order to
integrate these communities seamlessly within web portals
there is a strong need to manage large numbers of user
identities and accounts. Traditionally, this is done in an ad-

hoc fashion by the system administrator and requires a
significant amount of knowledge and labor. Web portals
(Open Grid Computing Environments [1], GridSphere [2],
JBoss [3], etc.) provide basics frameworks for account
management within the browser interface. Furthermore,
virtual communities generally require some type of identity
credentials such as X509-based certificates. These two
discrete identity management systems present a significant
administration and synchronization problem.

In the development of the User Centric Monitoring
(UCM) project [4], we came up against this very issue.
The UCM project aims at providing job and application
monitoring services directed to the Solenoidal Tracker At
RHIC (STAR) [5] physics experiment users. The STAR
organization manages their user identities with the Virtual
Organization Membership Service (VOMS) [6]. In trying
to provide the STAR users with a portal, we needed a
manageable way to automatically create and update portal
accounts based on the identities listed in VOMS.
Furthermore, it is important that STAR users do not have to
memorize addition portal logins. It was during the course
of developing a UCM portal for the STAR users that we
developed a solution to this general problem that alleviates
the burden of account generation from the portal system
administrator.

Upon secure access to the UCM portal subsequent
services need to be accessed. If these services are accessed
through the web portal via portlets, then the entire browser
page is redrawn and the user looses any potential for a
dynamic application-like interface. In the STAR UCM
portal it is crucial to provide a multi-portlet page that
allows the user to dynamically interact with numerous
attributes, information trees, and graphics. These dynamic
interfaces can be provided with technologies such as AJAX
[7]. However, with AJAX, the browser is bypassing the
portal and any security layer that it would provide.
Therefore, in addition to providing a basic certificate
authentication layer, we have found a solution that allows
AJAX calls to leverage this security layer thereby
providing both the desired dynamic and secure features.

M Green, D Alexander, R Pundaleeka, J. Matykiewicz, Automatic
Certificate Based Account Generation and Secure AJAX Calls in a Grid
Portal, International Workshop on Grid Computing Environments
November 16,, 2008, Austin, TX, USA. Work Supported by the U.S.
Department of Energy Small Business Innovative Research Grant #DE-
FG02-05ER84170.

2. Background on Grid Portlet Security
A common solution for providing Grid security for

portal operations is to use the MyProxy [8] credential
management service. MyProxy provides a solution for
delegating credentials to a Grid portal to allow it to
authenticate to Grid services on the user's behalf, allowing
users to submit compute jobs, transfer files, and query Grid
information services from a standard web browser.

The typical use case for MyProxy with a Grid portal is
shown in Figure 1. The first step is for the user to store a
Grid credential on a MyProxy server that the portal can
access. Some portals are configured to use specific
MyProxy servers, whereas others allow the user to specify
a particular server. This first step requires that the user
have Grid middleware installed on their machine and to use
the command-line tool myproxy-init to load the
credentials. The second step requires the user to log into
the Grid portal in order to use the services that it provides.
This login is normally a user name and password that is a
separate account specific to the portal and is stored in the
database associated with the portal.

Portal

Client

MyProxy

Portal User
Accounts

Grid Service

MyProxy
Portlet

Proxy
Certificate

12 3

Figure 1. The typical use of MyProxy in a Grid portal

requires the user to (1) use a command-line tool to load
their credentials into a server; (2) log into the portal with a
Grid portal account; and (3) use a portlet to get a proxy
certificate with the same password that was used to load the
certificate into the server in step one.

These user accounts are either maintained by a portal

administrator or a registration portlet is used to allow users
to set up their own accounts. The third step involves

another portlet that collects a passphrase from the user that
the portlet can subsequently use to contact the MyProxy
server and retrieve a proxy certificate.

The account generation scheme described in this paper
leverages the fact that the user often first has to use the
browser to obtain a Grid certificate, which is certainly the
case for the U.S. Department of Energy Grid certificates.
3. The UCM Portal

The UCM Portal utilizes Gridsphere portal framework
version 3.1 to manage and contain the portlets discussed in
the paper. Gridsphere 3.1 provides facilities for managing
user accounts, basic security, portlet content and layout,
and it is JSR-168 compliant [9]. The UCM related portlets
are also JSR-168 compliant to insure portability and
maintainability when migrating the portlets to new (portal)
frameworks. We have taken advantage of the open-source
code of Gridsphere 3.1 to customize the UCM portal with
content, including project specific messages or logos, and
layout of portlet controls (features).

We created a source repository for the UCM portal that
includes Gridsphere 3.1 source code and build (Apache
Ant) files. In addition, the UCM portal source repository
includes a binary distribution of Apache Tomcat as the
Gridsphere container. This developer “sandbox” approach
allows rapid changes of portlets and Gridsphere source
code to provide customized look and feel to the UCM
portal.

Gridsphere 3.1 manages portal content and layout
using XML files. Tech-X has developed new content and
layout XML files, which overwrite the default files
distributed with Gridsphere for certain customizations.
Changes to Gridsphere source code include: modifying the
login portlet to use Grid certificates, discussed in detail in
section 5; improvements to logging controls; and extracting
the database. These changes were to improve logging
control and extract the database schema to manage it
independently, especially when migrating portal user
information. Gridsphere 3.1 provides solid performance for
JSR-168 compliant portlets 'out-of-the-box'.

The most relevant portlet for this paper is the
Certificate Login Portlet, which we describe in detail in the
section 5 below. The Application Monitoring Portlet is
another portlet, for which we describe as an example of
how we can securely use AJAX with a portlet is section 6.
First we describe the UCM portal deployment and
configuration. The UCM deployment may be of general
interest because it is compact (resulting in one tar file that
is unpacked and one script that is subsequently run).

4. Portal Deployment and Configuration
In dealing with large and diverse user communities a

flexible authentication and authorization model that is
scalable, extensible and does not require excessive
administration is required. We have developed a solution
with an initial implementation that integrates X.509

identities, a selection of Virtual Organization based
member lists (see Figure 2), and the Gridsphere 3.1 portal
framework.

Figure 2. The Tech-X Corporation VOMS member

listing hosted by the cyberrepo.txcorp.com server, which is
accessed by the UCM Portal server grid.txcorp.com.

The UCM Portal is designed to be easily deployed and
configured by administrators that do not necessarily have
extensive system administration experience. We have
developed a simple ucmportal.properties file that
contains the required system definitions for deploying the
Portal successfully. An example listing of the relevant parts
of this ucmportal.properties files are listed below in
order to clarify the following implementation discussion:

--
Portal Server Host Name

host.name=cyber.txcorp.com
host.httpport=8080
host.httpsport=8443
host.country=US
host.state=CO
host.city=Boulder
host.organization=Tech-X_Corporation
host.unit=User_Centric_Monitoring

--
Database Connection Information for UCM DB.

ucmdb.name=ucmdb
ucmdb.host=cyber.txcorp.com
ucmdb.port=3306
ucmdb.username=ucmuser
ucmdb.password=strongpassword

--
Database Connection Information for Gridsphere
DB.

gsdb.name=gridsphere
gsdb.host=cyber.txcorp.com
gsdb.port=3306
gsdb.username=gsuser
gsdb.password=strongpassword

--
VOMS Connection Information.

TECH-X VO VOMS
voms0.hostcert=/etc/grid-security/hostcert.pem
voms0.hostkey=/etc/grid-security/hostkey.pem

voms0.certtype=PEM
voms0.capath=/etc/grid-security/certificates
voms0.connection=https://cyberrepo.txcorp.com:8443
/voms/TECH-X/webui/admin/users/list

5. UCM Portal Login Components
In this section, we describe the login portlet solution

that was put into place in the UCM project. As we will
show this solution is very general and could be reused in
almost any VO’s grid portal system. In our first prototype
solution, we did not disable the normal or default
Gridsphere Login Portlet access to the grid portal. Instead,
we added a secure (HTTPS) instance of Tomcat to host the
new login portlet that is certificate-based. This way, if any
validation step fails in the certificate connection, the system
can fail-over to the default Gridsphere Login Portlet (note:
this Login Portlet as well as the entire Gridsphere Portal
can be deployed using HTTP or HTTPS solely based on
the administrators discretion). However, subsequent
portlets can rely on the success of the login, such as the
shared secret security function of the UCM database
Servlet discussed in Section 6.3.

Figure 3 describes the UCM Portal authentication and
credential management components, each step in the
authentication and authorization process shown in the
figure is described below.

1) The user has joined a supported Virtual
Organization and has loaded the corresponding X.509
certificate into a browser.

2) The UCM Portal HTTPS Tomcat server is
automatically configured using the Java keytool and the
ucmportal.properties file parameters
host.name, host.httpport, host.httpsport,
host.country, host.state, host.city,
host.organization, and host.unit. The
ucmportal.sh script parses these values and generates a
Java truststore for utilization in Tomcat along with all
Tomcat configuration files required for starting the UCM
Portal. This configuration is only done during the initial
UCM Portal setup procedure and does not have to be
repeated. In addition, the administrator has the opportunity
to import as many trusted Certificate Authorities root
certificates into the truststore at this time. We now
have the capability of requesting the users credential and
subsequently obtain their identity. If this process fails we
redirect to step 4 and otherwise continue.

3) During the UCM Portal configuration process the
administrator has the opportunity to allow Portal access by
acceptable Certificate Authorities. Upon obtaining a users
identity we validate the X.509 certificate root Certificate
Authority (CA) against our acceptable list. If the root CA is
accepted we proceed to step 5, otherwise we are redirected
to step 4.

User Browser Connecting to

UCM Portal

Generate
Member

Lists

Fail-Over to
GridSphere
Login Portlet

Validate
Certificate’s

Root CA

Obtain
Certificate

Identity

Update
Database
Accounts?

Manage
GridSphere
Accounts

Verify
Subject DN

Mapping

GridSphere
Login

Main UCM
Portal

GridSphere
Database

Credential Database

Allowed
CA’s

VO Membership
X509 Certificate 1

2

3

4

5

6

7

8

12

9

10

11

VO_USERS
UPDATE_VO_USERS
POOL_ACCOUNTS

GS_USER

YES

NO

NOT VALID

NO

VALID

YES

PASS

FAIL CHECK

HTTPS

Redirect to
HTTP

VOMS
LDAP
XML
ASCII

Figure 3. The UCM automatic account management is
designed to integrate seamlessly with GridSphere account
management and fail over to regular GridSphere login. The
new components are shaded, whereas the normal
GridSphere components are clear.

4) The failover Gridsphere username and password

Login Portlet is invoked in the event of credential-based
authentication failure, then proceed to step 11.

5) An automated process for initializing and
maintaining the Gridsphere accounts utilizes the
update_vo_users database control table, shown in
Figure 4. This table grants the UCM Portal administrator
the ability to configure when account updates are initiated,
by default 0, 1, 3, 6, 12, or 24 hour increments are
provided. The administration may select 1 hour if the VO
has a volatile member list that changes quite often,
otherwise a 24 hour increment will essentially update once
per day. If an update is required we proceed to step 6
otherwise to step 9.

6) There are several ways to generate an acceptable
member list the UCM Portal has the capability of using
VOMS, LDAP, XML, or ASCII providers for this task.
Essentially, any provider that returns the current member
list with the users X.509 subject Distinguished Name
(subject DN) will suffice. The

ucmportal.properties previously listed defines the
required VOMS parameters voms0.hostcert,
voms0.hostkey, voms0.certtype,
voms0.capath, and voms0.connection for the
Tech-X VO VOMS. An unlimited number of providers can
be configured in this file.

Figure 4. UCM Portal Database Credential Tables where
created to manage the dynamic GridSphere accounts
needed to map certificate-authenticated users.

7) After generating a list of allowable members the
UCM Portal infrastructure will either generate, update,
activate, or de-activate the Gridsphere accounts
automatically. If the supported UCM Portal member listing
(as noted before can be obtained from several sources) no
longer includes one of the active accounts generated by the
Portal the account is preserved but inactivated by changing
the gridsphere database sportletuserattrbutes attribute
“gridsphere.user.disabled” value to “TRUE”. This de-
activation will prevent the member from accessing the
Portal through the credential-based and username/password
pathways. If a new member subject DN is identified, then a
gridsphere account will be generated using the UCM
database pool_accounts table parameters and populated
with the members relevant information such as username,
password, and email address. We should also note that the
ability to change the members automatically generated
account password is restricted, as the current password is
not automatically given to the member. During the
automatic update of the supported UCM Portal member
listing all email addresses at updated in the gridsphere
database so that contact emails can be sent by the
administrator if desired. The UCM database table
pool_accounts provides the control for this process
utilizing the basename, start, end, last, active,
and stamp fields. The UCM Portal administrator can
configure the format of the Gridsphere username generated
by modifying the active table record, the default username
account is basename_number.

8) The initial Gridsphere database is generated during
installation and in general is only configured for

Figure 5. When the portal is accessed with HTTPS protocol
it prompts the browser to ask the user for an identifying
certificate that the server can subsequently validate.

administration access, thus contains only one account. We
directly modify the Gridsphere database during the
automated account generation process so that the
administrator does not have to create each individual
account through the user interface. Thus, hundreds of
accounts can be generated and managed quite efficiently as
the UCM Portal supported providers expand.

9) Based on the users certificate identity (subject DN)
provided from step 2 we verify whether a Gridsphere
account exists by querying the UCM credential database
(see Figure 4), specifically a simple table join of
vo_users and gs_users will return the appropriate
information needed (i.e. SELECT vo_users.id FROM
vo_users, gs_users WHERE vo_users.id =
gs_users.vo_users_id AND vo_users.SubjectDN LIKE
‘target subject DN’ LIMIT 1). If this process fails the user
is redirected to step 4 otherwise continue to step 11.

10) The UCM Portal credential database tables are
listed in Figure 4. Specifically, the gs_users table
contains the automatically generated Gridsphere account
information, vo_users table contains the subject DN
mapping information, update_vo_users table provides
the account update and generation control information, and
pool_accounts provides the account generation
naming and limits information.

11) The standard Gridsphere login infrastructure is used
to continue the authentication and authorization process for
both the username/password and credential-based Portlets.

12) Finally, after successfully passing the Gridsphere
login the user is presented the UCM Portal Welcome
Portlet or on failure is redirected to the UCM Portal Login
Error Portlet.

The end user experience of the above steps during
login depends on the browser, but basically involved some
sort of dialog windows popup prompting the user with an
acknowledgement that a server is requesting a certificate
for authorization or a choice of certificate to present to the
server. Figure 5 shows the view that the Firefox user
would see including the certificate choice dialog and the
portal welcome page with the user’s credential information
after login.

6. UCM Portal Application Monitoring
Components

The application monitoring portlet was designed to
provide users with job and simulation monitoring
information. The details of the monitoring functionality of
this portlet are described in a previous paper [4]. The
important feature of this portlet example for the discussion

of this paper is that it has AJAX code within the portlet that
asynchronously and securely contacts a Servlet. The page
happens to be part of Java Server Pages compilation and
the Servlet happens to further contact a MySQL [10]
database in our case, but these are details that are not
important to this paper and we only show them for
completeness.

6.1 Monitoring Portal Architecture
The UCM project uses a typical portal architecture for

the containment of the monitoring portlet user interfaces,
but also includes a database query Web Service (Servlet)
component running in same instance of the Tomcat Servlet
container. Figure 6 shows the overall architecture for the
UCM portal.

Tomcat Container

MySQL
calls

JavaScript
code

references

JSPServlet

returns
fragment

JSP
page

database

request for
page

JavaScript
Code

(AJAX)

request
for db
info

Shared
Secret inside page

Browser
Portlet

Po
rt

al

Se
rv

le
t

calls doView()

Figure 6. This figure shows the architecture associated
with AJAX communication to auxiliary Servlet functionality of
a portal such as querying a database.

Unlike the login portlet discussed in the previous
section, the monitoring portlet heavily relies on not only
this database query Servlet, but also the Java Server Pages
Servlet to generate the default page and include the Java
Scripting described in section 6.2. The shared secret
functionality of the database Servlet is discussed in section
6.3

A Portal is a web application that typically provides
services such as personalization, single sign-on, and
content aggregation from different sources. Portlets are the
visible active components that users see in a portal page. A
Portal or a Portlet Container is essentially an aggregation of
portlets within one web page. BEA, IBM, Oracle, etc.
provide commercial Java Portals, while GridSphere, JBoss,
Pluto, Liferay, Stringbeans, etc. are some of the open
source portals. JSR 168 provides standards for building
portlets that can, run on portals provided by any vendors,

and most Java Portal Web Servers support the JSR 168
specification. [11]

Implementing a JSR 168 portlet begins by extending
GenericPortlet, which is an abstract class that provides a
default implementation for the portlet interface. The
GenericPortlet subclass should override at least one
method:

1. processAction: for handling action requests.
2. doView: for rendering requests when in View mode.
3. doEdit: for rendering requests when in Edit mode.
4. doHelp: for rendering requests when in Help mode.
5. init and destroy: for managing resources held for the

life of the portlet.
The JSR 168 specification defines three portlet modes:

View, Help, and Edit. All portlets must support the View
mode by overriding the doView() method, which renders
requests by generating markup to display the portlet when
the portal is loaded on the browser.

One of the most expensive actions in a portal
environment is to refresh the whole page. When the user
clicks a link or takes some action on the page, the portal
processes the request for the target portlet and also the
doView() methods for each portlet on the page. It then
aggregates the results and sends the entire HTML
document down to the browser. In our implementation,
this is done once when the portal is loaded, and all
subsequent user requests are rendered asynchronously
using AJAX, thus reducing the overhead.

We use a JSP page to display the contents of the
portlet when the portlet’s doView() method is called. All
actions in the JSP page are associated with JavaScript
functions which make an asynchronous request to a
Servlet, which fetches data from a MySQL database and
returns the results to be rendered on the browser
dynamically, without having to refresh the whole page.

6.2 Web Application Features
One of our goals during the UCM Application

Monitoring Portal development was to be able to design
and develop Portlets that could be rendered independently
without having to refresh the whole portal page, using
AJAX.

Using JavaScript technology, the HTML page can
asynchronously make calls to the server from which it was
loaded and fetch content that may be formatted as XML
documents, HTML content, plain text, or JavaScript Object
Notation (JSON). The JavaScript technology may then use
the content to update or modify the Document Object
Model (DOM) of the HTML page.

There must be an associated web application, which in
our implementation is the database access Servlet. This

Servlet, for example, could be used to retrieve data from
another back-end store or service. In our case, this Servlet
queries a remote MySQL server and creates the response in
HTML format. When the Servlet returns, the ready state is
set to 4, and the response will be handled by the return
handler in the JavaScript asynchronously. The JavaScript
can render the HTML DOM to produce the desired display
on the portlet web page without having to refresh the portal
page.

The key enabler of AJAX is the XMLHttpRequest
object, implemented by most browsers. When used within a
JavaScript on an HTML page, the XMLHttpRequest
object can make asynchronous calls to the same HTTP
server for other content by:

1. Creating XMLHttpRequest object compatible to the
browser

2. Calling the open() and send() methods on the object
3. Providing handling for the onreadystatechange

event the request object will return when content becomes
available

There are quite a few JavaScript toolkits available such

as DOJO, Yahoo UI, etc. which provide AJAX capabilities
with in-built functions for various browsers. But they also
come with a huge set of widgets and utilities which we do
not currently require, and would increase the footprint of
our portal package. Hence we decided to use the basic
JavaScript functions to make the AJAX calls.

6.3 Security Features
The means for the security in the UCM AJAX-Servlet

connection rests on being able to share a security context
between the Portal and Servlet. This is possible because
they are able to access the same UCM credentials database.
The credentials database contains an identity string and an
MD5 “message digest” or 128-bit hashed version of this
string base.

In normal operation (see Figure 7), the user would log
into the portal and then the monitoring portlet display
would be sent the user’s browser. Along with the web
page with the monitoring default display, the portal would
also send AJAX code in a separate JavaScript file.
Included here would be an MD5 hashed digest of their
identity plus a secret that is only shared between the Portlet
and Servlet. This MD5 was generated at the time that their
identity was loaded into the UCM Credential Database.
This is done when the database is synchronized with the
virtual organization information, which depending on the
configuration of the Portal can be a short interval (each
time the user logs in) or a longer interval (for example,
once a day).

Browser

Servtlet

Portlet

ID
MD5

Add Secret to ID,
Hash, and

Compare to MD5

Servlet Open: But No Access With Out MD5

Database

ID MD5

MD5 Given After
Login

ID MD

Hash(ID + Secret) = MD5

 Hash(+ Secret) =
?

Figure 7. A shared secret allows secure access of Servlet-
based Web Service functions that are called from the AJAX
code within the Web browser.

Now that the AJAX code has the identity and the MD5
digest, it can then access the Servlet with this combination
on subsequent operations that are initiated by the user in
the browser. The Servlet can then on each operation check
the validity of the combination by taking the identity,
adding the shared secret, hashing the result, and comparing
it to the MD5. Malicious attempts to access the Servlet,
which is exposed to the internet, can be denied based on
the lack of presented the correct MD5.

While not bullet proof, this level of security is
sufficient for the UCM project. The possible failures
include intruders listening on the traffic between the client
and Portal (the so called man-in-the-middle attack). The
initial login traffic is encrypted, but for UCM we have not
encrypted all traffic to maximize the performance the
information flow. One could encrypt all traffic for even
better security, but there would be a performance penalty
for this. Having the hashed value plus the ID unprotected
does expose some small level of risk, but this can be
mitigated by choosing lengthy secrets, changing them
frequently, or using a new secret every session. Our
current prototype is a simple case in that the Servlet and
Portal are co-located. As we discuss in Section 7, there are
other tools that might be considered if additional off-portal
services are accessed.

7. Related Work
The share secret approach here has some similarities to

the OAuth standard [12]. OAuth is an open protocol to
allow secure API authorization in a simple and standard
method from desktop and web applications. Using the
API, the user might log into a Consumer website asking it
to perform some service for them using their protected data
that is on another site, the Service Provider. The Consumer
sends the user to the Service Provide with identifying
information about it and what it is trying to access. At the
Service Provider, the user signs in and is asked the

Consumer is allowed to access the protected data. If the
user agrees, they are sent back to the Consumer with a
special Single-User Token. Finally, the Consumer takes the
Single-User Token and contacts the Service Provider to
exchange it for a Multi-Use Token that it can use to access
the protected data. The underlying mechanism of hashed
digests of user information plus shared secrets are similar
to both the project described here and OAuth. However,
OAuth is a standard that has clear advantages when the
services are in separate domains. In the current UCM
prototype, there is only a need for one service that is co-
located with the Portal and OAuth did not make sense to
use. However, with future expansion of the Portal or in
other projects OAuth might make good sense.

Other related work includes efforts to place virtual
organization information into login exchange such as the
Shibboleth [13] single sign-on and federating software. In
this framework extra information about an individual’s
access rights to services is appended to basic identity
information, principally through the use of OASIS'
Security Assertion Markup Language [14]. Using
assertions with the VO information self contained would
give architecture presented in this paper a more “real-time”
quality since it would eliminate the need to synchronize
with an external source such as a VOMS system. The
UCM system does have flexibility of when this
synchronization happens, but if the information is passed
into the system via the assertion, then the database
credential information is somewhat obsolete. The STAR
experiment does not use SAML-enhanced assertions, so
this approach was not used for the UCM application. It is
also of note, that UCM performance was anticipated to
preclude use of such assertions at the Servlet-Service,
although scaling tests to large number of users are pending.

8. CONCLUSION
In this paper, we have shown a web portal that allows

the use of dynamic AJAX-based portlets that connect to
backend Servlets all within an X509-certificate-based
security context. This security context is manageable for
the VO because of the infrastructure that is able to
automatically synchronize the generation and updates of
grid portal accounts mapped to a set of grid certificate user
identities. In our case, we use a VOMS list of certificate
holders, but in general the system can be extended to most
any type of identity list.

The result is a grid portal that has a simplified user
interface in that they can present a certificate that is already
likely to be loaded into their browser and automatically be
recognized without having to remember a separate portal
login. Additionally, for the administrator of the system it is
also simple in that they only have to maintain a list of
virtual organization providers and do not have to worry
about generating individual portal accounts.

9. ACKNOWLEDGMENTS
The work reported here is supported by the U.S.
Department of Energy SBIR Grant #DE-FG02-
05ER84170.

10. REFERENCES
[1] Jay Alameda, Marcus Christie, Geoffrey Fox, Joe

Futrelle, Dennis Gannon, Mihael Hategan, Gopi
Kandaswamy, Gregor von Laszewski, Mehmet A.
Nacar, Marlon E. Pierce, Eric Roberts, Charles
Severance, Mary Thomas: The Open Grid Computing
Environments collaboration: portlets and services for
science gateways. Concurrency and Computation:
Practice and Experience 19(6): 921-942 (2007), also
see http://www.ogce.org

[2] Jason Novotny, Michael Russell, Oliver Wehrens:
GridSphere: a portal framework for building
collaborations. Concurrency - Practice and Experience
16(5): 503-513 (2004), also see
http://www.gridsphere.org

[3] See http://jboss.org
[4] D Alexander, R Pundaleeka, S Tramer, J Lauret, V

Fine, Portlets for User Centric Job and Task
Monitoring for Open Science Grid Virtual
Organizations, International Workshop on Grid
Computing Environments 2007, Nov., Day, 2007,
Reno, NV, USA.

[5] Information about the STAR nuclear physics
experiment can be found at http://www.star.bnl.gov/

[6] VOMS information can be found at http://edg-
wp2.web.cern.ch/edg-wp2/security/voms/

[7] AJAX technology is a web development technique for
asynchronously accessing server data while allow the
user to interact with an existing web pages and
updating parts of the page when the data is retrieved.
See http://en.wikipedia.org/wiki/Ajax_(programming)

[8] Jim Basney, Marty Humphrey, Von Welch: The
MyProxy online credential repository. Softw., Pract.
Exper. 35(9): 801-816 (2005)

[9] The “JSR 168: Portlet Specification”,
http://jcp.org/en/jsr/detail?id=168, defines the
interoperability between portlets and portals.

[10] MySQL is a highly-available, light-weight database
server. See http://www.mysql.com/

[11] General information about JSR 168 compliant portals
can be found at http://en.wikipedia.org/wiki/JSR_168

[12] OAuth, http://oauth.net/
[13] Shibboleth, http://shibboleth.internet2.edu/
[14] SAML, http://wiki.oasis-open.org/security

